

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Educt 168,99.585

Profesty of the Harvard Vest. Book Library

HARVARD UNIVERSITY

LIBRARY OF THE

Department of Education

COLLECTION OF TEXT-BOOKS
Contributed by the Publishers

TRANSFERRED

TO

HARVARD COLLEGE

LIBRARY

3 2044 097 047 633

.

,• •

PLANE TRIGONOMETRY

BY THE SAME AUTHOR.

INTRODUCTORY COURSE IN DIFFERENTIAL EQUATIONS, FOR STUDENTS IN CLASSICAL AND ENGINEERING COLLEGES. pp. xvi + 236. \$1.90.

AN ELEMENTARY COURSE IN THE INTEGRAL CALCULUS. pp. xiv + 288. \$2.00.

PLANE TRIGONOMETRY

FOR

COLLEGES AND SECONDARY SCHOOLS

BY

DANIEL A. MURRAY, B.A., PH.D.

INSTRUCTOR IN MATHEMATICS IN CORNELL UNIVERSITY
FORMERLY SCHOLAR AND FELLOW AT JOHNS HOPKINS UNIVERSITY

LONGMANS, GREEN, AND CO.
91 AND 93 FIFTH AVENUE, NEW YORK
LONDON AND BOMBAY
1899

T12.6769 pr Educt 168.99.585

Harvard University, Dept. of Education Library

HARVARD COLLEGE LIBRARY
ACA 16 1921

COPYRIGHT, 1899, By LONGMANS, GREEN, AND CO.

ALL RIGHTS RESERVED.

Normood Bress J. 8. Cushing & Co. — Berwick & Smith Norwood Mass. U.S.A.

PREFACE.

Although there are already many excellent text-books on trigonometry, there appears still to be room for one which shall avoid the extremes of expansion and brevity. Some of the most thorough and scholarly of these contain a great variety of matters which it is impossible to consider in the time usually assigned to this study in school and college. On the other hand, the explanations given in many other works are so meagre that the student is perplexed and bewildered by the new ideas which are so abruptly forced upon him, and the difficulties of the teacher are greatly increased. The manner of presentation adopted in this volume necessitates more reading matter, and, consequently, a somewhat larger number of pages than is found in many of the recent text-books on trigonometry. This has seemed unavoidable, however, for the general consensus of opinion among those with whom the author has conferred, is that it is essential to explain in some detail the principles of the science, in order that it may be clearly and intelligently understood by an elementary student.

With regard to the scope of the book, it may be said that it deals with the subjects considered in the ordinary course in plane trigonometry in colleges and secondary schools. It discusses the topics usually required for teachers' certificates, for entrance to college, and for examinations in trigonometry in the first year of the college curriculum. It treats of all the topics that one who has taken a few months' course in trigonometry may be reasonably expected to know.

Careful consideration has been given both to the early difficulties and to the possible future needs of the beginner. book differs somewhat from other text-books on this branch of mathematics both in the arrangement and in the manner of presentation. The oldest and simplest part of trigonometry, namely, the solution of triangles and the associated practical problems, is concluded before the more general and abstract portions of the study are introduced. The first chapters of the book contain little more about trigonometric ratios and angular analysis than is sufficient to enable the beginner to understand clearly the arithmetical part of the science, and its simple practical applications. This arrangement seems to have several advantages. The subject is rendered far less strange at the beginning, and, by means of practical, concrete examples, the student becomes familiar with the trigonometric functions before proceeding to the more general treatment. His progress is thus made easier and more rapid. Teachers who prefer a wider generality of treatment at the outset, however, can select the chapters in a different order from that followed in the text.

An endeavour has been made to introduce the several topics in such a way that the pupil may have, from the very start, an intelligent idea of each step in advance, as well as of the ultimate purpose of the study. In some cases, especially in Chapter II. (the first chapter on trigonometry), care has been taken to prepare the mind of the learner for the reception of new ideas, by the preliminary solution of easy familiar exercises. Throughout the work the author has endeavoured to make each step clear, and thus to prevent the appearance of that puzzled feeling which has such a depressing influence on those entering upon a new study. On the other hand, he has sought to develop independence of mind and the power of mental initiative on the part of the student. Suggestions as to practical methods of work are frequently

introduced, and summaries are made in several places for the purpose of helping the pupil to get a better idea of the subject as a whole.

In the practical applications, marked attention has been given to the graphical method of solution, as well as to the method of computation. The former method serves as a check upon the latter, and affords practice in neat and careful drawing. What is perhaps more important, however, is that the students will thus become accustomed to a method which will be used by them in other studies, and which is often employed in practical work by engineers and others.

Logarithms are used almost at the beginning of the study as here presented. For this reason, and in order to avoid making a digression later on, an introductory chapter is devoted to a review on logarithms. Examples, simple ones as a rule, are given in the several articles. Questions and exercises suitable for practice and review on the separate chapters are placed at the end of the book instead of at the ends of the chapters. These collections will be found useful, both in the short reviews that may be required on the completion of each chapter and in the larger and more general reviews. Many of the examples have been taken from examination papers set in Great Britain and the United States.

Throughout the work there are many historical and other notes; and an historical sketch is given in the Appendix. It is believed that some knowledge of the historical development of trigonometry, and of the men of various times and races who have helped to advance the subject, will interest and stimulate those who are entering upon its study.

While writing this book, the author has received many valuable suggestions from Mr. J. A. Clark, B.S., of the Ithaca High School, and from several of his colleagues in the departments of mathematics and of engineering at Cornell University. He is indebted

to Dr. G. A. Miller and Dr. J. V. Westfall, of the department of mathematics at Cornell University, for their kind assistance in the revision of the proof-sheets, and to Mr. E. A. Miller, B.S., for his friendly aid in working examples. The drawings have been made by Mr. A. T. Bruegel, M.M.E., formerly instructor in the kinematics of machinery at Cornell University, now of the Pratt Institute, Brooklyn, N.Y. The author uses this opportunity to express his thanks for the pains taken by Mr. Bruegel to make the figures a pleasing feature of the book.

D. A. MURRAY.

CORNELL UNIVERSITY, August, 1899.

CONTENTS.

CHAPTER I.

	REVIEW OF LOGARITHMS.		
ART.	T. ,		PAGE
2.	. Definition of a logarithm		2
3.	. Properties of logarithms		2
4.	. Common system of logarithms		4
5.			5
6.	. Exercises in logarithmic computation		6
	CHAPTER II.		
	TRIGONOMETRIC RATIOS OF ACUTE ANGLES.		
8.	. Ratio. Measure		8
9.	. Incommensurable quantities. Approximations		12
10.	. Linear measure. Drawing to scale. Direct measurement by	neans	
	of drawing		15
11.	. Degree measure. The protractor		18
12.	. Trigonometric ratios defined for acute angles		20
13.	. Definite and invariable connection between acute angles and	l trig-	
	onometric ratios		24
14.	. Practical problems		26
15.	. Trigonometric ratios of 45°, 60°, 30°, 0°, 90°		29
16.	. Relations between the trigonometric ratios of an angle and	those	
	of its complement		32
17.	. Exponents in trigonometry		32
18.	. Relations between the trigonometric ratios of an acute angle		33
	. Summary		37
	·		

CHAPTER III.

SOLUTION OF RIGHT-ANGLED TRIANGLE	SOLUTION	OF	RIGHT-ANGLED	TRIANGLES
-----------------------------------	----------	----	--------------	-----------

art. 20.	Solution of a triangle							PAGE 38
	The graphical method	•	•	•	•	•	•	38
21. 22.	m			•	•	•	•	39
	Comparison between the graphical me		and	tha	· moth		· of	38
20.				ше	шеи	iou	OI.	40
24.	General directions for solving problems.		•	•	•	•	•	41
	Solution of right-angled triangles			•	•	•	•	41
	Checks upon the accuracy of the comput	ation		•	•	•	•	43
	Cases in the solution of right-angled trian			•	•	•	•	43
21.	Cases in the solution of right-angled than	IRICO		•	•	•	•	30
	. CHAPTER IV	7						
	. CHAITEN IV	•						
A	PPLICATIONS INVOLVING THE SOLUTION O	r Ri	GHT-	ANGL	ED T	RIAR	īGL	ES.
28.	Projection of a straight line upon another	r stra	ight	line				49
29.	Measurement of heights and distances			•				50
30.	Problems requiring a knowledge of the	е ро	ints (of th	e ma	rine	r's	
	compass		•		•			53
31.	Mensuration	•		•				54
	Solution of isosceles triangles	•		•	•	•		55
33.	Related regular polygons and circles	•	•	•				55
34.	Solution of oblique triangles		•			•		57
	Area of a triangle in terms of its sides							60
34b.	Distance and dip of the visible horizon							61
34c.	Examples in the measurement of land							61
35.	Summary	•		•	•	•	•	63
	CHAPTER V	7.						
	Trigonometric Ratios of An	~	(١				
	I RIGONOMETRIC TRATIOS OF AN	GLES	IN (JENE	KAL.			
36.	Directed lines							65
37.	Trigonometric definition of an angle. A	ngle	s unli	mite	d in	mag	ni-	
	tude. Positive and negative angles							67
38.	Supplement and complement of an angle	1						69
	The convention of signs on a plane.							70
40.	General definition of the trigonometric ra	atios						71

CONTENTS.	x i

ART.				PAG
41.	The algebraic signs of the trigonometric ratios for an	gles	in th	
40	different quadrants	•	•	. 7
42 .		e give	en	. 74
	Connection between angles and trigonometric ratios Relations between the trigonometric ratios of an angle	•	•	. 7
	Ratios of $90^{\circ} - A$, $90^{\circ} + A$, $180^{\circ} - A$, $-A$.		•	. 79
40.	Ratios of $90 - A$, $90 + A$, $100 - A$, $-A$.	•	•	. "
•				
	CHAPTER VI.			
	TRIGONOMETRIC RATIOS OF THE SUM AND THE DIFF.	EREN	CE OI	F
	Two Angles.			
10	Designation of the sine and essine of the sum of two	m mloo	h o	
40.	Derivation of the sine and cosine of the sum of two a each of the angles is less than a right angle.	mgies	м ше	n. . 8
47	Derivation of the sine and cosine of the difference of	· two	anale	
71.	when each of the angles is less than a right angle	two	angi	. 8′
48	Proof of the addition and subtraction formulas for all v	9]1169	of th	
10.	two angles	wited	OI W	. 89
49	Each fundamental formula contains the others .	•	•	. 90
	Ratios of an angle in terms of the ratios of its half angl	A	•	. 90
	Tangents of the sum and difference of two angles, and		ice a	
	angle			_ . 9:
52.	Sums and differences of sines and cosines			. 9
	CHAPTER VII.			
	Solution of Triangles in General.			
53.	Cases for solution			. 9
	Fundamental relations between the sides and angles of	a tr	iangl	
	The law of sines. The law of cosines			. 98
54a.	Substitution of sines for sides, and of sides for sines			. 10
	Case I. Given one side and two angles			. 10
	Case II. Given two sides and an angle opposite to one	of th	em	. 109
	Case III. Given two sides and their included angle			. 10
	Case IV. Given three sides			. 10
59.	The aid of logarithms in the solution of triangles .			. 100
60.	<u> </u>			. 10'
61.	Relation between the sum and the difference of any tw	o sid	es of	a.
	triangle. The law of tangents. Use of logarithms in	Case	III.	. 108

xii	CONTEN	TS.						
ART.	001/11/21/							PAGE
	Trigonometric ratios of the half-angle	s of a	tria:	ngle.	Use	of log	да -	11101
	rithms in Case IV							110
	Problems in heights and distances .	••	•	•		•	•	113
64.	Summary	•	•	•	٠	•	•	115
	CHAPTER	VIII.						
	Side and Area of a Triangle.	Circ	LES C	ONNE	CTED	WITE	I	
	A TRIANG	LE.						
65.	Length of a side of a triangle in terms	of the	adja	cent	sides	and t	he	
	adjacent angles							116
	Area of a triangle				•			117
67.	Area of a quadrilateral in terms of its		onals	and	their	angle	of	
	intersection		•	•	•	•	•	118
	The circumscribing circle of a triangle		•	•	•	•	•	119
	The inscribed circle of a triangle .	•	•	•	•	•	•	119
70.	The escribed circles of a triangle .	•	•	•	•	•	•	120
	CHAPTER	IX.						
	RADIAN MEA	SURE.						
71.	The radian defined							121
72.	The value of a radian							122
73.	The radian measure of an angle. Me	asure	of a c	circul	ar ar	з.	•	123
	CHAPTER	х.						
	Angles and Trigonome	TRIC	Func	TION	s.			
75.	Function. Trigonometric functions							128
	Algebraical note					•		129
77.	Changes in the trigonometric function 0° to 360°			-			o m	131
78.	Periodicity of the trigonometric funct		•	•	•		•	134

78. Periodicity of the trigonometric functions

81. Graphical representation of functions

82. Graphs of the trigonometric functions

an angle

79. The old or line definitions of the trigonometric functions

80. Geometrical representation of the trigonometric functions

83. Relations between the radian measure, the sine, and the tangent of

135

137

138

139

143

CHAPTER XI.						
GENERAL VALUES. INVERSE TRIGONOMETRIC FUNCTIONS.						
ART. PAG						
84. General values						
85. General expression for all angles which have the same sine 14						
86. General expression for all angles which have the same cosine 27. Concept expression for all angles which have the same tensor.						
87. General expression for all angles which have the same tangent . 14 88. Inverse trigonometric functions	-					
88. Inverse trigonometric functions	, 1					
functions	12					
90. Trigonometric equations	_					
201 21260100010 040000000	-					
CHAPTER XII.						
MISCELLANEOUS THEOREMS AND EXERCISES.						
92. Functions of twice an angle. Functions of half an angle 18	KA.					
93. Functions of three times an angle. Functions of an angle in terms	~					
of functions of one-third the angle	57					
94. Functions of the sum of three angles						
95. Identities	59					
96. For an acute angle of θ radians, $\cos \theta > 1 - \frac{\theta^2}{4}$, $\sin \theta > \theta - \frac{\theta^3}{4}$, . 16	ŧ۸					
For all active angle of θ radians, $\cos \theta > 1 - \frac{1}{4}$, $\sin \theta > \theta - \frac{1}{4}$, . To	,U					
97. One method of computing trigonometric functions 16	31					
98. Trigonometry defined. Branches of trigonometry 16	12					
•						
APPENDIX.						
Note A. Historical sketch	15					
Note B. Projection definitions of trigonometric ratios 16	9					
Note C. On the ratio of the length of a circle to its diameter 17	1					
Note D. On analytical trigonometry and De Moivre's Theorem 17						
QUESTIONS AND EXERCISES FOR PRACTICE AND REVIEW 18	1					

CONTENTS.

xiii

		ı
		!
		ı

PLANE TRIGONOMETRY.

CHAPTER I.

LOGARITHMS: REVIEW OF TREATMENT IN ARITH-METIC AND ALGEBRA.

1. There is a large amount of computation necessary in the solution of some of the practical problems in trigonometry. The labour of making extensive and complicated calculations can be greatly lessened by the employment of a table of logarithms, an instrument which was invented for this very purpose by John Napier (1550–1617), Baron of Merchiston in Scotland, and described by him in 1614. From Henry Briggs (1556–1631), who was professor at Gresham College, London, and later at Oxford, this invention received modifications which made it more convenient for ordinary practical purposes.*

Every good treatise on algebra contains a chapter on logarithms. This brief introductory review is given merely for the purpose of bringing to mind the special properties of logarithms which make them readily adaptable to the saving of arithmetical work. A little preliminary practice in the use of logarithms will be of advantage to any one who intends to study trigonometry. A review of logarithms as treated in some standard algebra is strongly recommended.

^{*} The logarithms in general use are known as Common logarithms or as Briggs's logarithms, in order to distinguish them from another system, which is also a modified form of Napier's system. The logarithms of this other modified system are frequently employed in mathematics, and are known as Natural logarithms, Hyperbolic logarithms, and also, but erroneously, as Napierian logarithms. See historical sketch in article Logarithms (Ency. Brit. 9th edition), by J. W. L. Glaisher.

2. Definition of a logarithm.

If
$$a^z = N$$
, (1)

then x is the index of the power to which a must be raised in order to equal N.

For some purposes, this idea is presented in these words: If $a^{x} = N$, then x is the logarithm of N to the base a.

The latter statement is taken as the definition of a logarithm, and is expressed by mathematical symbols in this manner, viz.:

$$x = \log_{\bullet} N. \tag{2}$$

Equations (1), (2), are equivalent; they are merely two different ways of stating a certain connection between the three quantities a, x, N. For example, the relations

$$2^8 = 8$$
, $5^4 = 625$, $10^{-8} = \frac{1}{1000} = .001$,

may also be expressed by the equivalent logarithmic equations,

$$\log_2 8 = 3$$
, $\log_5 625 = 4$, $\log_{10} .001 = -3$.

EXAMPLES.

- 1. Express the following equations in a logarithmic form: $3^8 = 27, \ 4^4 = 256, \ 11^2 = 121, \ 9^8 = 728, \ 7^8 = 343, \ m^5 = p.$
- 2. Express the following equations in the exponential form: $\log_2 8 = 3$, $\log_5 625 = 4$, $\log_{10} 1000 = 3$, $\log_2 64 = 8$, $\log_n P = a$.
- 3. When the base is 2, what are the logarithms of 1, 2, 4, 8, 16, 32, 64, 128, 256?
 - 4. When the base is 5, what are the logarithms of 1, 5, 25, 125, 625, 3125?
- 6. When the base is 4, and the logarithms are 0, 1, 2, 3, 4, 5, what are the numbers?
- 7. When the base is 10, between what whole numbers do the logarithms of the following numbers lie: 8, 72, 235, 1140, 3470, .7, .04, .0035?
- 3. Properties of logarithms. Since a logarithm is the index of a power, it follows that the properties of logarithms must be derivable from the properties of indices; that is, from the laws

(l

ľ.

100

l,

Ľ.

of indices. The laws of indices are as follows (a, m, n, being any finite quantities):

$$(1) \ a^m \times a^n = a^{m+n}.$$

(2)
$$\frac{a^m}{a^n} = a^{m-n} \cdot \left[\frac{a^m}{a^m} = a^{m-m} = a^0; \text{ also, } \frac{a^m}{a^m} = 1. \quad \therefore \ a^0 = 1 \right]$$

(3)
$$(a^m)^n = a^{mn}$$
. (4) $\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}}$.

Let
$$M = a^m$$
, whence, $\log_a M = m$; (1)

and let
$$N = a^n$$
, whence, $\log_a N = n$. (2)

It follows that

$$MN = a^{m+n}$$
; whence, $\log_a MN = m + n = \log_a M + \log_a N$. (3)

[If
$$P = a^p$$
, then $\log_a P = p$, $MNP = a^{m+n+p}$;

whence, $\log_a MNP = m + n + p = \log_a M + \log_a N + \log_a P$.

Also,
$$\frac{M}{N} = \frac{a^m}{a^n} = a^{m-n};$$

whence,
$$\log_a \frac{M}{N} = m - n = \log_a M - \log_a N$$
. (4)

Also,
$$M^r = (a^m)^r = a^{mr}$$
; whence, $\log_a M^r = rm = r \log_a M$. (5)

Also,
$$\sqrt[r]{M} = (a^m)^{\frac{1}{r}} = a^{\frac{m}{r}};$$

whence,
$$\log_a \sqrt[r]{M} = \frac{1}{r} \cdot m = \frac{1}{r} \log_a M.$$
 (6)

The results (3)-(6) state the properties, or are the laws of logarithms. They may be expressed in words as follows:

- (1) The logarithm of the product of any number of factors is equal to the sum of the logarithms of the factors.
- (2) The logarithm of the quotient of two numbers is equal to the logarithm of the numerator diminished by the logarithm of the denominator.
- (3) The logarithm of the rth power of a number is equal to r times the logarithm of the number.

(4) The logarithm of the **rth root** of a number is equal to $\frac{1}{r}$ th of the logarithm of the number.

Hence, if the logarithms (i.e. the exponents of powers) of numbers be used instead of the numbers themselves, then the operations of multiplication and division are replaced by those of addition and subtraction, and the operations of raising to powers and extracting roots, by those of multiplication and division.

4. Common system of logarithms. Any positive number except 1 may be chosen as the base; and to the base chosen there corresponds a set or system of logarithms. In the common or decimal system the base is 10, and, as will presently appear, this system is a very convenient one for ordinary numerical calculations.* In what follows, the base 10 is not expressed, but it is always understood that 10 is the base. The logarithm of a number in the common system is the answer to the question: "What power of 10 is the number?"

Since

$$1=10^{\circ}$$
, $10=10^{1}$, $100=10^{3}$, $1000=10^{3}$, $10000=10^{4}$, ..., it follows that

$$\log 1 = 0$$
, $\log 10 = 1$, $\log 100 = 2$, $\log 1000 = 3$, $\log 10000 = 4$, ...

This also shows that the logarithms of numbers

For example,

$$9 = 10^{-85494}$$
, $247 = 10^{2.39270}$, $1453 = 10^{3.16227}$; or $\log 9 = .95424$, $\log 247 = 2.39270$, $\log 1453 = 3.16227$.

Most logarithms are incommensurable numbers. (See Art. 9.) The decimal part of the logarithm is called the *mantissa*, the

^{*} The base of the natural system of logarithms is an incommensurable number, which is always denoted by the letter e and is approximately equal to 2.7182818284.

integral part of the logarithm is called the index or characteristic.

The two great advantages of the common system, as will now be shown, are:

- (1) The characteristic of a logarithm can be written on mere inspection;
- (2) The position of the decimal point in a number affects the characteristic alone, the mantissa being always the same for the same sequence of figures.

Since
$$.1 = \frac{1}{10} = 10^{-1}$$
, $.01 = \frac{1}{100} = 10^{-2}$, $.001 = \frac{1}{10000} = 10^{-3}$, $.0001 = \frac{1}{100000} = 10^{-4}$, ...,

it follows that

$$\log .1 = -1$$
, $\log .01 = -2$, $\log .001 = -3$, $\log .0001 = -4$, etc. (2)

From (1) and (2) comes the following rule for finding the characteristic:

When the number is greater than 1, the characteristic is positive and is one less than the number of digits to the left of the decimal point; when the number is less than 1, the characteristic is negative, and is one more than the number of zeros between the decimal point and the first significant figure.

When a change is made in the position of the decimal point in a number, the value of the number is changed by some integral power of 10. Its logarithm is then changed by a whole number only, and, consequently, its mantissa is not affected. For example,

$$25.38 = 2538 \times 10^{-2}$$
, $2538000 = 2538 \times 10^{3}$;

and hence, $\log 25.38 = \log 2538 - 2$, $\log 2538000 = \log 2538 + 3$.

Accordingly, it is necessary to put only the mantissas of sequences of integers in the tables.

5. Negative characteristics. In common logarithms the mantissa is always kept positive. Thus, for example, $\log 25380 = 4.40449$; $\log .002538 = \log \frac{2538}{10000000} = \log 2538 - \log 10000000 = 3.40449 - 6 = -3 + .40449$. (Never put -2.59551.)

This logarithm is usually written $\overline{3}.40449$, in order to show that the *minus* sign affects the characteristic alone. In order to avoid the use of negative characteristics, 10 is often added to the logarithm and -10 placed after it.

Thus $\overline{3}.40449$ is written 7.40449 - 10.

The second form is more convenient for purposes of calculation. Special care is necessary in dealing with logarithms because of the fact that the mantissa is always positive, while the characteristic may be either positive or negative. Some typical examples involving negative characteristics are given below.

Addition	Subtraction		Multiplication
1. 3.27412	2 . $\bar{3}$.27412	i.e. $7.27412 - 10$	3. 9.83471 - 10
4.51459	4.51459	4.51459	2
1.78871		2.75953 - 10	$\frac{19.66942-20}{19.66942-20} \ (1)$
			<i>i.e.</i> $9.66942 - 10$ (2)

A result like (1) is always put in the form (2), in which the number placed after the logarithm is -10.

Ex. 3 may also be worked thus:

$$(-1 + .83471) \times 2 = -2 + 1.66942 = \overline{1}.66942.$$

4. Division. $\overline{3}.27412 \div 4 = (37.27412 - 40) \div 4 = 9.31853 - 10$.

As in Ex. 3 care is taken that, finally, the number after the logarithm be -10.

5.
$$\overline{2}.34175 \div 5 = (48.34175 - 50) \div 5 = 9.66835 - 10.$$

6.
$$\overline{4}.74752 \times \frac{2}{3} = \frac{\overline{7}.49504}{3} = \frac{23.49504 - 30}{3} = 7.83168 - 10.$$

The method of finding the logarithms in the tables when the numbers are given, and the way to find the numbers when the logarithms are given, are usually explained in connection with the tables of logarithms.

6. Exercises in logarithmic computation. On looking at the laws of logarithms, (3)-(6), Art. 3, it is apparent that logarithms cannot assist in the operations of addition and subtraction. Logarithms are of no service in computing expressions of the forms

M + N, M - N. An expression is said to be adapted to logarithmic computation when it is expressed by means of factors only. Thus, $\frac{a^n \cdot b^{\overline{r}}}{c^{10} a^a}$ is adapted to logarithmic computation, but $\frac{a+b-2\,a^2+19}{7\,a-5\,b}$ is not.

EXAMPLES.

1. Find $\frac{6837}{4341}$.

Let
$$R = \frac{6837}{4341}$$
. Then $\log R = \log 6837 - \log 4341$.
$$\log 6837 = 3.83487$$

$$\log 4341 = 3.63759$$

$$\therefore \log R = 0.19728$$

$$\therefore R = 1.575.$$

 $\log R = 0.19728$

2. Find $\sqrt{.005}$.

Let
$$R = \sqrt{.005}$$
. Then $\log R = \log (.005)^{\frac{1}{2}} = \frac{1}{2} \log .005 = \frac{\overline{3}.69897}{2}$
$$= \frac{17.69897 - 20}{2} = 8.84948 - 10 = \overline{2}.84948.$$
$$\therefore R = .07071.$$

3. Find $\sqrt[5]{742 \times .0769}$.

Let
$$R$$
 be the value. Then $\log R = \log \sqrt[5]{742 \times .0769} = \log (742 \times .0769)^{\frac{1}{5}}$

$$= \frac{1}{5} \log (742 \times .0769) = \frac{1}{5} [\log 742 + \log .0769].$$

$$\log 742 = 2.87040$$

$$\log .0769 = \overline{2}.88593$$
Dividing by 5,
$$5 = 1.75633$$

 $\log R = .35126$

R = 2.245.

4. Find $\sqrt{\frac{456 \times 372}{350 \times 249}}$, i.e. $\left(\frac{456 \times 372}{350 \times 249}\right)^{\frac{1}{2}}$.

Let R be the value. Then $\log R = \frac{1}{3} (\log 456 + \log 372 - \log 350 - \log 249)$.

$$\begin{array}{l} \log 456 = 2.65896, \ \log 350 = 2.54407 \\ \log 372 = \underbrace{2.57054}_{5.22950}, \ \log 249 = \underbrace{2.39620}_{4.94027} \end{array}$$

Dividing by 2,
$$\frac{4.94027}{2 \lfloor .28923}$$

$$\therefore \log R = .14462 \quad \text{(See Art. 9, Note 1.)}$$

$$\therefore R = 1.395.$$

5. Find the value of x in $34^x = 19$.

Since

$$34^{x} = 19,$$

 $\log 34^{x} = \log 19,$
 $x \log 34 = \log 19,$
 $x = \frac{\log 19}{\log 34} = \frac{1.27875}{1.53148} = .83498, \text{ nearly.}$

- **6.** Find the value of (a) $\frac{374}{267}$, (b) $\frac{29.76}{315.2}$, (c) $\frac{4.132}{59.83}$, (d) $\frac{.0417}{4.231}$
- 7. Find the value of (a) $\frac{76.5 \times 83.21}{674.2}$, (b) $\frac{8.97 \times 6.36}{7.84}$, (c) $\frac{95.83 \times 76.49}{82.97}$
- 8. Find the value of (a) $\sqrt{63}$, (b) $\sqrt{630}$, (c) $\sqrt{6.3}$, (d) $\sqrt{.63}$, (e) $\sqrt{.063}$, (f) $\sqrt{.0063}$.
- **9.** Find the value of $\sqrt{63.42 \times 74.95}$, $\sqrt{6.35 \times 10.87}$, $\sqrt{14.21 \times 17.29}$.
- 10. Find the value of $\sqrt{\frac{63.9 \times 72.11}{7.81 \times 6.95}}$, $\sqrt{\frac{31.21 \times 41.7}{11.39 \times 15.71}}$, $\sqrt{\frac{41.7 \times 85.6}{73.4 \times 97.8}}$
- 12. $\left(\frac{35}{112}\right)^{\frac{3}{8}}$ 11. Find the value of $2.5637^{\frac{8}{11}}$.
- 13. Find x from the equations:

(a)
$$3^x = 35$$
, (b) $5^x = 70$, (c) $10^x = 36$,

(d)
$$10^x = 127$$

(d)
$$10^x = 127$$
, (e) $10^x = 765$, (f) $10^x = 1364$.

$$(f) 10^2 - 1364$$

CHAPTER II.

TRIGONOMETRIC RATIOS OF ACUTE ANGLES.

7. The name Trigonometry is derived from two Greek words which taken together mean 'I measure a triangle.'* At the present time the measurement of triangles is merely one of several branches included in the subject of trigonometry. The more elementary part of trigonometry is concerned with the calculation of straight and circular lines, angles, and areas belonging to figures on planes and spheres. It consists of two sections, viz. Plane Trigonometry and Spherical Trigonometry. Elementary trigonometry has many useful applications, for instance, in the measurement of areas, heights, and distances. An acquaintance with its simpler results is very helpful, and sometimes indispensable, in even a brief study of such sciences as astronomy, physics, and the various branches of engineering. Some modern branches of trigonometry require a knowledge of advanced algebra. Their results are used in the more advanced departments of mathematics and in other sciences. This work considers only the simpler portions of trigonometry, and shows some of its applications.

The truths of elementary trigonometry are founded upon geometry, and are obtained and extended by the help of arithmetic and algebra. A knowledge of the principal facts of plane geometry, and the ability to perform the simpler processes of algebra, are necessary on beginning the study of plane trigonometry. Instruments for measuring lines and angles, and accuracy in computation are required in making its practical applications.

8. Ratio. Measure. On entering upon the study of trigonometry it is very necessary to have clear ideas concerning the terms ratio and incommensurable numbers as explained in arithmetic and algebra, for these terms play a highly important part

^{*} See historical sketch, p. 165.

in the subject. The study begins with an explanation of certain ratios which are used in it continually, and most of the numbers that appear in the solution of its problems are incommensurable.

If one quantity is half as great as another quantity in magnitude, it is said that the ratio of the first quantity to the second is as one to two, or one-half. This ratio is sometimes indicated thus, 1:2; but more usually it is written in the fractional form, 1. In this example the magnitude of the second quantity is twice that of the first, and the ratio of the second quantity to the first is 2:1, or, adopting the more usual style, \$\frac{2}{2}\$, i.e. 2. The ratio of two quantities is simply the number which expresses the magnitude of the one when compared with the magnitude of the other. This ratio is obtained by finding how many times the one quantity contains the other, or by finding what fraction the one is of the other. It follows that a ratio is merely a pure number, and that it can be obtained only by comparing quantities of the same kind. Thus the ratio of the length 3 feet to the length 2 inches is $\frac{36}{5}$, i.e. 18; the ratio of the weight 2 pounds to the weight 3 pounds is 2. But one cannot speak of the ratio of 3 weeks to 10 yards, for there is no sense in the questions: How many times does 3 weeks contain 10 yards? What fraction of 10 yards is 3 weeks?

When it is said that a line is ten inches long, this statement means that a line one inch long has been chosen for the unit of length, and that the first line contains ten of these units. Thus the *number* used in telling the length of a line is the ratio of the length of this line to the length of another line which has been chosen for the unit of length. The *measure* of any quantity, such as a length, a weight, a time, an angle, etc., is

{ the number of times the quantity contains } or, the fraction that the quantity is of

a certain quantity of the same kind which has been adopted as the unit of measurement. In other words, the measure of a quantity is the ratio of the quantity to the unit of measurement. For example, if half an inch is the unit of length, then the measure of a line 8 inches long is 16; if a foot is the unit of length, then the measure of the same line is $\frac{2}{3}$; if a second is the unit of time, then the measure of an hour is 3600; if an hour is the unit of time, then the measure of a second is $\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1$

If two quantities have a common unit of measurement, then their ratio is the ratio of their measures. For example, 1 pound being taken as the unit of weight, the ratio of a weight 3 pounds to a weight 7 pounds is $\frac{3}{7}$, which is also the ratio of the measures 3 and 7. In general, if a quantity P contains m units, and a quantity P contains P units of the same kind as is used in the case of P, then the ratio

$$\frac{\text{quantity } P}{\text{quantity } Q} = \frac{m \text{ units}}{n \text{ units}} = \frac{m}{n}.$$

The last fraction $\frac{m}{n}$ is the ratio of the numbers m and n, which are the measures of the quantities P and Q respectively.

EXAMPLES.

- 1. What is the ratio of each of the following lengths to an inch, viz., 8 in., 2 ft., 3 ft. 6 in., 1.5 yd., 20 yd., a yd., b ft., c in.?
- 2. What is the ratio of each of the following lengths to a yard, viz., 6 yd., 3.75 yd., 8 ft., 2 ft. 6 in., 10 in., 5 in., α yd., b ft., c in.?
- 3. What is the measure of each of the following lengths, when a foot is the unit of length, viz., 1.5 mi., 17 yd., 3 yd. 2 ft., 8.5 ft., 2 ft. 6 in., 9 in., 2 in., a yd., b ft., c in.?
- 4. What is the measure of each of the following lengths, when 3 in. is the unit of length, viz., 2.5 yd., 1.5 ft., 8 in., a yd., b ft., c in.?
- 5. Express the ratio of 2.5 mi. to 10 yd.; and the ratio of 2\frac{1}{3} in. to 3\frac{1}{3} yd.
- 6. Compare the ratio of a foot to a yard with the ratio of a square foot to a square yard.
- 7. What is the unit of measurement in each of the following cases: when the measure of 2 ft. is 4, of 1 yd. is 72, of .5 in. is 4, of 2.5 ft. is .25?
- **N.B.** The following examples will be used again for purposes of illustration. The student is advised to draw figures neatly and accurately and to preserve the results carefully.
- 8. In a right-angled triangle the base is 6 ft. and the hypotenuse 10 ft. What is the perpendicular? Calculate the following ratios, viz.:

perpendicular	base	perpendicular
hypotenuse '	hypotenuse'	base,
base	hypotenuse	hypotenuse
perpendicular'	base,	perpendicular

What are these ratios in a triangle whose base is 6 in., and hypotenuse 10 in.? What are they when the base is 6 yd., and the hypotenuse 10 yd.? When the base is 6 mi., and the hypotenuse 10 mi.? When the base is 12 ft., and the hypotenuse 20 ft.? When the base is 3 in., and the hypotenuse 5 in.? Compare, if possible, the angles in these triangles.

- 9. In a right-angled triangle whose base is 35 ft. and perpendicular 12 ft., what is the hypotenuse? For this triangle calculate the ratios specified in Ex. 8. Calculate these ratios for a triangle whose base is 70 yd., and perpendicular 24 yd. Compare, if possible, the angles in these triangles.
- 10. Calculate these ratios for the triangle whose hypotenuse is 29 ft., and perpendicular 21 ft.; for the triangle whose hypotenuse is 2.9 in., and perpendicular 2.1 in. Compare, if possible, the angles in these triangles.
- 9. Incommensurable quantities. Approximations. If the side of a square is one foot in length, then the length of a diagonal of the square is $\sqrt{2}$ feet. Thus the ratio of the diagonal to the side is $\sqrt{2}$, a number which cannot be expressed as the ratio of two whole numbers. Two quantities whose ratio can be expressed by means of two integers are said to be commensurable the one with the other; when their ratio cannot be so expressed, the one quantity is said to be incommensurable with the other. For example, the diagonal of a square is incommensurable with the side, and the length of a circle with its diameter.* The quantities in the examples, Art. 8, are commensurable. Numbers such as $\sqrt{2}$, $\sqrt[3]{4}$, $\sqrt{10}$ are incommensurable with unity, and their values cannot be found exactly. Their values, however, can be found to two, to three, to four, in fact, to as many places of decimals as one please. The greater the number of places of decimals, the more nearly will the calculated values represent the true values of the numbers. In other words, the values of incommensurable numbers can be found approximately; and the degree of approximation (that is, the nearness to the exact values) will depend only on the carefulness and patience of the calculator. In practical problems there frequently is occasion for the exercise of judgment as to the degree of approximation that is necessary and sufficient. For example, in calculating a length in inches in ordinary engineer-

^{*} See Appendix, Note C.

ing work there is no need to go beyond the third place of decimals, for engineers are satisfied when a measurement is correct to within $\frac{1}{64}$ of an inch. As a rule the results obtained in *practical* problems in mathematics are only approximate and not exact. There are two reasons for this: first, the *data* obtained by actual measurement can only be approximate, however excellent the instruments used in measuring may be, and however skilled and careful is the person who does the measuring; second, most of the *numbers used* in the subsequent computations are incommensurable.

The examples at the end of this article are intended to bring out more clearly the idea of an approximate result. The answers are to be calculated to three places of decimals. It is advisable to compare the values calculated to three places of decimals with the values calculated to two places of decimals, and to note the difference between them. The following facts are supposed to be known and will be taken for granted.

- (a) In a right-angled triangle the square of the measure of the hypotenuse is equal to the sum of the squares of the measures of the other two sides.
- (b) The ratio of the length of any circle to its diameter is a number which is the same for all circles.* The exact value of this ratio is incommensurable and is always denoted by the symbol π (read pi).† The approximate values commonly used for π are 3.1416, 3.14159, $\frac{35}{15}$ (i.e. 3.1415929 ...), $\frac{27}{4}$ (i.e. 3.142857); of these values the last is the least accurate, but it is accurate enough for many practical purposes.
- (c) The length of a circle of radius r is $2 \pi r$ [by (b)]; and the enclosed area is πr^2 .
- Note 1. If a number be calculated to three or more places of decimals, then the closest approximation to, say, two places of decimals is obtained by leaving the number in the second place of decimals unchanged when the number in the third place is less than 5, and by increasing the number in the second place by unity when the number in the third place is greater than 5 or 5 followed by numbers; thus, e.g., 3.72 for 3.724, 3.73 for 3.7261 and

^{*} This ratio and facts (c) are considered in Note C, Appendix. The reading only requires a knowledge of elementary geometry.

[†] This symbol is the initial letter of periphereia, the Greek word for circumference. Its earliest appearances to denote this ratio are in Jones's Synopsis Palmariorum Mathesos, London, 1706, and in the Introductio in analysin infinitorum, published in 1748 by Leonhard Euler (1707-1783), a native of Switzerland, who was one of the greatest mathematicians of his time.

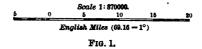
3.7257. When the number in the third place is 5 and this is followed by zeros only, the number in the second place is unchanged if it is even, and is increased by unity if it is odd; thus, e.g., 3.78 for 3.775, 3.78 for 3.785. In a series of calculations the errors made by following this rule tend to balance one another.

Note 2. A quantity measured to two places of decimals is correct to the hundredth part of the unit employed, and a quantity measured to three places is correct to the thousandth part of the unit. For example, the length of a circle of 10 feet diameter is 31.4159... feet. For this length 31.416 or 31.42 may be taken; the former result differs from the true result by less than one-thousandth of a foot, the latter by less than one-hundredth.

EXAMPLES.

- 1. A finds the square root of 3 correctly to two places of decimals, and B to three. How much closer than A does B come to the exact value of the square root of 3?
- 2. A circle is 50 ft. in diameter. In calculating its length A takes 3.1416 as the ratio of the length of a circle to the diameter, B takes 3.14159, and C takes 22:7. What are the differences (in inches) between their results?
- 3. The radius of a circle is 49.95 ft. How nearly will a person come to the length of the circle if he assumes the radius to be 50 ft.? [In this and the following example take $\pi=22:7$.]
- 4. It is known that the diameter of a certain circle does not differ from 100 ft. by more than 2 in. What will be the outside limits of the error made in calculating the area when the diameter is taken as 100 ft.?
- 5. Find the difference between the calculations of the numbers of revolutions per mile made by a 50-in. bicycle, for $\pi=22:7$ and $\pi=3.1416$.
- 6. A lot is 75 ft. by 200 ft. Find the diagonal distance across the lot correctly to within a tenth of an inch.
 - 7. Find the height of an equilateral triangle whose side is 20 yd.
- 8. The side of an isosceles triangle is 40 ft. and the base is 30 ft.; find the height.
 - 9. What is the length of the diagonal of a square whose side is 20 ft.?
 - 10. What is the length of the side of a square whose diagonal is 20 ft.?
- N.B. The following examples will be used again for purposes of illustration. The student is advised to draw figures and to preserve the results with those of Exs. 8, 9, 10, Art. 8.
- 11. (a) In a right-angled triangle the hypotenuse is 12 ft. and the base is 6 ft.; calculate the ratios specified in Ex. 8, Art. 8.
- (b) What are these ratios when the lengths in (a) are taken twice, three times, one-half as great? Compare, if possible, the angles in these triangles.

- 13. (a) In a right-angled triangle the base is 8 in. and the perpendicular 12 in.; calculate the ratios specified in Ex. 8, Art. 8.
- (b) What are these ratios when the lengths in (a) are taken one-third, and four times as great? Compare, if possible, the angles in these triangles.
- 13. (a) In a right-angled triangle the hypotenuse is 35 yd. and the perpendicular is 15 yd.; calculate the ratios specified in Ex. 8, Art. 8.
- (b) What are these ratios when the lengths in (a) are taken four times, six times, one-fifth as great? Compare, if possible, the angles in these triangles.
- 10. Linear measure. Drawing to scale. Direct measurement by means of drawings. Various systems of linear measurement are described in arithmetic. The system mostly used in English-speaking countries is that in which length is given in miles, yards, feet, or inches. The system which is in common use on the continent of Europe, and which is mainly employed in scientific measurements throughout the world, is the metric system. In this system lengths are given in centimetres, metres, etc., the centimetre being a hundredth part of a metre. A metre is equal to 39.37 . . . inches.*


Drawing to scale. It is often desirable to have a drawing on paper which shall serve to give an accurate idea of the relations of certain lines and positions. Maps and architects' plans are familiar examples of such drawings. In a map an inch may represent 1 mile, 10 miles, 100 miles, 500 miles, and so on, according to the scale on which the map is made; in a building plan an inch may represent 10 feet, 12 feet, and so on. The operation of drawing on paper lines that shall be a half, a quarter, a tenth, a thousandth, etc., part of the actual length of given lines, is called drawing to scale. In many cases the drawings of objects cannot be made full size; for instance, the map of a town, the floor plan of a church; these are drawn to a reduced scale. In other cases the drawings are made larger than the actual objects, for instance, the drawings of the minute things that live in a drop of water, the drawings of the various parts of a flower;

^{*} The metric system has the great advantage of being a decimal system. At the present time committees of scientific societies in England and America are working to have the common system replaced by the metric.

these are drawn to an enlarged scale. When a drawing is made to scale, the scale should always be indicated on it. This may be done in various ways. Thus a mere statement may be made, e.g.,

1 inch to 10 feet;

or, the scale may be indicated by a fraction which gives the ratio of any line in the drawing to the actual line represented. The scale can also be shown graphically by means of a specially marked line. Both the latter methods are illustrated, for instance, on the map of the Kingdom of Saxony in The Times Atlas:

The scale should be expressed fractionally, that is, by expressing the ratio of a line in the drawing to the actual line represented. Thus in the first example above the scale is 1:120; in the second the scale is 1:870000.

When a drawing is made to scale, the distance between two objects can be measured directly, by merely measuring the distance between their corresponding points on the drawing. For instance, if 1 inch represents 120 feet, then 2.5 inches represents 300 feet. Another example: On the map of Saxony referred to above, the distance between Leipzig and Dresden is, approximately, $4\frac{1}{2}$ inches, and $4\frac{1}{2}$ inches \times 870000 gives about 62 miles as the distance in an airline between these cities. This method of finding distance can be used in solving many of the problems in trigonometry.* To find the length of the representative line in the drawing when the scale and the actual length are given, is an exercise in simple proportion; so, also, to find the actual length of a line when the scale and the length of the representative line are known.

^{*} This is one of the methods which will be employed in this book in problems involving distance. Proficiency in drawing will be very helpful to the student.

EXAMPLES.

- 1. When an inch represents 10 ft., how long must the lines be that will represent 3 in., 6 in., 1 ft., 2 ft., 5 ft., 15 ft., 7.5 ft., 30 ft., 40 ft., 55 ft.? What is the scale?
- 2. When an inch represents 5 yd., how long must the lines be that will represent 2 yd., 4 yd., 7 yd., 11 yd., 3 yd. 2 ft., 4 yd. 1 ft. 8 in.? What is the scale?
- 3. When an inch represents 150 ft., what distances are represented by $\frac{1}{3}$ in., $\frac{1}{4}$ in., $\frac{1}{2}$ in., $1\frac{3}{4}$ in., $2\frac{1}{2}$ in., 4.8 in., 5.3 in.? What is the scale?
- 4. When an inch represents 10 mi., what distances are represented by 3 in., 7 in., $\frac{1}{4}$ in., $\frac{1}{2}$ in., $\frac{1}{2}$ in., $\frac{1}{2}$ what lengths on the drawings will represent 7 mi., 18 mi., 25 mi.? What is the scale?
- 5. What are the scales when 1 in. represents 100 ft., $\frac{1}{4}$ in. represents a mile, $\frac{1}{8}$ in. represents 20 ft., $\frac{1}{46}$ in. represents 15 yd., 1 in. represents 1 mi., 10 mi., 100 mi.?
- 6. Draw to a scale 1:240 (20 ft. to the inch) the circles in Exs. 2, 3, 4, 5, Art. 9.
- 7. On a map in Baedeker's Guide to Paris the distance between the nearest corners of the Eiffel Tower and Notre Dame Cathedral is $7\frac{3}{4}$ in. What is the distance between those points, the map being drawn to a scale 1:20000?
- 8. Make the comparison of angles asked for in Exs. 8, 9, 10, Art. 8; Exs. 11, 12, 13, Art. 9.

Suggested Exercises. Make drawings to scale of the floor plan of a dwelling house, of some other building, of some grounds. Find the distances between various points, such as diagonally opposite corners, by making measurements in the drawing and applying the scale. Compare the results obtained in this way with the results obtained by other methods. Other methods that may be used are: (1) making an off-hand estimate of the distance; (2) actually measuring the distance by "pacing off" or by using a rule or tape line; (3) making a computation. Let the student, from his own experience, form a judgment as to which of the four methods referred to is the easiest, and which the more exact. Find the air-line distances between places by measuring the distances between them on maps. Several maps may by used so as to have a variety of scales.

Note. The word scale also has another meaning in drawing and measurement. Engineers and draughtsmen use various kinds of rules called scales. The faces of these rules contain different numbers of divisions to an inch, one 10 divisions, one 20, one 30, and so on; and generally, one inch on each face is subdivided so that a small fraction of an inch may be set off or read. Some paper scales are on the protractor inserted in this book.

11. Degree measure. The protractor. It has been seen in geometry that: (1) When one line is perpendicular to another line, each of the angles made at their intersection is a right angle; (2) All right angles are equal to one another. In some geometrical propositions angles are compared, and one angle is shown to be greater or less than another. But geometry, with the exception of a few cases, does not show by exactly how much the one angle is greater or less than the other. In order to show this, measurement is necessary; and in order to measure, a unit angle of measurement must be chosen. The unit of angular magnitude which is generally used in practical work is the angle that is oneninetieth part of a right angle. This unit angle is called a degree. All degrees are equal to one another, since all right angles are equal to one another. Each degree is subdivided into 60 equal parts called minutes, and each minute is subdivided into 60 equal parts called seconds. Hence comes the following table of angular measure:

> 60 seconds = 1 minute, 60 minutes = 1 degree, 90 degrees = 1 right angle.

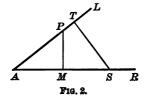
The magnitude of an angle containing 37 degrees and 42 minutes and 35 seconds, say, is written thus: 37° 42′ 35″, read 37 degrees, 42 minutes, 35 seconds. This system of measurement is sometimes called *the rectangular system*, sometimes the *sexagesimal system*. In this chapter only acute angles, that is, angles which contain between 0° and 90°, are considered. Chapter V. considers angles of all magnitudes.

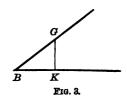
Note 1. An angle 1° is subtended by 1 in. at a distance 4 ft. 9.3 in., and by 1 ft. at a distance 57.3 ft. An angle 1' is subtended by 1 in. at a distance 286.5 ft., and by 1 ft. at a distance 3437.6 ft., about two-thirds of a mile. An angle 1" is subtended by 1 in. at a distance of nearly $3\frac{1}{4}$ mi., by 1 ft. at a distance a little greater than $39\frac{1}{2}$ mi., by a horizontal line 200 ft. long on the other side of the world, nearly 8000 mi. away. These facts can be verified later. See Ex. 3, Art. 83.

Note 2. Another system of angular measurement was advocated by Briggs and other mathematicians (see Art. 1), and was introduced in France at the time of the Revolution. In this system, which is a decimal one and called the centesimal system, a right angle is divided into 100 equal parts called grades, each grade into 100 equal parts called minutes, and each minute into 100 equal parts called seconds. It has not been generally adopted, on account of the immense amount of labour that would be necessary in order to change the mathematical tables computed for the other system.

NOTE 3. The sexagesimal system (from sexagesimus, sixtieth) was invented by the Babylonians, who constructed their tables of weights and measures on a scale of 60. Their tables of time (1 day = 24 hr., 1 hr. = 60 min., 1 min. = 60 sec.) and circular measure have come down to the present day. It has been suggested that their adoption of the scale of 60 is due to the fact that they reckoned the year at 360 days. "This led to the division of the circumference of a circle into 360 degrees, each degree representing the daily part of the supposed yearly revolution of the sun around the earth. Probably they knew that the radius could be applied to the circumference as a chord six times, and that each arc thus cut off contained 60 degrees. Thus the division into 60 parts may have suggested itself. . . . Babylonian science has made its impress upon modern civilization. Whenever a surveyor copies the readings from the graduated circle on his theodolite, whenever the modern man notes the time of day, he is, unconsciously perhaps, but unmistakably, doing homage to the ancient astronomers on the banks of the Euphrates." — Cajori, History of Elementary Mathematics, pp. 10, 11.

Note 4. Another system of angular measure is described in Chapter IX. See Art. 71.


The protractor. The protractor is an instrument used for measuring given angles and laying off required angles on paper. Protractors are of various kinds, of which the semicircular and the full-circled are the most common. The degrees are marked all round the edge. A paper protractor is inserted in this book for use in solving problems.* In order to draw a line that shall make a given angle with a given line at a given point, proceed as follows: Place the centre of the protractor at the given point and bring its diameter into coincidence with the given line, keeping the semicircle on the side on which the required line is to be drawn; prick off the required number of degrees with a sharp pencil or fine needle. The line joining the point thus fixed and the given point, is the line required. In order to measure a given angle with the protractor, place the centre at the vertex of the angle, and place the diameter in coincidence with one of the boundary lines of the angle; the number of degrees in the arc intercepted between the boundary lines of the angle is the measure of the angle.


^{*} A horn protractor costs about 25 cents, and a small metal one about 50 cents. One who is neat and handy can make a paper protractor.

Note. Before proceeding further, the student should be able to draw with ease a right-angled triangle, having been given: (a) The hypotenuse and a side; (b) the two sides about the right angle; (c) the hypotenuse and one of the acute angles; (d) one of the sides about the right angle and the opposite angle; (e) one of the sides about the right angle and the adjacent angle. It is here taken for granted that these problems have been considered in a course in plane geometry or in a course of geometrical drawing.

EXAMPLES.

- N.B. The student is advised to do Exs. 1-6 carefully, and to preserve the results, for they will soon be required for purposes of illustration.
- 1. Draw to scale the triangles considered in Exs. 8, 9, 10, Art. 8, and Exs. 11, 12, 13, Art. 9, and measure the angles.
- 2. Make drawings, on two different scales, of a right-angled triangle whose base is 20 ft. and adjacent acute angle is 55°. In each drawing measure the remaining parts and thence deduce the unknown parts of the original triangle. In each drawing calculate the ratios specified in Ex. 8, Art. 8.
- 3. Same as Ex. 2, for a right-angled triangle whose hypotenuse is 30 ft. and angle at base is 25°.
- 4. Same as Ex. 2, for a right-angled triangle whose base and perpendicular are 30 ft. and 45 ft. respectively.
- 5. Same as Ex. 2, for a right-angled triangle whose hypotenuse is 60 ft. and base is 45 ft.
- 6. Same as Ex. 2, for a right-angled triangle in which the base is 50 ft. and the angle opposite to the base is 40° .
- 7. What angles of a whole number of degrees can easily be constructed geometrically without the aid of the protractor? Make the constructions.
- 12. Trigonometric ratios defined for acute angles. The ratios referred to at the beginning of Art. 8 will now be explained so far as acute angles are concerned. (Before proceeding, the student

should glance over the work on Exs. 8-10, Art. 8; Exs. 11-13, Art. 9; Exs. 1-6, Art. 11.) Let A be any acute angle. In either one of the lines containing the angle take any point P and let fall a perpendicular PM to the other line. The three lines AP, AM, MP, can be taken by twos in three different ways, and hence six ratios can be formed with them, namely:

$$\frac{MP}{AP}$$
, $\frac{AM}{AP}$, $\frac{MP}{AM}$, $\frac{AM}{MP}$, $\frac{AP}{AM}$, $\frac{AP}{MP}$

It is shown in Art. 13 that each of these ratios has the same value as in Fig. 2, no matter where the point P is taken on either one of the lines bounding an angle which is equal to A. For the sake of convenience of reference, each one of these six ratios is given a particular name with respect to the angle A. Thus:

$$\frac{MP}{AP}$$
 is called the sine of the angle A ;

 $\frac{AM}{AP}$ is called the cosine of the angle A ;

 $\frac{MP}{AM}$ is called the tangent of the angle A ;

 $\frac{AM}{MP}$ is called the cotangent of the angle A ;

 $\frac{AP}{AM}$ is called the secant of the angle A ;

 $\frac{AP}{MP}$ is called the cosecant of the angle A .

These six ratios are known as the trigonometric ratios of the angle A. According to the definition of a ratio (Art. 8) they are merely numbers. For brevity they are written sin A, cos A, tan A,

^{*} In Chapter V. the trigonometric ratios are defined for angles in general. The definitions give in this article will be found to follow immediately from those given in Art. 40.

cot A, sec A, cosec A (or csc A).* Thus tan A is read "tangent A," and means "the tangent of the angle A." The giving of names in (1) may be regarded as defining the trigonometric ratios. Definitions (1) may be expressed as follows:

$$\frac{MP}{AP} = \sin A, \qquad \frac{MP}{AM} = \tan A, \qquad \frac{AP}{AM} = \sec A,$$

$$\frac{AM}{AP} = \cos A, \qquad \frac{AM}{MP} = \cot A, \qquad \frac{AP}{MP} = \csc A,$$

These definitions can be given a slightly different form which is more general, and, accordingly, more useful in applications. In any right-angled triangle AMP (Fig. 2), M being the right angle, with reference to the angle A let MP be denoted as the opposite side, and AM as the adjacent side. Then these definitions take the form:—

^{*}The term sine first appeared in the twelfth century in a Latin translation of an Arabian work on astronomy, and was first used in a published work by a German mathematician, Regiomontanus (1436-1476). The terms secant and tangent were introduced by a Dane, Thomas Finck (1561-1646), in a work published in 1583. The term cosecant seems to have been first used by Rheticus, a German mathematician and astronomer (1514-1576), in one of his works which was published in 1596. The names cosine and cotangent were first employed by Edmund Gunter (1581-1626), professor of astronomy at Gresham College, London, who made the first table of logarithms of sines and tangents, published in 1620, and introduced the Gunter's chain now used in land surveying. The abbreviations sin, tan, sec, were first used in 1626 by a Flemish mathematician, Albert Girard (1590-1634), and those of cos, cot, appear to have been earliest used by an Englishman, William Oughtred (1574-1660), in his Trigonometry, published in 1657. These contractions, however, were not generally adopted until after their reintroduction by Leonhard Euler (1707-1783), born in Switzerland of Dutch descent, in a work published in 1748. They were simultaneously introduced in England by Thomas Simpson (1710-1761), professor at Woolwich, in his Trigonometry, published in 1748. [See Ball, A Short History of Mathematics, pp. 215, 367.] When first used these names referred, not to certain ratios connected with an angle, but to certain lines connected with circular arcs subtended by the angle. This is explained in Art. 79, which the student can easily read at this time. See Art. 80, Notes 2, 3.

$$\sin A = \frac{\text{opposite side,}}{\text{hypotenuse,}}$$

$$\cos A = \frac{\text{adjacent side,}}{\text{hypotenuse,}}$$

$$\tan A = \frac{\text{opposite side,}}{\text{adjacent side,}}$$

$$\cot A = \frac{\text{adjacent side,}}{\text{opposite side,}}$$

$$\sec A = \frac{\text{hypotenuse,}}{\text{adjacent side,}}$$

$$\csc A = \frac{\text{hypotenuse,}}{\text{opposite side,}}$$

$$\csc A = \frac{\text{hypotenuse,}}{\text{opposite side,}}$$

[The word perpendicular is sometimes used instead of opposite side, and base instead of adjacent side.

It is necessary that these definitions be thoroughly memorized.

EXAMPLES.

The student is requested to preserve the work and results of these Exs. for purposes of future reference.

1. In AMP (Fig. 2) give the trigonometric ratios of angle AMP. Note what ratios of angles A and P are equal.

2. In Figs. 45 a, 45 b, Art. 46, give the trigonometric ratios of the various acute angles.

3. Find the trigonometric ratios of the acute angles in the triangles in Exs. 8-10, Art. 8; Exs. 11-13, Art. 9; Exs. 2-6, Art. 11.

4. In a triangle PQR right-angled at Q, the hypotenuse PR is 10 in. long, and the side QR is 7. Find the trigonometric ratios of the angles Pand Q. Note what ratios of P and Q are equal.

5. For each of the angles in Ex. 4, and for each of any three of the angles in Ex. 3, calculate the following, and make a note of the result. [Let x denote the angle whose ratios are being considered.]

(1) $\sin x \csc x$

(2) $\cos x \sec x$

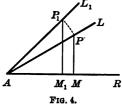
(3) $\tan x \cot x$

 $(4) \sin^2 x + \cos^2 x$

 $\cos^2 x \qquad (5) \sec^2 x - \tan^2 x \qquad (6) \csc^2 x - \cot^2 x$ $(7) \tan x - \frac{\sin x}{\cos x} \qquad (8) \cot x - \frac{\cos x}{\sin x}$

6. Make the same calculations for angle A in Fig. 2, Art. 12.

- 13. Definite and invariable connection between (acute) angles and trigonometric ratios. It is important that the following principles be clearly understood:
- (1) To each value of an angle there corresponds but one value of each trigonometric ratio.
 - (2) Two unequal acute angles have different trigonometric ratios.
- (3) To each value of a trigonometric ratio there corresponds but one value of an acute angle.
- (1) In Fig. 2, Art. 12, from any point S in AR draw ST perpendicular to AL. Let angle B (Fig. 3) be equal to A, and from any point G in one of the lines containing angle B draw GK perpendicular to the other line. Then, by definition (3), Art. 12,


$$\sin A \text{ (in } AMP) = \frac{MP}{AP}, \qquad \sin A \text{ (in } AST) = \frac{ST}{AS},$$

$$\sin B \text{ (= sin } A) = \frac{KG}{BG}.$$

But the triangles AMP, AST, BKG, are mutually equiangular. Hence the sides about the equal angles are proportional, and

$$\frac{MP}{AP} = \frac{ST}{AS} = \frac{KG}{BG}.$$

Therefore all angles equal to A have the same sine. In like manner, these angles can be shown to have the same tangent, secant, etc.*

(2) Let RAL and RAL_1 be any two unequal acute angles, placed, for convenience, so as to have a common vertex A and a common boundary line AR. From any point P on AL draw PM perpendicular to AR. Take $AP_1 = AP$, and draw P_1M_1 perpendicular to AR. Then

^{*} In Euclid's text on geometry, the properties of similar triangles are considered in Bk. VI. Pupils who study Euclid and have not reached Bk. VI. can be helped to understand these properties by means of a few exercises like those referred to in Ex. 3, Art. 12.

$$\sin RAL = \frac{MP}{AP}, \sin RAL_1 = \frac{M_1P_1}{AP_1}.$$

$$M_1P_1 > MP, \text{ and } AP_1 = AP;$$

hence

But

 $\sin RAL_1 > \sin RAL$.

In a similar manner the other ratios can be shown to be respectively unequal.

Ex. In this construction AP_1 is taken equal to AP. Why does this not affect the generality of the proof?

(3) This property follows as a corollary from (1) and (2).

The trigonometric ratios for angles from 0° to 90° are arranged in tables. In some tables the calculations are given to four places of decimals, in others to five, six, or seven places. There are also tables of the logarithms of the ratios (or of the logarithms increased by 10),* which vary in the number of places of decimals to which the calculations are carried out. The student is advised to examine a table of the trigonometric ratios at this time. A good exercise will consist in finding the logarithms of some of the sines, tangents, etc., adding 10 to each logarithm, and comparing the result with that given in the table of Logarithmic sines, tangents, etc. [What are denoted as Natural sines and cosines in the tables, are merely the actual sines and cosines, which have been discussed above; the so-called Logarithmic sines and cosines are the logarithms of the Natural sines and cosines with 10 added.] A book of logarithms and trigonometric ratios is the principal help and tool in solving most of the problems in practical trigonometry; and hence, proficiency in using the tables is absolutely necessary. The larger part of the numerical answers in this book have been obtained with the aid of a five-place table. Those who use six-place or seven-place tables will reach more accurate results.

EXAMPLES.

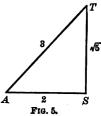
- 1. Compare each of the ratios of RAL_1 with the corresponding ratio of RAL.
- 2. Suppose that the line AR (Fig. 4) revolves about A in a counter-clockwise direction, starting from the position AM: show that, as the angle MAL

^{*} These are usually called Logarithmic sines, tangents, etc.

increases, its sine, tangent, and secant increase, and its cosine, cotangent, and cosecant decrease. Test this conclusion by an inspection of a table of Natural ratios.

- 3. Find by tables, sin 17° 40′, sin 43° 25′ 10″, sin 76° 43′, sin 83° 20′ 25″, cos 18° 10′, cos 37° 40′ 20″, cos 61° 37′, cos 72° 40′ 30″, tan 37° 40′ 20″, tan 79° 37′ 30″, cot 42° 30′, cot 72° 25′ 30″. Log sin 37° 20′, Log sin 70° 21′ 30″, Log cos 30° 20′ 20″, Log cos 71° 25′, Log tan 79° 30′ 20″, Log cot 48° 20′ 40″.
- 4. Find the angles corresponding to the following Natural and Logarithmic ratios:

```
sine = .15327,
                       sine = .62175,
                                          sine = .82462,
                                                             sine = .84316,
 cosine = .85970,
                     cosine = .61497,
                                        cosine = .84065,
                                                           cosine = .60165.
tangent = .42482.
                   tangent = .60980, tangent = 1.6820,
                                                          tangent = 2.4927,
                Log sine = 9.79230,
                                          Log sine = 9.94215,
              Log cosine = 9.96611,
                                        Log cosine = 9.74743
             Log tangent = 9.82120,
                                      Log tangent = 10.37340.
```

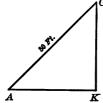

14. Practical problems. The problems in this article are intended to help the learner to realize more clearly and strongly the meaning and the usefulness of the ratios which have been defined in Art. 12. The student is earnestly recommended to try to solve the first three problems below without help from the book. He will find this to be an advantage, whether he can solve the problems or not. If he can solve them, then he will have the pleasurable feeling that he is to some extent independent of the book; and he will thus be encouraged and strengthened for future work. Should he fail to solve them, he will have the advantage of a closer acquaintance with the difficulties in the problems, and so will observe more keenly how these difficulties are avoided or Throughout this course the student will find it to be of immense advantage if he will think and study over the subjectmatter indicated in the headings of the articles and make some kind of an attack on the problems before appealing to the book for help. If he follows this plan, his progress, in the long run, will be easier and more rapid, and his mental power more greatly improved than if he is content merely to follow after, or be led by, the teacher or author.

EXAMPLES.

1. Construct the acute angle whose cosine is \(\frac{2}{4}\). What are its other trigonometric ratios? Find the number of degrees in the angle.

The definition of the cosine of an angle shows that the required angle is equal to an angle in a certain right-angled triangle, namely, the triangle in

which "the side adjacent to the angle is to the hypotenuse in the ratio 2:3." Thus the lengths of this side and hypotenuse can be taken as 2 and 3, 6 and 9, 200 and 300, and so on. Taking the lengths 2, 3, (these numbers being simpler and, accordingly, more convenient than the others), construct a right-angled triangle AST which has side AS = 2, and hypotenuse AT = 3. The angle A is the angle required, for $\cos A = \frac{2}{3}$.


$$ST = \sqrt{3^2 - 2^2} = \sqrt{5} = 2.2361.$$

Hence, the other ratios are

$$\sin A = \frac{\sqrt{5}}{3} = .7454, \ \tan A = \frac{\sqrt{5}}{2} = 1.1180, \ \cot A = \frac{2}{\sqrt{5}} = .8944,$$
$$\sec A = \frac{3}{2} = 1.5000, \ \csc A = \frac{3}{\sqrt{5}} = \dot{1}.3416.$$

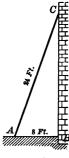
The measure of the angle can be found in either one of two ways, viz.: (a) by measuring the angle with the protractor; (b) by finding in the table the angle whose cosine is $\frac{2}{3}$ or .6667. The latter method shows that $A=48^{\circ}$ 11'22". [Compare the result obtained by method (a) with the value given by method (b).]

2. A right-angled triangle has an angle whose cosine is $\frac{2}{3}$, and the length of the hypotenuse is 50 ft. Find the angles and the lengths of the two sides.

By method shown in Ex. 1, construct an angle A whose cosine is $\frac{2}{3}$. On one boundary line of the angle take a length AG to represent 50 ft. Draw GK perpendicular to the other boundary line.

Cos
$$A = \frac{2}{8} = .6666 \cdots$$
,

 $K \qquad \therefore A = 48^{\circ} 11' 22''$,


Fig. 6. $\therefore B = 90 - A = 41^{\circ} 48' 38''$,

 $\cos A = \frac{AK}{AG} = .6666 \cdots$, $\sin A = \frac{\sqrt{5}}{3}$, (Ex. 1)

 $\therefore AK = 50 \times .6666 \cdots$, $\therefore \frac{KG}{AG} = \frac{\sqrt{5}}{3}$,

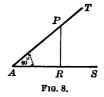
 $= 33.333 \cdots$, $\therefore KG = \frac{\sqrt{5}}{2} \times 50 = 37.27 \cdots$

The problem may also be solved graphically as follows. Measure angles A, G, with the protractor. Measure AK, KG directly in the figure.

3. A ladder 24 ft. long is leaning against the side of a building, and the foot of the ladder is distant 8 ft. from the building in a horizontal direction. What angle does the ladder make with the wall? How far is the end of the ladder from the ground?

Graphical method. Let AC represent the ladder, and BC the wall. Draw AC, AB, to scale, to represent 24 ft. and 8 ft. respectively. Measure angle ACB with the protractor. Measure BC directly in the figure.

Method of computation.


Fig. 7.

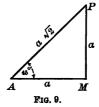
$$BC = \sqrt{AC^2 - AB^2} = \sqrt{576 - 64} = \sqrt{512} = 22.63$$
 ft.

$$\sin ACB = \frac{AB}{AC} = \frac{8}{24} = .33333,$$

...
$$ACB = 19^{\circ} 28' 16''$$
.

4. Find tan 40° by construction and measurement. With the protractor lay off an angle SAT equal to 40° . From any point P in AT draw PR perpendicularly to AS. Then measure AR, RP, and substitute the values in the ratio, tan $40^{\circ} = \frac{RP}{AR}$. Compare the result thus obtained with the value given for tan 40° in the tables.*

- 5. Construct the angle whose tangent is §. Find its other ratios. Measure the angle approximately, and compare the result with that given in the tables. Draw a number of right-angled, obtuse-angled, and acute-angled triangles, each of which has an angle equal to this angle.
- 6. Similarly for the angle whose sine is $\frac{2}{3}$; and for the angle whose cotangent is 3.
- 7. Similarly for the angle whose secant is $2\frac{1}{3}$; and for the angle whose cosecant is $3\frac{1}{4}$.
- 8. Find by measurement of lines the approximate values of the trigonometric ratios of 30°, 40°, 45°, 50°, 55°, 60°, 70°; compare the results with the values given in the tables.


^{*}The values of the ratios are calculated by an algebraic method, and can be found to any degree of accuracy that may be required.

If any of the following constructions asked for is impossible, explain why it is so.

- 9. Construct the acute angles in the following cases: (a) When the sines are $\frac{1}{2}$, $\frac{2}{7}$, $\frac{2}{5}$; (b) when the cosines are $\frac{1}{2}$, $\frac{4}{5}$, $\frac{3}{5}$; (c) when the tangents are 3, 4, $\frac{2}{5}$, $\frac{1}{4}$; (d) when the cotangents are 4, 2, $\frac{2}{5}$, .7; (e) when the secants are 2, 3, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{41}{2}$; (f) when the cosecants are 3, 2.5, .4, $\frac{3}{5}$.
- 10. Find the other trigonometric ratios of the angles in Ex. 9. Find the measures of these angles, (a) with the protractor, (b) by means of the tables.
- 11. What are the other trigonometric ratios of the angles: (1) whose sine is $\frac{a}{b}$; (2) whose cosine is $\frac{a}{b}$; (3) whose tangent is $\frac{a}{b}$; (4) whose cotangent is $\frac{a}{b}$; (5) whose secant is $\frac{a}{b}$; (6) whose cosecant is $\frac{a}{b}$?
- 12. A ladder 32 ft. long is leaning against a house, and reaches to a point 24 ft. from the ground. Find the angle between the ladder and the wall.
- 13. A man whose eye is 5 ft. 8 in. from the ground is on a level with, and 120 ft. distant from, the foot of a flag pole 45 ft. 8 in. high. What angle does the direction of his gaze, when he is looking at the top of the pole, make with a horizontal line from his eye to the pole?
 - 14. Find the ratios of 45°, 60°, 30°, 0°, 90°, before reading the next article.
- 15. Trigonometric ratios of 45°, 60°, 30°, 0°, 90°. The ratios of certain angles which are often met will now be found.
- A. Ratios of 45°. Let AMP be an isosceles right-angled triangle, and let each of the sides about the right angle be equal to a.

The angle

 $A=45^{\circ}$, and $AP=a\sqrt{2}$.

 $\therefore \sin 45^\circ = \sin A = \frac{MP}{AP} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$

By using the same figure it can be shown that

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$
, $\tan 45^{\circ} = 1$, $\cot 45^{\circ} = 1$, $\sec 45^{\circ} = \sqrt{2}$.

The sides of triangle AMP are proportional to 1, 1, $\sqrt{2}$. Hence, in order to produce the ratios of 45° quickly, it is merely necessary to draw Fig. 10; from this figure the ratios of 45° can be read off at once.

B. Ratios of 30° and 60°. Let ABC be an equilateral triangle. From any vertex B draw a perpendicular BD to the opposite side AC. Then angle $DAB = 60^{\circ}$, angle $ABD = 30^{\circ}$.

If AB=2a, then AD=a, and $DB=\sqrt{4a^2-a^2}=a\sqrt{3}$.

$$\therefore \sin 60^{\circ} = \sin DAB = \frac{DB}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}.$$

By using the same figure it can be shown that

$$\cos 60^{\circ} = \frac{1}{2}$$
, $\tan 60^{\circ} = \sqrt{3}$, $\cot 60^{\circ} = \frac{1}{\sqrt{3}}$, $\sec 60^{\circ} = 2$, $\csc 60^{\circ} = \frac{2}{\sqrt{3}}$.

Also, $\sin 30^\circ = \sin ABD = \frac{AD}{AB} = \frac{a}{2a} = \frac{1}{2}$.

Similarly,

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
, $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$, $\cot 30^{\circ} = \sqrt{3}$, $\sec 30^{\circ} = \frac{2}{\sqrt{3}}$, $\csc 30^{\circ} = 2$.

In ADB the sides opposite to the angles 30°, 60°, 90°, are respectively proportional to 1, $\sqrt{3}$, 2. Hence, in order to produce the ratios of 30°, 60°, at a moment's notice, it is merely necessary to draw Fig. 12, from which these ratios can be immediately read off.

C. Ratios of 0° and 90°. The algebraical note, Art. 76, may be read now.

Let the hypotenuse in each of the right-angled triangles in Fig. 13 be equal to a.

Sin
$$MAP = \frac{MP}{AP}$$
,
 $\cos MAP = \frac{AM}{AP}$

It is apparent from this figure that if the angle MAP approaches zero, then the perpendicular MP approaches zero, and the hypotenuse AP approaches to an

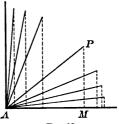


Fig. 18.

equality with AM; so that, finally, if MAP = 0, then MP = 0, and AP = AM. Therefore, when MAP = 0, it follows that:

$$\sin 0^{\circ} = \frac{0}{a} = 0,$$
 $\tan 0^{\circ} = \frac{0}{a} = 0,$ $\sec 0^{\circ} = \frac{a}{a} = 1,$

$$\cos 0^{\circ} = \frac{a}{a} = 1,$$
 $\cot 0^{\circ} = \frac{a}{0} = \infty,$ $\csc 0^{\circ} = \frac{a}{0} = \infty.$

As MAP approaches 90°, AM approaches zero, and MP approaches to an equality with AP. Therefore, when $MAP = 90^{\circ}$, it follows that:

$$\sin 90^{\circ} = \frac{a}{a} = 1,$$
 $\tan 90^{\circ} = \frac{a}{0} = \infty,$ $\sec 90^{\circ} = \frac{a}{0} = \infty,$

$$\cos 90^{\circ} = \frac{0}{a} = 0$$
, $\cot 90^{\circ} = \frac{0}{a} = 0$, $\csc 90^{\circ} = \frac{a}{a} = 1$.

EXAMPLES.

N. B. Read the first few lines of Art. 17 before attacking the problems. Find the numerical value of

- 1. $\sin 60^{\circ} + 2 \cos 45^{\circ}$.
- 2. $\sec^2 30^\circ + \tan^8 45^\circ$.
- 3. $\sin^8 60^\circ + \cot^8 30^\circ$.
- 4. $\cos 0^{\circ} \sin 45^{\circ} + \sin 90^{\circ} \sec^2 30^{\circ}$.
- 5. $4\cos^2 30^{\circ} \sin^2 60^{\circ} \cos^2 0^{\circ}$.
- 6. 3 tan⁸ 30° sec⁸ 60° sin² 90° tan² 45°.
- 7. 10 cos4 45° sec6 30°.
- 8. 2 sin⁵ 30° tan⁸ 60° cos⁸ 0°.
- 9. $x \cot^8 45^\circ \sec^2 60^\circ = 11 \sin^2 90^\circ$; find x.
- 10. $x(\cos 30^{\circ} + 2 \sin 90^{\circ} + 3 \cos 45^{\circ} \sin^2 60^{\circ}) = 2 \sec 0^{\circ} 5 \sin 90^{\circ}$; find x.

16. Relations between the trigonometric ratios of an acute angle and those of its complement. When two angles added together make a right angle, the two angles are said to be complementary, and each angle is called the complement of the other.

For example, the acute angles in a right-angled triangle are complementary; the complement of A is $90^{\circ} - A$; the complement of 27° is 63° .

- Ex. 1. What are the complements of 10°, 12° 30′, 47°, 56° 27′, 35°?
- Ex. 2. What angles are complementary to 23°, 42°, 51°, 78°, 86°?

In Fig. 2, Art. 12, the angle APM is the complement of the angle A. Now,

$$\sin P = \frac{AM}{AP}$$
, $\tan P = \frac{AM}{MP}$, $\sec P = \frac{AP}{MP}$

$$\cos P = \frac{MP}{AP}$$
, $\cot P = \frac{MP}{AM}$, $\csc P = \frac{AP}{AM}$

Comparison of these ratios with the ratios of A in (2), Art. 12, shows that

$$\cos A = \sin P$$
, $\tan A = \cot P$, $\sec A = \csc P$,

$$\sin A = \cos P$$
, $\cot A = \tan P$, $\csc A = \sec P$.

These six relations can be expressed briefly:

Each trigonometric ratio of an angle is equal to the corresponding co-ratio of its complement.

Ex. Compare the ratios of 30° and 60°; of 0° and 90°.

17. Exponents in trigonometry.

When a trigonometric ratio has an exponent, a particular way of placing the exponent has been adopted. For example,

$$(\sin x)^2$$
 is written $\sin^2 x$.

There is no ambiguity in the second form, and the advantage is apparent. Thus, $\cos^{\frac{1}{2}}x$, $\tan^{8}x$, $\sec^{\frac{3}{2}}x$, represent or mean $(\cos x)^{\frac{1}{3}}$, $(\tan x)^{8}$, $(\sec x)^{\frac{5}{4}}$. There is one exponent, however, which must not be written with the brackets removed. This exception is the exponent -1. Thus, for example, $(\cos x)^{-1}$, which means $\frac{1}{\cos x}$, must never be written $\cos^{-1}x$. The reason for this is that the symbol $\cos^{-1}x$ is used to represent something else. This symbol denotes the angle whose cosine is x, and is read thus, or is read "the

anti-cosine of x," "the inverse cosine of x," "cosine minus one x." The number -1, which appears in $\cos^{-1}x$, is not an exponent at all, but is merely part of a symbol.

Suppose that (a) "the sine of the angle A is $\frac{3}{4}$."

The latter idea can also be expressed by saying

(b) "A is the angle whose sine is $\frac{3}{5}$ ";

or, more briefly, by saying,

(c) "A is the anti-sine of \."

The two ways, (a), (c), of expressing the same idea can be indicated still more briefly by equations, viz.,

$$\sin A = \frac{3}{5}, \quad A = \sin^{-1} \frac{3}{5}.$$

Thus, $(\sin x)^{-1}$ and $\sin^{-1}x$ mean very different things; for $(\sin x)^{-1}$ is $\frac{1}{\sin x}$, which is a number, and $\sin^{-1}x$ is an angle.

Note. The symbols $\sin^{-1} x$, $\cos^{-1} x$, ..., are considered in Art. 88.

Ex. Express $\sin A = \frac{2}{5}$, $\cos x = \frac{3}{4}$, $\tan C = 4$, $\sec A = 9$, $\csc A = \frac{17}{15}$, in the inverse form.

18. Relations between the trigonometric ratios of an acute angle.

[N.B. Some relations between these ratios may have been noticed or discovered by the student in the course of his preceding work. If so, they should now be collected, so that they can be compared with the relations shown in this article.]

Some of the preceding exercises have shown that when one trigonometric ratio of an angle is known, the remaining five ratios can be easily determined. This at least suggests that the ratios are related to one another. In what follows, A denotes any acute angle.

A. Reciprocal relations between the ratios.

Inspection of the definitions (3), Art. 12, shows that:

(a)
$$\sin A = \frac{1}{\csc A}$$
, $\csc A = \frac{1}{\sin A}$, or, $\sin A \csc A = 1$;

(b)
$$\cos A = \frac{1}{\sec A}$$
, $\sec A = \frac{1}{\cos A}$, or, $\cos A \sec A = 1$; (1)

(c)
$$\tan A = \frac{1}{\cot A}$$
, $\cot A = \frac{1}{\tan A}$, or, $\tan A \cot A = 1$.

B. The tangent and cotangent in terms of the sine and cosine. In the triangle AMP (Fig. 2, Art. 12),

$$\tan A = \frac{MP}{AM} = \frac{\frac{MP}{AP}}{\frac{AM}{AP}} = \frac{\sin A}{\cos A}; \quad \cot A = \frac{AM}{MP} = \frac{\frac{AM}{AP}}{\frac{MP}{AP}} = \frac{\cos A}{\sin A}. \quad (2), (3)$$

C. Relations between the squares of certain ratios.

In the triangle AMP (Fig. 2, Art. 12), indicating by \overline{MP}^2 the square of the length of MP,

$$\overline{MP}^2 + A\overline{M}^2 = A\overline{P}^2$$

On dividing each member of this equation by $\Delta \overline{P}^2$, \overline{AM}^2 , \overline{MP}^2 , in turn, there is obtained

$$\left(\frac{MP}{AP}\right)^{2} + \left(\frac{AM}{AP}\right)^{2} = \left(\frac{AP}{AP}\right)^{2},$$

$$\left(\frac{MP}{AM}\right)^{2} + \left(\frac{AM}{AM}\right)^{2} = \left(\frac{AP}{AM}\right)^{2},$$

$$\left(\frac{MP}{MP}\right)^{2} + \left(\frac{AM}{MP}\right)^{2} = \left(\frac{AP}{MP}\right)^{2}.$$

In reference to the angle A, these equations can be written:

$$\frac{\sin^2 A + \cos^2 A = 1,}{\tan^2 A + 1 = \sec^2 A,} \\
1 + \cot^2 A = \csc^2 A.$$
(4)

Note 1. The relations shown above are true, not only for acute angles, but for all angles. This is shown in Art. 44.

Note 2. Relations (1) have a practical bearing on the construction and the use of tables. Thus, for example, since $\cos A = \frac{1}{\sec A}$, a table of natural cosines can be transformed into a table of natural secants by merely taking the reciprocals of the cosines. Again, in logarithmic computation, since $\sec A = \frac{1}{\cos A}$, $\log \sec A = -\log \cos A$.

Note 3. An equation involving trigonometric ratios is a trigonometric equation. Thus, for example, $\tan A = 1$. One angle which satisfies this equation is the acute angle $A = 45^{\circ}$. Other solutions can be found after Arts. 84-87 have been taken up.

EXAMPLES.

A few simple exercises are given below, the solution of which brings in the relations shown in this article. These exercises are algebraic in character; collections of exercises of this kind are given also in other places in this book. In the following examples, the positive values of the radicals are to be taken. The meaning of the negative values is shown in Art. 44.

1. Given that $\sin A = \frac{1}{4}$, find the other trigonometric ratios of A by means of the relations shown in this article.

$$\cos c A = \frac{1}{\sin A} = 2 \; ; \; \cos A = \sqrt{1 - \sin^2 A} = \frac{\sqrt{3}}{2} \; ; \; \sec A = \frac{1}{\cos A} = \frac{2}{\sqrt{3}} \; ;$$
$$\tan A = \frac{\sin A}{\cos A} = \frac{1}{\sqrt{3}} \; ; \; \cot A = \frac{1}{\tan A} = \sqrt{3}.$$

These results may be verified by the method used in solving Exs. 1, 5-7, Art. 14.

2. Express all the ratios of angle A in terms of sin A.

$$\sin A = \sin A$$
; $\cos A = \sqrt{1 - \sin^2 A}$; $\tan A = \frac{\sin A}{\cos A} = \frac{\sin A}{\sqrt{1 - \sin^2 A}}$; $\cot A = \frac{1}{\tan A} = \frac{\sqrt{1 - \sin^2 A}}{\sin A}$; $\sec A = \frac{1}{\cos A} = \frac{1}{\sqrt{1 - \sin^2 A}}$; $\csc A = \frac{1}{\sin A}$.

3. Prove that
$$\frac{1}{1-\sin A} + \frac{1}{1+\sin A} = 2\sec^2 A.$$

$$\frac{1}{1-\sin A} + \frac{1}{1+\sin A} = \frac{2}{1-\sin^2 A} = \frac{2}{\cos^2 A} = 2\sec^2 A.$$

- 4. Prove that $\sec^4 A 1 = 2 \tan^2 A + \tan^4 A$. $\sec^4 A - 1 = (\sec^2 A)^2 - 1 = (1 + \tan^2 A)^2 - 1 = 2 \tan^2 A + \tan^4 A$.
- 5. Solve the equation $4 \sin \theta 3 \csc \theta = 0$.

$$4 \sin \theta - \frac{3}{\sin \theta} = 0.$$

$$\therefore 4 \sin^2 \theta - 3 = 0.$$

$$\therefore \sin^2 \theta = \frac{3}{4}, \therefore \sin \theta = +\frac{\sqrt{3}}{2}, \text{ and } \sin \theta = -\frac{\sqrt{3}}{2}$$

On taking the *plus* sign, one solution is the acute angle $\theta = 60^{\circ}$; other solutions will be found later. For the *minus* sign there is also a set of solutions; these will be found later.

6. Solve
$$2\sin^2\theta \csc\theta - 5 + 2\csc\theta = 0,$$

$$\frac{2\sin^2\theta}{\sin\theta} - 5 + \frac{2}{\sin\theta} = 0,$$

$$2\sin^2\theta - 5\sin\theta + 2 = 0,$$

$$(2\sin\theta - 1)(\sin\theta - 2) = 0.$$

$$\therefore \sin\theta = \frac{1}{2}, \text{ and } \sin\theta = 2.$$

The acute angle whose sine is $\frac{1}{2}$ is 30° ; hence $\theta = 30^{\circ}$ is one solution. The sine cannot exceed unity; hence $\sin \theta = 2$ does not afford any solution.

- 7. Given $\cos A = \frac{3}{4}$, $\sin B = \frac{3}{4}$, $\tan C = 2$, $\cot D = \frac{4}{3}$, $\sec E = 3$, $\csc F = 2.5$; find the other trigonometric ratios of A, B, C, D, E, F, by the algebraic method. Verify the results by the method used in Art. 14.
- 8. Find by the algebraic method the ratios required in Exs. 1, 5-7, 10, 11, Art. 14.
- **9.** Express all the trigonometric ratios of an angle A in terms of: (a) $\cos A$; (b) $\tan A$; (c) $\cot A$; (d) $\sec A$; (e) $\csc A$. Arrange the results and those of Ex. 2, neatly in tabular form.

Prove the following identities:

10.
$$(\sec^2 A - 1) \cot^2 A = 1$$
; $\cos A \tan A = \sin A$; $(1 - \sin^2 A) \sec^2 A = 1$.

11.
$$\sin^2\theta \sec^2\theta = \sec^2\theta - 1$$
; $\tan^2\theta - \cot^2\theta = \sec^2\theta - \csc^2\theta$.

12.
$$\frac{1}{\sec^2 A} + \frac{1}{\csc^2 A} = 1; \quad \frac{\sin A}{\csc A} + \frac{\cos A}{\sec A} = 1;$$

$$(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$

13.
$$\sec^2 A + \csc^2 A = \tan^2 A + \cot^2 A + 2;$$

$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{\sin^2 A}{\cos^2 A}; \quad \frac{\csc A}{\cot A + \tan A} = \cos A.$$

14.
$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A;$$
$$\frac{1}{\sec A - \tan A} = \sec A + \tan A; \quad \sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A.$$

Solve the following equations:

15. $2 \sin \theta = 2 - \cos \theta$. **16.** $\tan \theta + \cot \theta = 2$.

17. $\tan \theta + 3 \cot \theta = 4$. 18. $6 \sec^2 \theta - 13 \sec \theta + 5 = 0$.

19. $8\sin^2\theta - 10\sin\theta + 3 = 0$. 20. $\sin\theta + 2\cos\theta = 2.2$.

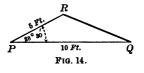
19. Summary. In this chapter important additions have been made to the knowledge concerning angles that one gained in geometry. A process of measuring angles has been introduced. The close connection between angles and the ratios of lines has been emphasized. It has been shown that each (acute) angle has, associated with it, a definite set of six numbers, called trigonometric ratios; and it has been seen that the sets of numbers are different for different angles. It has also been shown that the seven quantities (namely, the angle and the six numbers) are so related, that, if one of the seven be given, then the remaining six can be determined.

A few applications to the measurement of lines and angles have been made in some of the preceding articles. The next two chapters are taken up with a formal treatment of such applications. It should be stated, however, that any one who understands the contents of this chapter is in possession of all the principles which will be used in the next two chapters, and can proceed directly to the solution of the problems given there. The student is recommended to attack some of the exercises in Chapters III., IV., before reading the explanations given in the text. Attention may again be given to the first part of Art. 14.

N.B. Questions and exercises suitable for practice and review on the subject-matter of Chapter II. will be found at pages 182, 183.

CHAPTER III.

SOLUTION OF RIGHT-ANGLED TRIANGLES.


Before the solution of right-angled triangles is entered upon, a few remarks will be made on the solution of triangles in general. Some of the ideas expressed in Arts. 20–24 are applicable to practical problems throughout the book.

- 20. Solution of a triangle. Every triangle has three sides and three angles. These six quantities are called the parts or elements of a triangle. Sometimes one or several of the parts of a triangle are known; for instance, the three sides, two angles and a side, two sides, one side, three angles, and so on. In such cases the questions arise: Can the remaining parts be found or determined? and, if so, by what method shall this be done? The process of deducing the unknown parts of a triangle from the known, is called solving the triangle, or, the solution of the triangle. This Chapter and Chapter VII. are concerned with showing, in detail, methods of solving triangles. There are two methods which can be used to find (only approximately, in general) the unknown parts of a triangle when some of its parts are given. These methods are:
 - (a) The graphical method;
 - (b) The method of computation.
- 21. The graphical method. This method consists in drawing a triangle which has angles equal to the given angles, and sides proportional to, and thus representing the given sides, and then measuring the remaining parts directly from the drawing.

For example, a triangle has two sides whose lengths are 10 ft., 5 ft., and the included angle is 28° 30'; the third side and the other angles are required.

The graphical solution is as follows: Construct a triangle QPR having two sides, PQ, PR, representing 10 ft., 5 ft., respectively, on some con-

venient scale, and with their included angle, QPR, equal to 28° 30', as shown in Fig. 14. Measure the angles PRQ, PQR with the protractor; measure the side RQ and, by reference to the scale, find the length represented by RQ. The results thus obtained may be compared with those obtainable by the method of computation explained in Arts. 54, 57. The latter results are $R = 128^{\circ} 26' 46''$, $Q = 23^{\circ} 3' 14''$, RQ = 6.092.7

The conditions necessary and sufficient for constructing a triangle, and the methods of drawing triangles that satisfy given conditions, are shown in plane geometry and in geometrical drawing. It is obvious that the graphical method can be employed only when the values of the parts given are consistent with one another, and when the parts given are sufficient in number to determine a definite triangle. For instance, suppose that one is asked to find the remaining parts of a triangle one of whose sides is 10 inches long. In this case as many unequal triangles as one please, can be constructed, all of which will satisfy the given condition. Again, a given side and a given angle are insufficient data on which to proceed to find the remaining parts of a triangle, for there is an infinite number of unequal triangles which can have parts equal to the given parts. So also the method fails if three angles be given; for an infinite number of unequal triangles can be drawn whose angles are equal to the given angles. Again, let it be required to find the angles of a triangle whose sides are 10 feet, 40 feet, 60 feet. Such a triangle is impossible, since the length of one side (60 feet) is greater than the sum of the lengths of the other two. One more instance: let two given angles be 85° and 105° and the included side be 40 inches; this triangle is impossible, since the sum of the two given angles is greater than two right angles.

22. The method of computation. This method is applicable in precisely the same cases in which the preceding method can be employed; namely, in the cases in which the parts given are consistent with one another, and afford conditions sufficient to enable one to construct a definite triangle. This will be fully apparent later, when the various cases will be treated in detail. One of the principal purposes of this book is to show the different methods of computation applicable to various sets of given conditions. One of the principal objects of a student who is taking a first course in trigonometry should be to acquire facility and, above all, accuracy in using these methods of computation.

23. Comparison between the graphical method and the method of computation. The experience gained in some of the exercises in the preceding chapter has probably shown the student that he can attain much greater accuracy by using the method of computation than by using the graphical method. The accuracy of the results obtained by the latter method depends upon the carefulness and skill with which the figures are drawn and measured; in the other method, accuracy depends upon the care and patience employed in performing arithmetical work. While the results attainable by the graphical method, even in the case of skilled persons with excellent drawing instruments, are not as accurate as the results attainable by the other method, yet they are often accurate enough for practical purposes. When the computations required are long and complicated, the graphical method is much the more rapid of the two.

There are several reasons why it is advisable for the learner to use the graphical method, as well as the method of computation, in solving problems in this course. The first reason is that the former method will serve as a check upon the latter. With ordinary care the graphical method very quickly gives a fair approximation to the result. This result will sometimes show that there is an error in the result obtained by computation. A little error in arithmetic may yield a quantity which is ten times too great or too small; but this can be detected at once if the other method has also been used.* A second reason for using the graphical method is that this method incidentally provides training in neat, careful, and accurate drawing; this training will not only be a benefit in itself, but will be of very great advantage in other studies, and especially in the applied sciences. A third

^{*} The results can also be tested by methods of computation, which will be shown in due course.

reason is that the pupil will gain some knowledge and experience of a method that is used in other subjects, for instance, in physics and in mechanics, and that is extensively employed by engineers in solving problems in which the computations required by the other method may be overwhelmingly cumbrous.

- 24. General directions for solving problems. A third method of approximating to the magnitude of lines and angles may be mentioned here, for it has often to be employed in practical life. In this method the student may suppose that he possesses neither measuring instruments, drawing materials, nor mathematical tables, and thereupon he may give an off-hand estimate concerning the magnitudes required. This method also serves as a check, by showing when great arithmetical blunders are committed. The pupil is advised to use all three methods in working each practical problem in this course, and to do so in the following order:
- (1) Make an off-hand estimate as to what the magnitude required may be, and write this estimate down;
 - (2) Solve the problem by the graphical method;
- (3) Solve the problem by the slower but more accurate and reliable method of computation. There may be some interest found in comparing the results obtained by these three methods. The exercise in judging linear and angular magnitudes afforded by the first method, the practice in neat and careful drawing necessary in the second, and the training in accurate computation given by the third, will each afford some benefit to the learner.
- 25. Solution of right-angled triangles. Let ABC be a right-angled triangle, C being the right angle. In what follows, a, b, c, denote the lengths of the sides opposite to the angles A, B, C, respectively. The sides and angles of ABC are connected by the following relations:

(1)
$$A + B = 90^{\circ}$$
;
(2) $c^2 = a^2 + b^2$. (Geometry)

FIG. 15.

(3), (4)
$$\sin A = \frac{a}{c} = \cos B$$
;
(5), (6) $\cos A = \frac{b}{c} = \sin B$;
(7), (8) $\tan A = \frac{a}{b} = \cot B$;
(9), (10) $\cot A = \frac{b}{a} = \tan B$. (Definitions (3), Art. 12)

Note. To these may be added: $\sec A = \frac{c}{b} = \csc B$, $\csc A = \frac{c}{a} = \sec B$. These relations, however, are not needed, and are rarely used in solving triangles, for they are equivalent to (3)-(6), and few tables give secants and cosecants. See Art. 18, Note 2.

Equation (1) shows that no other element of the triangle can be derived from the two acute angles only. Each of the remaining equations, (2)–(10), involves three elements of the triangle, and at least two of these elements are sides. Hence, in order that a right-angled triangle be solvable, two elements must be known in addition to the right angle, and one of these must be a side. If any two of the elements involved in equations (2)–(10) are known, then a third element of the triangle can be found therefrom. Hence the following general rule can be used in solving right-angled triangles:

When in addition to the right angle, any two sides, or one of the acute angles and any one of the sides, of a right-angled triangle are known, and another element is required, write the equation involving the required element and two of the known elements, and solve the equation for the required element.

For example, suppose that a, c are known, and that A, B, b are required. In this case,

$$\sin A = \frac{a}{c}$$
, $B = 90 - A$, $b^2 = \sqrt{c^2 - a^2}$.

The quantities A, B, b can be found from these equations. If an error has been made in finding A, then B will also be wrong. Hence it is advisable to check the values found by seeing whether they satisfy relations differing from those already employed.

For example, check formulas which may be used in this case are:

$$\frac{b}{a} = \tan B, \quad \frac{b}{c} = \cos A.$$

- 26. Checks upon the accuracy of the computation. As already pointed out, large errors can be detected by means of the off-hand estimate and by the use of the graphical method. The calculated results in any example can be checked or tested by employing relations which have not been used in computing the results, and examining whether the newly found values satisfy these relations. An instance has been given in the preceding article. The student is advised not to look up the answers until after he has tested his results in this way. Verification by means of check formulas is necessary in cases in which the answers are not given. The testing of the results also affords practice in the use of formulas and in computation. When a check formula is satisfied it is highly probable, but not absolutely certain, that the calculated results are correct.
- 27. Cases in the solution of right-angled triangles. All the possible sets of two elements that can be made from the three sides and the two acute angles of a right-angled triangle are the following:
 - (1) The two sides about the right angle.
 - (2) The hypotenuse and one of the sides about the right angle.
 - (3) The hypotenuse and an acute angle.
 - (4) One of the sides about the right angle, and an acute angle.
- (5) The two acute angles. (This case has already been referred to.)

Some examples of these cases are solved. The general method of procedure, after making an off-hand estimate and finding an approximate solution by the graphical method, is as follows:

First: Write all the relations (or formulas) which are to be used in solving the problem.

Second: Write the check formulas.

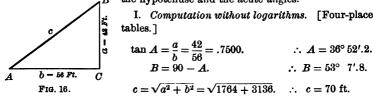
Third: In making the computations arrange the work as neatly as possible.

This last is important, because, by attention to this rule, the work is presented clearly, and mistakes are less likely to occur. The computations may be made either with or without the help of logarithms. The calculations can generally be made more easily and quickly by using logarithms.

Note 1. Relations (3), (4), Art. 25, may be written: $a = c \sin A$, $a = c \cos B$. These relations may be thus expressed:

A side of a right-angled triangle is equal to the product of the hypotenuse and the cosine of the angle adjacent to the side.

` A side of a right-angled triangle is equal to the product of the hypotenuse and the sine of the angle opposite to the side.


Note 2. Relations (7), (8), Art. 25, may be written: $a = b \tan A$, $a = b \cot B$. These relations may be thus expressed:

A side of a right-angled triangle is equal to the product of the other side and the tangent of the angle opposite to the first side.

A side of a right-angled triangle is equal to the product of the other side and the cotangent of the angle adjacent to the first side.

EXAMPLES.

1. In the triangle ABC, right-angled at C, a = 42 ft., b = 56 ft. Find AB the hypotenuse and the acute angles.

Check: $a = c \cos B = 70 \times \cos 53^{\circ} 7'.8 = 70 \times .6000 = 42 \text{ ft.}$

II. Computation with logarithms.

Given:
$$a=42$$
 ft. To find: * $A=$
 $b=56$ ft. $B=$

Formulas: $\tan A = \frac{a}{b}$. (1)
$$B=90^{\circ}-A.$$
 (2)
$$c=\frac{a}{\sin A}.$$
 (3)
$$Checks: \tan B = \frac{b}{a}.$$

$$a^{2}=c^{2}-b^{2}$$

$$=(c+b)(c-b).$$

^{*} This is to be filled after the values of the unknown quantities have been found. It is advisable to indicate the given parts and the unknown parts clearly.

Logarithmic formulas: $\log \tan A = \log a - \log b$.

[See Note 6], $\log c = \log a - \log \sin A$.

$$\log a = 1.62325$$

$$\log b = 1.74819$$

$$\log \tan A = 9.87506 - 10$$

$$\therefore A = 36^{\circ} 52' 12''$$

$$\therefore B = 53^{\circ} 7' 48''$$

$$\log a = 1.62325$$

$$\log \sin A = 9.77815 - 10$$

$$\therefore \log c = 1.84510$$

$$\therefore c = 70$$

The work can be more compactly arranged, as follows:

$$\begin{array}{c} Checks: \\ \log a = 1.62325 & \log \tan B = 10.12494 - 10 \\ \log b = 1.74819 & \cdots B = \frac{53^{\circ} 7' 48''}{5} \\ \therefore \log \tan A = 9.87506 - 10 & c + b = 126 \\ \therefore A = 36^{\circ} 52' 12'' & c - b = 14 \\ \therefore B = 53^{\circ} 7' 48'' & \log (c + b) = 2.10037 \\ \log \sin A = 9.77815 - 10 & \log (c - b) = 1.14613 \\ \therefore \log c = 1.84510 & \cdots \log a^2 = \frac{3.24650}{3.24650} \\ \therefore \log a = 1.62325 \end{array}$$

Note 1. The latter form is preferable when all the parts of a triangle are required.

Note 2. If there is difficulty in calculating $\log a - \log \sin A$ in the second form, write $\log \sin A$ on the edge of a piece of paper and place it immediately beneath $\log a$.

Note 3. The formula $\tan B = \frac{b}{a}$ can be used instead of (2). A check then is $A + B = 90^{\circ}$. Instead of (3), one of the following formulas can be used, viz.

$$c = \frac{b}{\sin B}$$
, $c = \frac{a}{\cos B}$, $c = \frac{b}{\cos A}$

There is often a choice of formulas that can be used in a solution.

Note 4. In every example it is advisable to make a complete skeleton scheme of the solution, before using the tables and proceeding with the actual computation. In the last exercise, for instance, such a skeleton scheme can be seen on erasing all the numerical quantities in the equations that follow the logarithmic formulas.

Note 5. Time will be saved if all the logarithms that can be found at one place in the tables, be written at one time. Thus, for example, in the preceding exercise find $\log \sin A$ immediately after A has been found.

Note 6. The logarithmic formulas can be written on a glance at the formulas such as (1), (2), (3). The writing of the logarithmic formulas may be dispensed with when the student has become familiar with calculation by logarithms. A glance at the original formulas will show how the logarithms are to be combined in the computation.

2. In a triangle ABC right angled at C, c = 60 ft., b = 50 ft.; find side a and the acute angles.

$$\cos A = \frac{b}{c} = \frac{50}{60} = .8333.$$
 $\therefore A = 33^{\circ} 33'.75.$
 $B = 90^{\circ} - A.$ $\therefore B = 56^{\circ} 26'.25.$
 $a = c \sin A = 60 \times .5528 = 33.17 \text{ ft.}$

Check: $a = b \tan A = 50 \times .6635 = 33.17$.

II. Computation with logarithms.

Given:
$$c=60$$
 ft. To find: $A=b=50$ ft. $B=a=6$
Formulas: $\cos A=\frac{b}{c}$ $a=6$

$$B=90^{\circ}-A.$$
 $a=c\sin A.$ Checks: $a^2=c^2-b^2=(c+b)(c-b)$. $a=b\tan A$.

Logarithmic formulas: $\log \cos A = \log b - \log c$.

(If necessary.)
$$\log a = \log c + \log \sin A$$
.

$$\log b = 1.69897 \qquad (1) \qquad \log \tan A = 9.82173 - 10 \quad (6)$$

$$\log c = \frac{1.77815}{2} \qquad (2) \qquad \therefore \log a = 1.52070 \qquad (7)$$

$$\therefore \log \cos A = 9.92082 - 10 \quad (3) \qquad \qquad = \frac{(1) + (6)}{2}$$

$$= (1) - (2) \qquad \qquad c + b = 110$$

$$\therefore A = 33^{\circ} 33^{\prime} 27^{\prime\prime} \qquad \qquad c - b = 10$$

$$\therefore B = 56^{\circ} 26^{\prime} 33^{\prime\prime} \qquad \log (c + b) = 2.04139$$

$$\log \sin A = 9.74255 - 10 \quad (4) \qquad \log (c - b) = 1$$

$$\therefore \log a = 1.52070 \qquad (5) \qquad \therefore \log a^{2} = 3.04139$$

$$= (2) + (4) \qquad \qquad \therefore \log a = 1.52070$$

$$\therefore a = 33.16$$

NOTE. There is a slight difference between the results obtained by the two methods. This is due to the fact that the calculations have been made with a four-place table in one case, and with a five-place table in the other. A four-place table will give an angle correctly to within one minute; a fiveplace table will give it correctly to within six seconds, and sometimes, to within a second.

Ex. Make the computation I. with a five-place table.

3. In a triangle right angled at C, the hypotenuse is 250 ft., and angle A is 67° 30'. Solve the triangle.

I. Computation without logarithms.

$$B = 90^{\circ} - A = 90^{\circ} - 67^{\circ} 30' = 22^{\circ} 30'.$$

$$a = c \sin A = 250 \times \sin 67^{\circ} 30' = 250 \times .9239 = 230.98.$$

$$b = c \cos A = 250 \times \cos 67^{\circ} 30' = 250 \times .3827 = 95.68.$$

Checks: $a^2 = c^2 - b^2$, or $a = b \tan A$.

II. Computation with logarithms.

$$c = 250 \text{ ft.}$$

 $A = 67^{\circ} 30'.$

$$B = a =$$

$$b =$$

Formulas:
$$B = 90^{\circ} - A$$
.

$$a = c \sin A$$
.
 $b = c \cos A$.

Checks:
$$a^2 = c^2 - b^2$$

$$=(c+b)(c-b).$$

Fig. 18.

Logarithmic formulas: $\log a = \log c + \log \sin A$.

$$\log b = \log c + \log \cos A.$$

$$\therefore B = 22^{\circ} \, 30'$$

$$B = 22^{\circ} 30'$$
 $c + b = 345.67$

$$\log c = 2.39794$$

$$c-b=154.33$$

$$\log \sin A = 9.96562 - 10$$

$$\log(c+b) = 2.53866$$

$$\log \cos A = 9.58284 - 10$$

$$\log(c-b) = 2.18845$$

∴
$$\log a = 2.36356$$

∴ $\log b = 1.98078$

∴
$$\log a^2 = 4.72711$$

∴ $\log a = 2.36356$

$$a = 230.97$$

$$b = 95.67$$

4. In a triangle ABC right angled at C,
$$b = 300$$
 ft. and $A = 37^{\circ} 20'$.

- Solve the triangle.
 - I. Computation without logarithms.

$$B = 90 - A = 90^{\circ} - 37^{\circ} 30' = 52^{\circ} 40'.$$

$$c = \frac{b}{\cos A} = \frac{300}{.7951} = 377.3.$$

$$a = b \tan A = 300 \times .7627 = 228.8.$$

Checks:
$$a^2 = c^2 - b^2$$
, $a = c \sin A$.

II. Computation with logarithms.

Given:
$$A = 37^{\circ} 20'$$
.

$$B = c = a = a = a$$

$$b = 300$$
 ft.
Formulas : $B = 90^{\circ} - A$.

$$c = \frac{b}{\cos a}$$

$$a^2 = c^2 - b^2$$

= $(c + b)(c - b)$.

 $h = 300 \, Ft.$

Fig. 19.

$$a = b \tan A$$
.

N.B. Check all results in the following examples. The given elements belong to a triangle ABC which is right angled at C.

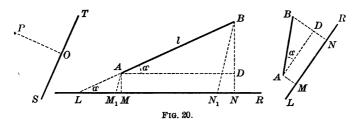
From the given elements solve the following triangles:

5.
$$c = 18.7$$
, $a = 16.98$.6. $a = 194.5$, $b = 233.5$.7. $c = 2934$, $A = 31^{\circ} 14' 12''$.8. $a = 36.5$, $B = 68^{\circ} 52'$.9. $a = 58.5$, $b = 100.5$.10. $c = 45.96$, $a = 1.095$.11. $c = 324$, $A = 48^{\circ} 17'$.12. $b = 250$, $A = 51^{\circ} 19'$.13. $c = 1716$, $A = 37^{\circ} 20' 30''$.14. $a = 2314$, $b = 1768$.15. $b = 3741$, $A = 27^{\circ} 45' 20''$.16. $c = 50.13$, $a = 24.62$.

Solve Exs. 17-24 by two methods, viz.: (1) with logarithms;

(2) without logarithms.

17.
$$a = 40$$
, $B = 62^{\circ} 40'$.18. $c = 9$, $a = 5$.19. $a = 4.5$, $b = 7.5$.20. $c = 15$, $A = 39^{\circ} 40'$.21. $c = 12$, $B = 71^{\circ} 20'$.22. $c = 12$, $a = 8$.28. $b = 15$, $B = 42^{\circ} 30'$.24. $a = 8$, $b = 12$.


N.B. Questions and exercises suitable for practice and review on the subject-matter of Chapter III. will be found at page 183.

CHAPTER IV.

APPLICATIONS INVOLVING THE SOLUTION OF RIGHT-ANGLED TRIANGLES.

Some practical applications of trigonometry will now be given. It is not necessary that all the problems be solved, or all the articles be considered, before Chapter V. is taken up.

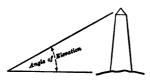
28. Projection of a straight line upon another straight line. If from a point P a perpendicular PO be drawn to the straight line ST, then O is called the projection of the point P upon the line ST. If perpendiculars be drawn from two points A, B, to

a line LR, and intersect LR in M, N, respectively, then MN is called the projection of AB upon LR.

Let l be the length of AB, and let α be the angle at which the two lines AB, LR are inclined to each other. Through A draw AD parallel to LR. Then

Projection = $MN = AD = AB \cos DAB = l \cos \alpha$.

That is, the projection of one straight line upon another straight line is equal to the product of the length of the first line and the cosine of the angle of inclination of the two lines.


Note. The projection discussed here, is orthogonal (i.e. perpendicular) projection. If a pair of parallel lines AM_1 , BN_1 , not perpendicular to LR, be drawn through A, B, then M_1N_1 is an oblique projection of AB on LR.

EXAMPLES.

In working these examples use logarithms or not, as appears most convenient. Check the results.

- 1. A ladder 28 ft. long is leaning against the side of a house, and makes an angle 27° with the wall. Find its projections upon the wall and upon the ground.
- 2. What is the projection of a line 87 in. long upon a line inclined to it at an angle 47° 30'?
- 3. What are the projections: (a) of a line 10 in. long upon a line inclined $22^{\circ}30'$ to it? (b) of a line 27 ft. 6 in. long upon a line inclined 37° to it? (c) of a line 43 ft. 7 in. long upon a line inclined $67^{\circ}20'$ to it? (d) of a line 34 ft. 4 in. long upon a line inclined $55^{\circ}47'$ to it?
- 29. Measurement of heights and distances. There are various instruments used for measuring angles. The sextant can be used for measuring the angle between the two lines drawn from the observer's eye to each of two distant objects. Horizontal and vertical angles can be measured with a theodolite or engineer's transit. When great accuracy is not required, vertical angles can be measured by means of a quadrant.

When an object is above the observer's eye, the angle between the line from the eye to the object, and the horizontal line through the eye and in the same vertical plane as the first line, is called **the angle of elevation** of the object, or simply the elevation of the object. When the object is below the observer's eye, this angle is called **the angle of depression** of the object, or simply the depression of the object.

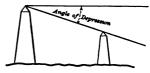
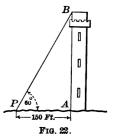


Fig. 21.

Note. In ordinary work engineers get angular measurements exact to within one minute, and in the best ordinary work to half a minute. In very particular work, like geodetic survey, they can get measurements exact to five seconds. For ordinary engineering work five-place tables are generally used; four-place tables are used in some kinds of work. See Art. 11, Note 1, Art. 27, Ex. 2, Note.

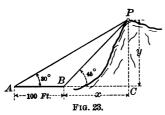
EXAMPLES.

A few simple examples are given here; others will be given later.


1. At a point 150 ft. from, and on a level with, the base of a tower, the angle of elevation of the top of the tower is observed to be 60°. Find the height of the tower.

Let AB be the tower, and P the point of observation.

By the observations,


$$AP = 150 \text{ ft.}, APB = 60^{\circ}.$$

 $AB = AP \tan 60^{\circ} = 150 \times \sqrt{3} = 150 \times 1.7321 = 279.82 \text{ ft.}$

2. In order to find the height of a hill, a line was measured equal to 100 ft., in the same level with the base of the hill, and in the same vertical plane with its top. At the ends of this line the angles of elevation of the top of the hill were 30° and 45°. Find the height of the hill.

Let P be the top of the hill, and AB the base line. The vertical line

through P will meet AB produced in C. AB = 100 ft., $CAP = 30^{\circ}$, $CBP = 45^{\circ}$; the height CP is required. Let BC = x, and CP = y.

In triangle CAP,

$$\frac{CP}{AC} = \tan 30^{\circ};$$

in
$$CBP$$
, $\frac{CP}{BC} = \tan 45^{\circ}$.

Hence,

$$\frac{y}{x+100} = \tan 30^{\circ} = .57735,\tag{1}$$

and

$$\frac{y}{x} = \tan 45^\circ = 1. \tag{2}$$

From (2), x = y. Substitution in (1) gives

$$y = (y + 100) \times .57735$$
.

$$y(1 - .57735) = 57.735.$$

$$\therefore CP = y = \frac{57.735}{.42265} = 136.6 \text{ ft.}$$

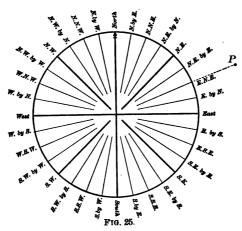
3. A flagstaff 30 ft. high stands on the top of a cliff, and from a point on a level with the base of the cliff the angles of elevation of the top and bottom of the flagstaff are observed to be 40°20′ and 38°20′, respectively. Find the height of the cliff.

Let BP be the flagstaff on the top of the cliff BL, and let C be the place of observation. BP = 30 ft., $LCB = 38^{\circ} 20'$, $LCP = 40^{\circ} 20'$. Let CL = x, LB = y.

In
$$LCB$$
, $\frac{LB}{LC} = \tan 38^{\circ} 20'$;

 $\frac{y}{x} = .7907$.

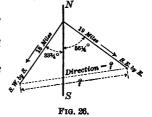
In LCP , $\frac{LP}{LC} = \tan 40^{\circ} 20'$;

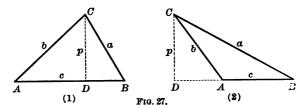

i.e. $\frac{y+30}{x} = .8491$.

Hence, on division, $\frac{y}{y+30} = \frac{7907}{8491}$.

On solving for y , $LB = y = 406.18$ ft.

- 4. At a point 180 ft. from a tower, and on a level with its base, the elevation of the top of the tower is found to be 65° 40.5'. What is the height of the tower?
- 5. From the top of a tower 120 ft. high the angle of depression of an object on a level with the base of the tower is 27° 43′. What is the distance of the object from the top and bottom of the tower?
- 6. From the foot of a post the elevation of the top of a column is 45°, and from the top of the post, which is 27 ft. high, the elevation is 30°. Find the height and distance of the column.
- 7. From the top of a cliff 120 ft. high the angles of depression of two boats, which are due south of the observer, are 20° 20' and 68° 40'. Find the distance between the boats.
- 8. From the top of a hill 450 ft. high, the angle of depression of the top of a tower, which is known to be 200 ft. high, is 63° 20′. What is the distance from the foot of the tower to the top of the hill?
- 9. From the top of a hill the angles of depression of two consecutive mile-stones, which are in a direction due east, are 21° 30′ and 47° 40′. How high is the hill?
- 10. For an observer standing on the bank of a river, the angular elevation of the top of a tree on the opposite bank is 60°; when he retires 100 ft. from the edge of the river the angle of elevation is 30°. Find the height of the tree and the breadth of the river.
- 11. Find the distance in space travelled in an hour, in consequence of the earth's rotation, by an object in latitude 44° 20′. [Take earth's diameter equal to 8000 mi.]
- 12. At a point straight in front of one corner of a house, its height subtends an angle 34° 45′, and its length subtends an angle 72° 30′; the height of the house is 48 ft. Find its length.


30. Problems requiring a knowledge of the points of the Mariner's Compass. The circle in the Mariner's Compass is divided into 32 equal parts, each part being thus equal to $360^{\circ} \div 32$, *i.e.* $11\frac{1}{4}^{\circ}$. The points of division are named as indicated on the figure.


It will be observed that the points are named with reference to the points North, South, East, and West, which are called the cardinal points. Direction is indicated in a variety of ways. For instance, suppose C were the centre of the circle; then the point P in the figure is said to bear E.N.E. from C, or, from C the bearing of P is E.N.E. Similarly, C bears W.S.W. from P, or, the bearing of C from P is W.S.W. The point E.N.E. is 2 points North of East, and 6 points East of North. Accordingly, the phrases E. $22\frac{1}{2}^{\circ}$ N., N. $67\frac{1}{2}^{\circ}$ E., are sometimes used instead of E.N.E.

EXAMPLES.

- 1. Two ships leave the same dock at 8 A.M. in directions S.W. by S., and S.E. by E. at rates of 9 and 9½ mi. an hour respectively. Find their distance apart, and the bearing of one from the other at 10 A.M. and at noon,
- 2. From a lighthouse L two ships A and B are observed in a direction N.E. and N. 20° W. respectively. At the same time A bears S.E. from B. If LA is 6 mi., what is LB?

31. Mensuration. Let ABC be any triangle, and let the lengths of the sides opposite the angle A, B, C be denoted by a, b, c, respectively. From any vertex C draw CD at right angles to the opposite

side AB. It has been shown in arithmetic and geometry, that the area of a triangle is equal to one-half the product of the lengths of any side and the perpendicular drawn to it from the opposite vertex. [In (1) A is acute, in (2) A is obtuse.]

area
$$ABC$$
 (Fig. 1) = $\frac{1}{2}AB \cdot DC$;
= $\frac{1}{2}AB \cdot AC \sin A$;
= $\frac{1}{2}bc \sin A$.
area ABC (Fig. 2) = $\frac{1}{2}AB \cdot DC$;
= $\frac{1}{2}AB \cdot AC \sin CAD$;
= $\frac{1}{2}bc \sin (180 - A)$.

It will be seen in Art. 45, that $\sin(180 - A) = \sin A$. Hence, the area of a triangle is equal to one-half the product of any two sides and the sine of their contained angle.

EXAMPLES.

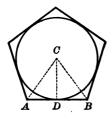
1. Find the area of the triangle in which two sides are 31 ft. and 23 ft. and their contained angle 67° 30'.

area =
$$\frac{31 \times 23}{2} \times \sin 67^{\circ} 30' = \frac{31 \times 23 \times .92388}{2} = 329.37$$
 sq. ft.

- 2. Find area of triangle having sides 125 ft., 80 ft., contained angle 28° 35'.
- 3. Find area of triangle having sides 125 ft., 80 ft., contained angle 151° 25′. [Draw figures carefully for Exs. 2, 3.]
- 4. Find area of parallelogram two of whose adjacent sides are 243, 315 yd., and their included angle $35^{\circ}\,40'$.

- Find area of parallelogram two of whose adjacent sides are 14, 15 ft., and included angle 75°.
- 6. Find area of triangle having sides 40 ft., 45 ft., with an included angle 28° 57′ 18″.
- 7. Write two other formulas for area ABC, similar to that derived above. Also, derive them.
- 32. Solution of isosceles triangles. In an isosceles triangle, the perpendicular let fall from the vertex to the base bisects the base and bisects the vertical angle. An isosceles triangle can often be solved on dividing it into two equal right-angled triangles.

EXAMPLES.


- 1. The base of an isosceles triangle is 24 in. long, and the vertical angle is 48°; find the other angles and sides, the perpendicular from the vertex and the area. Only the steps in the solution will be indicated.
- Let ABC be an isosceles triangle having base AB = 24 in., angle $C = 48^{\circ}$. Draw CD at right angles to base; then CD bisects the angle ACB and base AB. Hence, in the right-angled triangle ADC, $AD = \frac{1}{2}AB = 12$, $ACD = \frac{1}{2}ACB = 24^{\circ}$. Hence, angle A, sides AC, DC, and the area, can be found.

- FIG. 28.
- 2. In an isosceles triangle each of the equal sides is 363 ft., and each of the equal angles is 75°. Find the base, perpendicular on base, and the area.
- 3. In an isosceles triangle each of the equal sides is 241 ft., and their included angle is 96°. Find the base, angles at the base, height, and area.
- 4. In an isosceles triangle the base is 65 ft., and each of the other sides is 90 ft. Find the angles, height, and area.
- 5. In an isosceles triangle the base is 40 ft., height is 30 ft. Find sides, angles, area.
- 6. In an isosceles triangle the height is 60 ft., one of equal sides is 80 ft. Find base, angles, area.
- 7. In an isosceles triangle the height is 40 ft., each of equal angles is 63°. Find sides and area.
- 8. In an isosceles triangle the height is 63 ft., vertical angle is 75° . Find sides and area.
- 33. Related regular polygons and circles. The knowledge of trigonometry thus far attained, is of service in solving many

problems in which circles and regular polygons are concerned. Some of these problems are:

- (a) Given the length of the side of a regular polygon of a given number of sides, to find its area; also, to find the radii of the inscribed and circumscribing circles of the polygon;
- (b) To find the lengths of the sides of regular polygons of a given number of sides which are inscribed in, and circumscribed about, a circle of given radius.

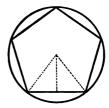


Fig. 29.

For example, let AB (Fig. 29) be a side, equal to 2a, of a regular polygon of n sides, and let C be the centre of the inscribed circle. Draw CA, CB, and draw CD at right angles to AB. Then D is the middle point of AB.

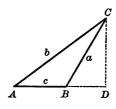
By geometry, angle
$$ACD = \frac{1}{2} ACB = \frac{1}{2} \cdot \frac{360^{\circ}}{n} = \frac{180^{\circ}}{n}$$
.

Also, by geometry,

$$\left[\text{ angle } DAC = \frac{1}{2} \left(\frac{2n-4}{n}\right) 90^{\circ} = \left(\frac{n-2}{n}\right) 90^{\circ}.\right]$$

Hence, in the triangle ADC, the side AD and the angles are known; therefore CD, the radius of the circle inscribed in the polygon, can be found. On making similar constructions, the solution of the other problems referred to above will be apparent. The perpendicular from the centre of the circle to a side of the inscribed polygon is called the apothem of the polygon.

EXAMPLES.


• 1. The side of a regular heptagon is 14 ft.: find the radii of the inscribed and circumscribing circles; also, find the difference between the areas of the heptagon and the inscribed circle, and the difference between the area of the heptagon and the area of the circumscribing circle.

- 2. The side of a regular pentagon is 24 ft. Find quantities as in Ex. 1.
- 3. The side of a regular octagon is 24 ft. Find quantities as in Ex. 1.
- 4. The radius of a circle is 24 ft. Find the lengths of the sides and apothems of the inscribed regular triangle, quadrilateral, pentagon, hexagon, heptagon, and octagon. Compare the area of the circle and the areas of these regular polygons; also compare the perimeters of the polygons and the circumference of the circle.
- 5. For the same circle as in Ex. 4, find the lengths of the sides of the circumscribing regular figures named in Ex. 4. Compare their areas and perimeters with the area and circumference of the circle.
- 6. If a be the side of a regular polygon of n sides, show that R, the radius of the circumscribing circle, is equal to $\frac{1}{2}$ a cosec $\frac{180^{\circ}}{n}$; and that r, the radius of the circle inscribed, is equal to $\frac{1}{2}$ a cot $\frac{180^{\circ}}{n}$.
- 7. If r be the radius of a circle, show that the side of the regular inscribed polygon of n sides is $2 r \sin \frac{180^{\circ}}{n}$; and that the side of the regular circumscribing polygon is $2 r \tan \frac{180^{\circ}}{n}$.
- 8. If a be the side of a regular polygon of n sides, R the radius of the circumscribing circle, and r the radius of the circle inscribed, show that area of polygon = $\frac{1}{4} na^2 \cot \frac{180^{\circ}}{n} = \frac{1}{2} nR^2 \sin \frac{360^{\circ}}{n} = nr^2 \tan \frac{180^{\circ}}{n}$.
- 34. Solution of oblique triangles. Since an oblique triangle can be divided into right-angled triangles by drawing a perpendicular from a vertex to the opposite side, it may be expected that knowledge concerning the solution of right-angled triangles will be of service in solving oblique triangles. This expectation will not be disappointed. An examination, which it is advisable for the student to make before proceeding farther, will show that all the sets of data from which a definite triangle can be drawn are those indicated in (1)-(4) below. The ability to make the following geometrical constructions is presupposed:
- (1) To draw a triangle on being given two of its angles and a side opposite to one of them;
- (2) To draw a triangle on being given two of its sides and an angle opposite to one of them;
- (3) To draw a triangle on being given two of its sides and their included angle;
 - (4) To draw a triangle on being given its three sides.

In what follows, only the steps in the solutions will be indicated. The examples that are worked may be saved, so that the amount of labor required by the method of solution shown here can be compared with the amount required by another method which will be described later.

There are four cases in the solution of oblique triangles; these cases correspond to the four problems of construction stated above.

CASE I. Given two angles and a side opposite to one of them.

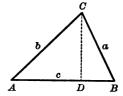


Fig. 30.

In ABC let A, B, a be known. Angle C and sides b, c are required. From C draw CD at right angles to AB or AB produced.

In triangle CBD, angle CBD and side CB are known. $\therefore BD$ and DC can be found.

Then, in triangle ACD, side DC and angle A are known. $\therefore AC$ and AD can be found.

Side AB = AD - BD when B is obtuse, and AB = AD + DB when B is acute.

Angle $C = 180^{\circ} - (A + B)$.

Another method of solution is given in Art. 55.

EXAMPLES.

1. Ex. 1, Art. 55.

2. Ex. 2, Art. 55.

3. Ex. 2, Art. 60.

4. Other Exs. in Arts. 55, 60.

CASE II. Given two sides and an angle opposite to one of them.

N.B. The first part of the text in Art. 56 should be read at this time.

Let (Fig. 30) AC, BC, angle A be known. [In a certain case, as shown in Art. 56, two triangles can be drawn which satisfy the given conditions.] From C draw CD at right angles to AB or AB produced.

In ACD, AC and A are known. $\therefore AD$, DC, angle ACD, can be found.

Then, in BCD, BC and CD are known. $\therefore BD$, angle DBC, can be found.

In one figure, AB = AD - BD, angle $ABC = 180^{\circ} - CBD$. In other figure, AB = AD + DB. In both figures,

angle
$$ACB = 180^{\circ} - (CAB + ABC)$$
.

Another method of solution is given in Art. 56.

EXAMPLES.

1. Ex. 1, Art. 56.

2. Ex. 2, Art. 56.

8. Ex. 1, Art. 60.

4. Other Exs. in Arts. 56, 60.

CASE III. Given two sides and their included angle.

In ABC let b, c, A be known. Side a, B, C are required. From C draw CD at right angles to AB or AB produced.

In ACD, AC and angle A are known. $\therefore CD$ and AD can be found.

Then, in triangle CDB, CD is now known, and BD=AD-AB or AB-AD. ... Angle CBD can be found. Angle $ABC=180^{\circ}$ — CBD in figure on the left. Angle $ACB=180^{\circ}$ — (A+B). Another method of solution is given in Art. 57.

EXAMPLES.

1. Ex. 1, Art. 57. 2. Ex. 2, Art. 57.

8. Ex. 1, Art. 61.

4. Other Exs. in Arts. 57, 61.

5. Ex. in Art. 21.

CASE IV. Given the three sides.

In ABC let a, b, c be known. The angles A, B, C are required. From any vertex C draw CD at right angles to AB or AB produced.

$$CD^2 = b^2 - AD^2; (1)$$

also,

$$CD^2 = a^2 - DB^2 = a^2 - (c - AD)^2$$
.

:.
$$b^2 - AD^2 = a^2 - (c - AD)^2$$
.

$$\therefore AD = \frac{b^2 + c^2 - a^2}{2c} \tag{2}$$

Also, DB = AD - c (one figure), or c - AD (other figure). Hence, in ACD, AC, AD are known. $\therefore A$ can be found. Also, in CDB, CB, DB are known. $\therefore B$ can be found.

$$C = 180^{\circ} - (A + B)$$
.

Another method of solution is given in Art. 58.

EXAMPLES.

1. Ex. 1, Art. 58.

2. Ex. 2, Art. 58.

8. Ex. 1, Art. 62.

4. Other Exs. in Arts. 58, 62.

5. Solve some of the problems in Art. 63 by means of right-angled triangles.

34 a. The area of a triangle in terms of the sides. (See Fig. 30.) From (1), (2), Case IV., Art. 34,

$$\begin{split} CD^2 &= b^2 - \left(\frac{b^2 + c^2 - a^2}{2 \ c}\right)^2 = \frac{4 \ c^3 b^2 - (b^2 + c^2 - a^2)^2}{4 \ c^2} \\ &= \frac{\left[2 \ cb + b^2 + c^2 - a^2\right] \left[2 \ cb - (b^2 + c^2 - a^2)\right]}{4 \ c^2} \\ &= \frac{\left[(b + c)^2 - a^2\right] \left[a^2 - (b - c)^2\right]}{4 \ c^2} \\ &= \frac{(a + b + c)(-a + b + c)(a - b + c)(a + b - c)}{4 \ c^2}. \end{split}$$

Let

$$a + b + c = 2s$$
:

then

$$2(s-a) = a+b+c-2$$
 $a = -a+b+c$.

Similarly, 2(s-b) = a - b + c; 2(s-c) = a + b - c.

Then

$$CD = \frac{2}{c}\sqrt{s(s-a)(s-b)(s-c)}.$$

$$\therefore$$
 Area $ABC = \frac{1}{2}AB \cdot CD = \sqrt{s(s-a)(s-b)(s-c)}$.*

Ex. Find the areas of the triangles in Exs. Case IV., Art. 34. Check the results by finding the areas by the method of Art. 31.

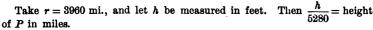
^{*} This is sometimes known as *Hero's Formula* for the area of a triangle. It was discovered by Hero (or Heron) of Alexandria, who lived about 125 B.C., and placed engineering and land surveying on a scientific basis.

FIG. 30a.

34 b. Distance and dip of the visible horizon.

Let C be the centre of the earth, and let the radius be denoted by r.

Let P be a point above the earth's surface, and let its height PL be denoted by h.


Join P, C; draw PB from P to any point in the visible horizon; draw the horizontal line PH in the same plane with PC, PB. Then angle HPB is called the dip of the horizon. By geometry,

angle
$$PBC = 90^{\circ}$$
.

$$PB^2 = PC^2 - CB^2 = (r+h)^2 - r^2 = 2 rh + h^2$$

Since h^2 is very small compared with 2 rh,

$$PB = \sqrt{2 rh}$$
 approximately.

:.
$$PB = \sqrt{2 \times 3960 \times \frac{h}{5280}} \text{ mi.} = \sqrt{\frac{3}{2} h} \text{ mi.}$$

Hence, the distance of the horizon in miles is approximately equal to the square root of one and one-half times the height in feet.

EXAMPLES.

1. A man whose eye is 6 ft. from the ground is standing on the seashore. How far distant is his horizon?

Distance =
$$\sqrt{\frac{3}{4} \times 6}$$
 mi. = 3 mi.

- 2. Find the greatest distance at which the lamp of a lighthouse can be seen, the light being 80 ft. above the sea level.
- 3. Find the height of the lamp of a lighthouse above the sea level when it begins to be seen at a distance of 12 mi.
- 4. From the top of a cliff, 40 ft. above the sea level, the top of a steamer's funnel which is known to be 30 ft. above the water is just visible. What is the distance of the steamer?
- 5. Find the distance and dip of the horizon at the top of a mountain 3000 ft. high?
- 6. Find the distance and dip of the horizon at the top of a mountain 2½ mi. high.
- 34 c. Examples in the measurement of land. In order to find the area of a piece of ground, a surveyor measures distances and angles sufficient to provide data for the computation. An account

of his method of doing this, and of his arrangement of the data and the results in a simple, clear, and convenient form, belongs to special works on surveying. This article merely gives some examples which can be solved without any knowledge of professional details. The various rules for finding the area, of a triangle and a trapezoid, are supposed to be known. In solving these problems, the student should make the plotting or mapping an important feature of his work.

The Gunter's chain is generally used in measuring land. It is 4 rods or 66 feet in length, and is divided into 100 links.

An acre = 10 square chains=4 roods=160 square rods or poles. The points of the compass have been explained in Art. 30.

EXAMPLES.

1. A surveyor starting from a point A runs S. 70° E. 20 chains, thence N. 10° W. 20 chains, thence N. 70° W. 10 chains, thence S. 20° W. 17.32 chains

 D_1 D_2 D_3 D_4 D_4 D_4 D_4 D_4 D_5 D_6 D_6 D_7 D_8 D_8

to the place of beginning. What is the area of the field which he has gone around?

Make a plot or map of the field, namely, ABCD. Here, AB represents 20 chains, and the bearing of B from A is S. 70° E. BC represents 20 chains, and the bearing C from B is N. 10° W., and so on. Through the most westerly point of the field draw a north-and-south line. This line is called the meridian. In the case of each line measured, find the distance that one end of the line is east or west from the other end. This easting or westing is called the departure of the line. Also find the distance that one end of the line is north or south of the other end. This northing or southing is called the latitude of the line. For example, in Fig. 30 b, the de-

partures of AB, BC, CD, DA, are B_1B , BL, CH, DD_1 , respectively; the latitudes of the boundary lines are AB_1 , B_1C_1 , C_1D_1 , D_1A , respectively. It should be observed (Art. 36) that the algebraic sum of the departures of the boundary lines is zero, and so also is the algebraic sum of their latitudes. The following formulas are easily deduced:

Departure of a line = length of line \times sine of the bearing;

Latitude of a line = length of line \times cosine of the bearing.

By means of the departures, the meridian distance of a point (i.e. its distance from the north-and-south line) can be found. Thus the meridian

distance of C is C_1C , and $C_1C = D_1D + HC$. Hence in Fig. 30 b, AB_1 , B_1B , B_1C_1 , C_1C , C_1D_1 , D_1D can be computed. Now

```
area ABCD = trapezoid D_1DCC_1 + trapezoid C_1CBB_1 - triangle ADD_1 - triangle ABB_1.
```

The areas in the second member can be computed; it will be found that area ABCD = 26 acres.

Note. Sometimes the bearing and length of one of the lines enclosing the area is also required. These can be computed by means of the latitudes and departures of the given lines. The formulation of a simple rule for doing this is left as an exercise to the student.

- 2. In Ex. 1, deduce the length and bearing of DA from the lengths and bearings of AB, BC, CD.
- 3. A surveyor starts from A and runs 4 chains S. 45° E. to B, thence 5 chains E. to C, thence 6 chains N. 40° E. to D. Find the distance and bearing of A from D; also, the area of the field ABCD. Verify the results by going around the field in the reverse direction, and calculating the length and bearing of BA from the lengths and directions of AD, DC, CB.
- 4. A surveyor starts from one corner of a pentagonal field, and runs N. 25° E. 433 ft., thence N. 76° 55′ E. 191 ft., thence S. 6° 41′ W. 539 ft., thence S. 25° W. 40 ft., thence N. 65° W. 320 ft. Find the area of the field. Deduce the length and direction of one of the sides from the lengths and directions of the other four.
- 5. From a station within a hexagonal field the distances of each of its corners were measured, and also their bearings; required its plan and area, the distances in chains and the bearings of the corners being as follows: 7.08 N.E., 9.57 N. $\frac{1}{2}$ E., 7.83 N.W. by W., 8.25 S.W. by S., 4.06 S.S.E. 7° E., 5.89 E. by S. $3\frac{1}{3}$ ° E.
- 35. Summary. Chapter II. was concerned with defining and investigating certain ratios inseparably connected with (acute) angles, and attention was directed to the tables of these ratios and their logarithms. In Chap. III. it was shown how these definitions and tables can be used in finding parts of a right-angled triangle when certain parts are known. In Chap. IV. the knowledge gained in Chap. III. was employed in the solution of some of the many problems in which right-angled triangles appear. In Art. 34 it has been seen that this knowledge can serve for the solution of oblique triangles. It follows, then, that it can serve for the solution of problems in which oblique triangles appear, and, accordingly, for the solution of all problems

involving the measurement of straight lines only. Consequently, the student is now able, without any additional knowledge of trigonometry, to solve the numerical problems in Chaps. VII., VIII. It is thus apparent that even a slight acquaintance with the ratios defined in Chap. II. has greatly increased the learner's ability to solve useful practical problems.

Oblique triangles can sometimes be solved in a more elegant manner than that pointed out in Art. 34. In order to show this, further consideration of angles and the trigonometric ratios is necessary. Consequently, in Chap. V. some important additions are made to the idea of a straight line and the idea of an angle; the trigonometric ratios are defined in a more general way, namely, for all angles, instead of for acute angles only, and the principal relations of these ratios are deduced. Chapter VI. treats of the ratios of two angles in combination. While it is necessary to consider these matters before proceeding to the solution of oblique triangles given in Chap. VII., it should be said that the knowledge that will be gained in Chaps. V., VI., VII., is necessary and important for other purposes besides the solution of triangles. In fact, the latter is one of the least important of the results obtained in these chapters.

N.B. Questions and exercises suitable for practice and review on the subject-matter of Chap. IV. will be found at page 184.

CHAPTER V.

TRIGONOMETRIC RATIOS OF ANGLES IN GENERAL.

36. Directed lines. Let MN be a line unlimited in length in the directions of both M and N. Suppose that a point starts at P and moves along this line for some given distance. In order to mark where the point stops, it is necessary to know, not only this distance, but also the *direction* in which the point has moved from P. This direction may be indicated in various ways; by saying, for instance, that the point moves toward the right from P, or toward the left from P; that the point moves toward N, or toward M; that the point moves in the direction of N, or in the direction of M; and so on. Mathematicians, engineers, and others

have agreed to use a particular method (and this practically comes to the adoption of a particular rule) for indicating the two opposite directions in which a point can move along a line, or in which distances along a line can be measured. This convention, or rule which has been adopted for the sake of convenience, is as follows:

Distances measured along a line, or along parallel lines, in one direction shall be called **positive** distances, and shall be denoted by the sign +; distances measured in the opposite direction shall be called **negative** distances, and shall be denoted by the sign -.

The convenience of this custom, fashion, or rule, will become apparent in the examples that follow.* In Fig. 31 let distances

^{*} Advances in mathematics have often depended upon the introduction of a good custom which has at last been universally adopted and made a rule. Thus, for example, the custom of using exponents to show the power to which a quantity is raised, which was first introduced in the first half of the sixteenth century, and made gradual progress until its final establishment in the latter half of the seventeenth century, has been of great service in aiding the advances of algebra.

measured in the direction of N be taken positively; then distances measured in the direction of M will be taken negatively. On directed lines the direction in which a line is measured, or in which a point moves on a line, is indicated by the order of the letters naming the line. Thus, for example, if a point moves from B to C, the distance passed over is read BC. In this reading, the starting point is indicated by the first letter B, and the stopping point, by the last letter C. After the same fashion, CB means the distance from C to B. If, for instance, there are 3 units of length between B and C, then BC = +3, CB = -3.

EXAMPLES.

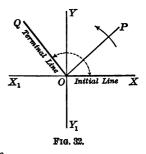
1. Suppose a point (Fig. 31) moves from P to B, thence to C, thence to D, thence to F. Let the number of units of length between P and B, B and C, C and D, F and D, be 2, 3, 2, 10, respectively. The point starts at P and stops at F; hence the distance from the starting point to the stopping point is PF. In this case the point's trip from P to F is made in several steps as indicated above. That is, on properly indicating the lines passed over.

$$PF = PB + BC + CD + DF$$

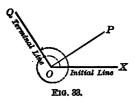
= 2 + 3 + 2 - 10 [: $FD = +$ 10, then $DF = -$ 10.]
= -3.

This shows that the final position of the moving point is three units to the left of P. This example also shows one great convenience of the rule of signs in measurement, namely, that by attending to this rule and to the proper naming of the lines passed over by a moving point, one immediately obtains the result of the successive movements.

Note. In the following examples, in lines that lie east and west, let measurements toward the east be taken positively; in lines that lie north and south, let measurements toward the north be taken positively.


- 2. A man travelling on an east and west line goes east 20 mi., then east 16 mi., then west 18 mi., then east 30 mi. What is his final distance from the starting point? [Draw a figure, and indicate the successive trips by letters.]
- 3. A man travelling on an east and west line goes west 20 mi., then east 10 mi., then east 25 mi., then east 30 mi., then west 45 mi. Do as in Ex. 2.
- 4. A man travelling on a north and south line goes north 100 mi., then south 60 mi., then south 110 mi., then north 200 mi., then north 15 mi., then south 247 mi. Do as in Ex. 2.

37. Trigonometric definition of an angle. Angles unlimited in magnitude. Positive and negative angles. In books on plane geometry a plane angle is defined in various ways, namely, as the inclination of two lines to one another, which meet together, but are not in the same direction; or, as the figure formed by two straight lines drawn from the same point; or, as the amount of divergence of two lines which meet in a point, or would meet if produced; or, as the opening between two straight lines which meet; or, as the difference in direction of two lines which meet; and so on. In these definitions an angle is always regarded as less than two right angles. A definition according to which angles are less restricted, is adopted in trigonometry.


Trigonometric definition of an angle. The angle between two lines which intersect is the amount of turning which a line revolving about their point of intersection makes, when it begins its revolution at the position of one of the two lines and stops in the position of the other line. Thus, for example, the angle

between OX and OQ is the amount of turning which is made by a line OP revolving about O when OP starts revolving from the position OX and stops its revolution at the position OQ. The line OX at which the revolution begins, is called the **initial line**; the line OQ at which the revolution ends, is called the **terminal line**; when the turning line OP has reached the terminal position OQ, OP is said to have described the angle XOQ.

Let YOY_1 be at right angles to X_1OX . When OP has revolved until it lies in the position OY, it has described a right angle, or 90°; when it has revolved until it lies in the position OX_1 , it has described two right angles, or 180° (this is usually termed "a straight angle" or "a flat angle"); when OP keeps on turning until it is in the position OY_1 , it has described three right angles, or 270°; when OP has again reached the position OX, that is, when it has made one complete revolution, it has described four right angles, or 360°.

Angles unlimited in magnitude. Now OP may start revolving from OX, make one complete revolution, continue to revolve, and then cease revolving when it has again reached the position

OQ. This is indicated in Fig. 33. Or, OP may make two complete revolutions before it comes to rest in the position OQ; or, it may make three revolutions, or four, or as many as one please, before ceasing its revolution at the position OQ. An angle of 360° is described each time that OP

makes a complete revolution, and OP can make as many revolutions as one please. According to the trigonometric definition of an angle, therefore, angles are unlimited in magnitude.

Moreover, when this definition of an angle is adopted, the same figure can represent an infinite number of different angles. Any two

of these angles differ from each other by a whole number of complete revolutions. For instance, Fig 34 may represent 60° , $360^{\circ} + 60^{\circ}$ or 420° , $2 \cdot 360^{\circ} + 60^{\circ}$ or 780° , $3 \cdot 360^{\circ} + 60^{\circ}$ or 1140° , ..., $n \cdot 360^{\circ} + 60^{\circ}$, in which n denotes any whole number. Any two of these angles differ by a multiple of 360° . Angles which have the same initial and terminal lines may be called **coterminal angles**.

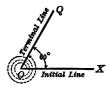


Fig. 34.

Positive and negative angles. The revolving line OP (Fig. 32) may revolve about O in the same direction as that in which the hands of a watch revolve, or it may revolve in the opposite direction. The following convention (see Art. 36) has been adopted for the sake of distinguishing these two opposite directions:

When the turning line revolves in a counter-clockwise direction, the angles described are said to be positive, and are given the plus sign; when the turning line revolves in a clockwise direction, the angles described are said to be negative, and are given the minus sign.

Thus, for example, Fig. 34 represents the angles $+60^{\circ}$, -300° ; further, this figure represents the angles $60^{\circ} \pm n \cdot 360^{\circ}$, in which n denotes any whole number. The angle -300° is included in these angles, for, on putting -1 for n, there is obtained $60^{\circ}-360^{\circ}$, i.e. -300° . (Negative angles are also unlimited in magnitude.)

As in the case of lines, the sign of an angle can be denoted by the order of the letters used in naming the angle. Thus XOQ denotes the angle formed by revolving OX toward OQ, and QOX denotes the angle formed by revolving OQ toward OX. Accordingly, QOX = -XOQ.

Quadrants. In Fig. 32, XOY, YOX_1 , X_1OY_1 , Y_1OX , are called the first, second, third, and fourth quadrants, respectively. When the turning line ceases its revolution at some position between OX and OY, the angle described is said to be an angle in the first quadrant; when the final position of the turning line is between OY and OX_1 , the angle described is said to be in the second quadrant; and so on for the third and fourth quadrants.

For example, the angles 30° , -345° , 395° , 725° are all in the first quadrant; the angles -60° , 340° , 710° are all in the fourth quadrant; the angle -225° is in the second quadrant, and the angle 225° is in the third quadrant,

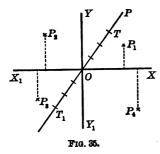
Note. While all acute angles are in the first quadrant, all angles which are in the first quadrant are not acute.

EXAMPLES.

Note. When it is necessary, the number of revolutions and their direction may be indicated on the figure in the manner shown in Fig. 34.

Lay off the following angles with the protractor: In the case of each angle name the least positive angle that has the same terminal line. Name the quadrants in which the angles are situated. In the case of each angle name the four smallest positive angles that have the same terminal line.

- 1. 137°, 785°, 321°, 930°, 840°, 1060°, 1720°, 543°, 3657°.
- **2.** -240° , -337° , -967° , -830° , -750° , -1050° , -7283° .
- 3. $-47^{\circ} + 230^{\circ} + 37^{\circ}$, $420^{\circ} 470^{\circ} + 210^{\circ} 150^{\circ}$, $230^{\circ} 47^{\circ} + 37^{\circ}$, $230^{\circ} + 37^{\circ} 47^{\circ}$.
- 38. Supplement and complement of an angle. The supplement of an angle is that angle which must be added to it in order to make two right angles, or 180°; the complement of an angle is that angle which must be added to it in order to make one right angle, or 90°. Thus, if A be any angle, then


supplement of angle $A = 180^{\circ} - A$, complement of angle $A = 90^{\circ} - A$.

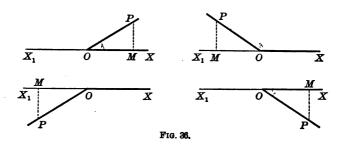
EXAMPLES.

1. What are the complements and supplements of 40°, 227°, - 40°?

complement of
$$40^{\circ} = 90^{\circ} - 40^{\circ} = 50^{\circ}$$
; supplement of $40^{\circ} = 180^{\circ} - 40^{\circ} = 140^{\circ}$. complement of $227^{\circ} = 90^{\circ} - 227^{\circ} = -137^{\circ}$; supplement of $227^{\circ} = 180^{\circ} - 227^{\circ} = -47^{\circ}$. complement of $-40^{\circ} = 90^{\circ} - (-40^{\circ}) = 130^{\circ}$; supplement of $-40^{\circ} = 180^{\circ} - (-40^{\circ}) = 220^{\circ}$.

- 2. By means of a figure verify the results obtained in Ex. 1.
- 3. What are the complements of -230° , 150° , -40° , 340° , 75° , 83° , 12° , -295° , -324° , 200° , 240° , -110° , -167° ?
 - 4. What are the supplements of the angles in Ex. 3?
 - 5. Verify the results in (3), (4), by drawing figures.
- 39. The convention of signs on a plane. Articles 36, 37 contain statements of the conventions adopted regarding the algebraic

signs to be given to distances measured on parallel straight lines, and to angles described by the revolution of a turning line. A figure, such as Figs. 32, 35, will be frequently used in the articles that follow. In this figure, OX is the initial line, the turning line revolves about O, and YOY_1 is at right angles to X_1OX . The following convention has been adopted regarding the lines which will be used:


Horizontal lines measured in the direction of X are taken positively; Horizontal lines measured in the direction of X_1 are taken negatively; Vertical lines measured upward are taken positively; Vertical lines measured downward are taken negatively.

The distance of points, such as P_1 , P_2 , P_3 , P_4 , from X_1X , is always measured from X_1X toward the points.

Any turning line (or oblique line) as OP is measured positively

from O toward the end of the turning line which lies in the direction of X from O when the turning line coincides with the initial line. Thus a distance + 3 on OP will terminate at T, distant 3 units from O, and a distance - 3 on OP will terminate at T_1 , distant 3 units from O, but in the direction opposite to the former. This is sometimes briefly expressed in the words: the turning line carries its positive direction with it in its revolution.

40. General definition of the trigonometric ratios. The remarks in this article apply to each of the four figures below. In each figure, O is the point about which the angle is described, OX is the initial line, and OP is the terminal line. The first figure represents any angle in the first quadrant; the second figure represents any angle in the second quadrant; the third figure, any angle in the third quadrant; and the fourth figure, any angle in the fourth quadrant. In each figure the angle will be called A.

Let P be any point in OP, the terminal line of any angle A. From P draw PM at right angles to the initial line OX, or to the initial line produced in the negative direction. In each figure, OM is the distance measured along X_1OX from the point O to the foot of the perpendicular MP, and MP is the distance from X_1OX to the point P. Following are the definitions of the trigonometric ratios; these definitions apply to the angles represented in Fig. 36, and, accordingly, to all angles whatsoever. [Particular attention should be paid to the order of the letters used in naming the lines, for this order indicates the direction in which the line is measured. See Art. 36.]

The ratio $\frac{MP}{OP}$ is called the sine of the angle A.

The ratio $\frac{OM}{OP}$ is called the *cosine* of the angle A.

The ratio $\frac{MP}{OM}$ is called the tangent of the angle A.

The ratio $\frac{OM}{MP}$ is called the *cotangent* of the angle A.

The ratio $\frac{OP}{OM}$ is called the secant of the angle A.

The ratio $\frac{OP}{MP}$ is called the cosecant of the angle A.

These definitions may be briefly stated:

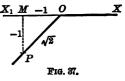
$$\sin A = \frac{MP}{OP} \cdot \qquad \tan A = \frac{MP}{OM} \cdot \qquad \sec A = \frac{OP}{OM} \cdot \\
\cos A = \frac{OM}{OP} \cdot \qquad \cot A = \frac{OM}{MP} \cdot \qquad \csc A = \frac{OP}{MP} \cdot$$
(1)

Inspection will show that the definitions of the trigonometric ratios for acute angles given in Art. 12, are in accordance with these general definitions.

N.B. The *projection* definitions of the trigonometric ratios are given in Note B, Appendix.

41. The algebraic signs of the trigonometric ratios for angles in the different quadrants. Figures 36 show that if the angle A is in the first, second, third, fourth quadrants, then the algebraic sign of MP is +, -, -, -, respectively, and the algebraic sign of OM is +, -, -, +, respectively. As stated in Art. 39, OP is always taken positively. Hence, on paying regard to the algebraic signs of OM, MP, OP, in the several quadrants, it will be seen that the ratios of the angles in these quadrants are positive or negative, as indicated in the following table:

QUADRANT,					I.	II.	III.	IV.
Sine .					+	+	_	
Cosine .					+	_	_	+
Tangent					+	_	+	_
Cotangent					+	_	+	-
Secant .					+	_		+
Cosecant					+	+	1	_


EXAMPLES.

The student is advised to preserve his work on these examples. If he regards his results attentively, he will probably discover some useful facts, and be able to deduce some useful theorems, concerning angles in general. Any preceding results, such as those in Art. 15, may be used as an aid in solving these exercises.

1. Find the ratios of 945°.

$$945^{\circ} = 2 \times 360^{\circ} + 225^{\circ}$$

.. OP, the terminal line of angle 945°, has the position shown in Fig. 37. For this position of the terminal line, OM and MP are both negative. As shown in Art. 15, the lines OM, MP, OP,

in this figure are respectively proportional to 1, 1, $\sqrt{2}$. These are indicated on the figure with their proper algebraic signs. It is immediately apparent that

$$\sin 945^{\circ} = -\frac{1}{\sqrt{2}}, \cos 945^{\circ} = -\frac{1}{\sqrt{2}}, \tan 945^{\circ} = +1, \cot 945^{\circ} = +1,$$

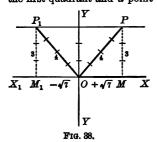
 $\sec 945^{\circ} = -\sqrt{2}, \csc 945^{\circ} = -\sqrt{2}.$

- 2. Construct, and find the ratios of, 420°, 780°, 1140°.
- 3. Construct, and find the ratios of, 120° , 480° , 240° , 600° , -60° , 300° , 660° , -720° .
 - 4. Construct, and find the ratios of, 150°, 410°, 210°, -150°, 330°, -390°.
- 5. Construct, and find the ratios of, 45° , 765° , 135° , -225° , 225° , 585° , -405° , 1035° .
 - 6. Construct, and find the ratios of, -754° , 487° , -245° .
- 7. Compare the ratios of $90^{\circ} 30^{\circ}$, $90^{\circ} 60^{\circ}$, $90^{\circ} 45^{\circ}$, $90^{\circ} 135^{\circ}$, $90^{\circ} 240^{\circ}$, $90^{\circ} 300^{\circ}$, with the ratios of 30° , 60° , 45° , 135° , 240° , 300° , respectively.

- 8. Compare the ratios of $90^{\circ} + 30^{\circ}$, $90^{\circ} + 60^{\circ}$, $90^{\circ} + 45^{\circ}$, $90^{\circ} + 135^{\circ}$, $90^{\circ} + 240^{\circ}$, $90^{\circ} + 300^{\circ}$, with the ratios of 30° , 60° , 45° , 135° , 240° , 300° , respectively.
- **9.** Compare the ratios of $180^{\circ} 30^{\circ}$, $180^{\circ} 60^{\circ}$, $180^{\circ} 45^{\circ}$, $180^{\circ} 135^{\circ}$, $180^{\circ} 240^{\circ}$, $180^{\circ} 300^{\circ}$, with the ratios of 30° , 60° , 45° , 135° , 240° , 300° , respectively. So, also, the ratios of -30° , -60° , -45° , etc.
- 10. Are any general relations indicated by the results of Exs. 7, 8, 9? If so, state these relations. Try to prove them.
- 42. To represent the angles geometrically when the ratios are given. In constructing the angles in this article it is necessary to bear in mind that, according to the definitions given in Art. 40:

When MP is positive, it can be drawn in the first and second quadrants;

When MP is negative, it can be drawn in the third and fourth quadrants;

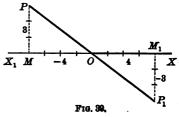

When OM is positive, it is to be drawn in the direction OX;

When OM is negative, it is to be drawn in the direction OX_1 ;

and OP is to be taken positively.

EXAMPLES.

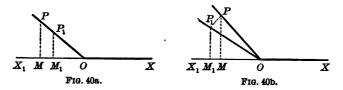
1. Represent by a figure the angles which have sines equal to $\frac{5}{4}$. Calculate their other ratios. Let A denote an angle whose sine is $\frac{5}{4}$; i.e. let $\sin A = \frac{5}{4}$. But $\sin A = \frac{MP}{OP}$ (Art. 40). Hence, MP:OP=3:4; and if OP=4, then MP=3. Now, MP can be drawn positively in both the first and second quadrants. Hence the problem amounts to finding a point in the first quadrant and a point in the second quadrant, each at a distance 4


from O and a distance 3 from X_1OX . The result is indicated in Fig. 38. The student can make the construction for himself. The angles having sines equal to $\frac{3}{4}$, accordingly, include all the angles which have OP for a terminal line, and all the angles which have OP_1 for a terminal line. By Art. 37 each of these two sets of angles consists of an infinite number of angles, any two of which differ from one another by a whole number, positive or negative, of complete

revolutions. A general algebraic expression which includes all these angles, is deduced in Art. 85.

Figure 38 shows that for angles having OP for a terminal line, cosine is $\frac{\sqrt{7}}{4}$, tangent is $\frac{3}{\sqrt{r}}$, etc.; and that for angles having OP_1 for a terminal line, cosine is $\frac{-\sqrt{7}}{4}$, tangent is $-\frac{3}{4}$, etc. Since the given sine is positive, it is apparent that the angles required, must be in the first and second quadrants. (See Art. 41.)

2. Represent by a figure all the angles which have tangents equal to $-\frac{3}{4}$. Let A denote an angle whose tangent is $-\frac{3}{4}$; i.e. let $\tan A = -\frac{3}{4}$. This may be written, $\frac{+3}{-4}$ or $\frac{-3}{+4}$. But $A = \frac{MP}{OM}$ (Art. 40). Hence, if MP = 3, then OM = -4, and if MP = -3, then OM = 4. When MP is


positive and OM is negative, OP can lie only in the second quadrant. When MP is negative and OM is positive, OP can lie only in the fourth quadrant. Figure 39 represents the angles. The student can make the construction for himself. Thus, the angles whose tangents are equal to - 1, consist of the set of angles, infinite in number, which

have OP for a terminal line, and the set of angles, infinite in number, which have OP_1 for a terminal line.

- 3. Calculate the other ratios of the angles in Ex. 2.
- 4. Represent geometrically all the angles whose cosine is 3. Calculate their other ratios.
 - 5. So, also, when the cosine is $-\frac{3}{4}$.
 - 6. So, also, when the tangent is $\frac{4}{3}$. Note. $\frac{4}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3}$
 - 7. So, also, when the sine is $-\frac{2}{3}$.
 - 8. So, also, when the secant is \$.
 - 9. So, also, when the secant is $-\frac{4}{3}$.
 - 10. So, also, when the cosecant is -2; 7.
- N.B. The student is now strongly recommended to delay the reading of the next article until after he has reviewed the properties stated in Art. 13, and, if possible, determined what are the correct corresponding statements for angles in general.
- 43. Connection between angles and the trigonometric ratios. the same terminal position of the revolving line OP each of the ratios, $\frac{MP}{QR}$, etc., in (1) Art. 40, is always the same, no matter

where the point P is taken on the revolving line. Thus, for example, let any other point P_1 (Fig. 40 a) be taken on the ter-

minal line, and let P_1M_1 be drawn perpendicular to X_1OX . Then $\frac{MP}{OP} = \frac{M_1P_1}{OP_1}$. That is, the sine of any angle whose terminal line is OP, has a fixed definite value. The same can be shown for the other ratios. Hence, as already shown in Art. 13 for angles between 0° and 90° ,

(1) To each angle there corresponds but one value of each trigonometric ratio.

Now let OP revolve a little from OP into the position OP_1 (Fig. 40 b). For convenience keep OP_1 equal to OP. Draw P_1M_1 at right angles to X_1OX . Then,

the sine of the angle whose terminal line is $OP = \frac{MP}{OP}$,

and the sine of the angle whose terminal line is $OP_1 = \frac{M_1 P_1}{OP_1}$.

Since M_1P_1 is not equal to MP, it follows that these two sines are unequal. Hence, the sine of an angle changes when the angle changes. The same can be shown for the other ratios. Hence,

(2) The ratios of an angle change when the angle changes.

The variation in the ratios as the angle increases, is discussed in Art. 77.

Ex. 1. In the above, OP_1 is taken equal to OP. Why does this not affect the generality of the deduction?

Ex. 2. Trace the changes in the trigonometric ratios as the turning line revolves from 0° to 360° . Compare your results with those of Art. 15 C, and those given in the table at the end of Art. 77.

It has been shown in Art. 37 that an infinite number of angles have the same terminal line. It follows that in each of the

figures in Art. 40, $\frac{MP}{OP}$ is the sine of an infinite number of angles.

The same is true in the case of the other ratios. Moreover, the geometrical solutions in Art. 42 show that there are two sets of angles corresponding to each given ratio, and that each set is infinite in number, and has a particular terminal line. Hence,

(3) To each value of a trigonometric ratio there corresponds an infinite number of angles.

Note. The student will see, by turning to Arts. 84-87, that all angles which have the same sine, can be given in a simple formula, and that the same fact is true in the case of each of the other ratios. The deduction of these formulas, while easily possible at this place, is postponed in order to permit the early completion of the solution of triangles.

44. Relations between the trigonometric ratios of an angle. The relations between the trigonometric ratios of an acute angle were set forth in Art. 18. It will now be shown that these relations also hold for the ratios of any angle.

A. Inspection of the definitions (1), Art. 40, shows the reciprocal relations, namely:

$$\sin A \csc A = 1$$
; $\cos A \sec A = 1$; $\tan A \cot A = 1$. (1)

B. In each of the figures in Art. 40,

$$\tan A = \frac{MP}{OM} = \frac{\frac{MP}{OP}}{\frac{OM}{OP}} = \frac{\sin A}{\cos A}; \cot A = \frac{OM}{MP} = \frac{\frac{OM}{OP}}{\frac{MP}{OP}} = \frac{\cos A}{\sin A}.$$
 (2)

C. In each of the figures in Art. 40,

$$\overline{MP}^2 + \overline{OM}^2 = \overline{OP}^2.$$

On dividing both members of this equation by \overline{OP}^2 , \overline{OM}^2 , \overline{MP}^2 , in turn, and following the same process as that adopted in Art. 18, it results that

$$\sin^2 A + \cos^2 A = 1$$
; $\sec^2 A = 1 + \tan^2 A$; $\csc^2 A = 1 + \cot^2 A$. (3)

From the first of relations (3) it follows that

$$\cos A = \pm \sqrt{1 - \sin^2 A}.$$

This shows that, corresponding to a given sine, there are two cosines which are numerically equal, and opposite in algebraic sign. Ex. 1, Art. 42, illustrates this. This is also manifest in the table of signs in Art. 41. As indicated in this table, the sine is positive in the first and second quadrants, and then the cosine is positive and negative, respectively; the sine is negative in the third and fourth quadrants, and then the cosine is negative and positive, respectively. The signs of the remaining ratios corresponding to a given sine will be apparent on a short geometrical inspection, or by a glance at this table of signs. When any single ratio is given, there is an ambiguity as to the signs of some of the other ratios. Thus, to take another instance, it follows from the second of (3) that

$$\tan A = \pm \sqrt{\sec^2 A - 1}.$$

The secant of A is positive in the first and fourth quadrants, and then the tangent is positive and negative respectively; the secant of A is negative in the second and third quadrants, and then the tangent is negative and positive respectively. The double sign which appears in these relations was referred to in the examples, Art. 18. The student is advised to review and work the examples, for angles in general, in Art. 18.

EXAMPLES.

1. Given that $\sin A = \frac{3}{4}$; find the other ratios of A by means of the relations shown in this article.

[In Ex. 1, Art. 42, this problem is solved geometrically; here it will be solved algebraically.]

$$\cos A = \pm \sqrt{1 - \sin^2 A} = \frac{\pm \sqrt{7}}{4}; \quad \sec A = \frac{1}{\cos A} = \frac{4}{\pm \sqrt{7}};$$

$$\operatorname{cosec} A = \frac{1}{\sin A} = \frac{4}{3}; \quad \tan A = \frac{\sin A}{\cos A} = \frac{3}{+\sqrt{7}}; \quad \cot A = \frac{1}{\tan A} = \frac{\pm \sqrt{7}}{3}.$$

Since the given sine is positive, the corresponding angles are in the first and second quadrants. Hence the double values of the calculated ratios are paired as follows:

$\sin A$	$\cos A$	tan A	$\cot A$	$\sec A$	$\cos ec A$
3	$+\sqrt{7}$	3_	$\sqrt{7}$	4	4
4	4	$\sqrt{7}$	3	$\sqrt{7}$	8
3	$\frac{-\sqrt{7}}{}$	3_	$-\sqrt{7}$	4	4
4	4	$\sqrt{7}$	3	$\sqrt{7}$	3

Find the other ratios algebraically, and verify the results geometrically, when:

2.
$$\cos A = -\frac{2}{3}$$
. 3. $\tan A = \frac{5}{7}$. 4. $\sec A = 4$. 5. $\csc A = -5$.

6.
$$\sin A = -\frac{1}{2}$$
. 7. $\cos A = \frac{4}{2}$. 8. $\tan A = -3$. 9. $\cot A = \frac{2}{3}$.

Find the other ratios algebraically, and verify the results geometrically, when angle A satisfies the following pairs of conditions:

10.
$$\sin A = \frac{1}{2}$$
 and $\tan A = -\frac{1}{\sqrt{3}}$. 11. $\tan A = \sqrt{3}$ and $\sec A = -2$.

12.
$$\cos A = -\frac{2}{3}$$
 and $\sin A = +\frac{\sqrt{5}}{3}$. 13. $\sin A = -\frac{2}{5}$ and $\tan A = \frac{2}{3}$.

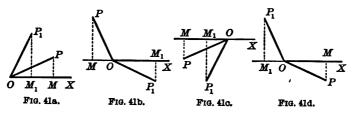
Give a geometrical solution of the following trigonometric equations:

14.
$$\sin A = \frac{2}{3}$$
. 15. $\cos A = -\frac{2}{3}$. 16. $\tan A = 4$. 17. $\sec A = 5$.

Name the four least angles, and also the four least positive angles, that satisfy the equations:

18.
$$\sin \theta = \frac{1}{\sqrt{2}}$$
 19. $\tan \theta = \sqrt{3}$. **20.** $\cos \theta = -\frac{1}{\sqrt{2}}$ **21.** $\cot \theta = -\sqrt{3}$.

45. Ratios of $90^{\circ} - A$, $180^{\circ} - A$, $90^{\circ} + A$, -A, compared with the ratios of A, A being any angle. The student may have suspected, from Exs. 7-10, Art. 41, that there is a close connection between the ratios of an angle A on the one hand, and the ratios of the angle -A and of angles differing from A and -A by multiples of 90° , on the other. He may have discovered already what the connection is. This connection, which is set forth in this article, is interesting in the study of angles, and has an important bearing on the construction of trigonometric tables, and on the solution of triangles.


In each figure in this article OP is the terminal line of the angle A, and OP_1 is the terminal line of the related angle which is under consideration; for the purpose of easy comparison, OP_1 is always taken equal to OP; MP, M_1P_1 , are the perpendiculars drawn from the initial line to P, P_1 , respectively. The deductions

made in the simplest case, namely, when A is an angle in the first quadrant, are true for all angles. The student is advised to consider only the simplest case, when first he considers the subject of this article, and then to draw the figures and make the deductions for himself, in the cases in which angle A is in the second, third, and fourth quadrants, respectively.

Note. A compound angle, $90^{\circ} - A$, for instance, can be described by revolving the turning line *forward* through 90° , and then *backward* through an angle equal to A; or, these steps may be taken in a reverse order, namely, by revolving the turning line *backward* through an angle equal to A, and then *forward* through 90° . Similarly, for the compound angles $90^{\circ} + A$, $180^{\circ} \pm A$, etc.

For the sake of clearness of construction, it is better not to take the terminal line of A nearly midway between X_1OX and Y_1OY .

A. Ratios of $90^{\circ} - A$. Describe the angles A, $90^{\circ} - A$. Let OP, OP_{1} , be the terminal lines of A, $90^{\circ} - A$, respectively. In Figs.

41 a, 41 b, 41 c, 41 d, A is an angle in the first, second, third, and fourth quadrants, respectively.

Take OP_1 equal to OP, and draw MP, M_1P_1 , at right angles to the initial line. In the triangles M_1OP_1 , MOP, (in each figure) the angles at M_1 , M, are right angles, angle M_1OP_1 = angle OPM, and $OP_1 = OP$. Hence these two triangles are equal, and

$$OM_1 = MP$$
, $M_1P_1 = OM$.

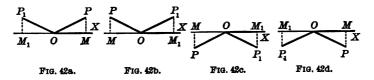
The figures also show that, for A in each quadrant, OM_1 , MP have the same algebraic sign, and M_1P_1 , OM have the same sign. Hence, for all angles A,

$$\sin (90^{\circ} - A) = \frac{M_1 P_1}{O P_1} = \frac{OM}{OP} = \cos A;$$

 $\cos (90^{\circ} - A) = \frac{OM_1}{OP} = \frac{MP}{OP} = \sin A;$

$$\tan (90^{\circ} - A) = \frac{M_{1}P_{1}}{OM_{1}} = \frac{OM}{MP} = \cot A;$$

$$\cot (90^{\circ} - A) = \frac{OM_{1}}{M_{1}P_{1}} = \frac{MP}{OM} = \tan A;$$

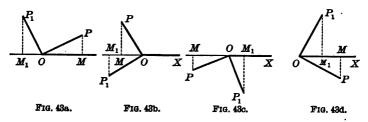

$$\sec (90^{\circ} - A) = \frac{OP_{1}}{OM_{1}} = \frac{OP}{MP} = \csc A;$$

$$\csc (90^{\circ} - A) = \frac{O_{1}P_{1}}{MP_{1}} = \frac{OP}{OM} = \sec A.$$

Hence, the ratio of any angle is the same as the co-ratio of its complement. Compare with Art. 16. The relations for tangent, secant, cotangent, cosecant, can also be deduced from those of sine and cosine by means of Art. 44 (1), (2). Thus, for example,

$$\tan (90^{\circ} - A) = \frac{\sin (90^{\circ} - A)}{\cos (90^{\circ} - A)} = \frac{\cos A}{\sin A} = \cot A.$$

B. Ratios of $180^{\circ} - A$. Describe the angles A, $180^{\circ} - A$. Let OP, OP_1 be the terminal lines of A and $180^{\circ} - A$ respectively. In Figs. 42a, 42b, 42c, 42d, A is an angle in the first, second, third, fourth quadrants, respectively. Take OP_1 equal to OP, and draw MP, M_1P_1 , at right angles to the initial line. In the two triangles OM_1P_1 , OMP, in each figure, the angles at M_1 , M, are


right angles, angle M_1OP_1 = angle MOP, OP_1 = OP. Hence, $OM_1 = OM$, and $M_1P_1 = MP$. In each figure, OM_1 , OM have opposite algebraic signs, and M_1P_1 , MP, have the same sign. Hence, for all angles A,

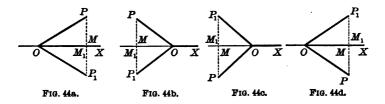
$$\sin (180^{\circ} - A) = \frac{M_1 P_1}{O P_1} = \frac{M P}{O P} = \sin A;$$
 $\cos (180^{\circ} - A) = \frac{O M_1}{O P_1} = \frac{-O M}{O P} = -\cos A.$

So also, $\tan (180^{\circ} - A) = -\tan A$; $\cot (180^{\circ} - A) = -\cot A$; $\sec (180^{\circ} - A) = -\sec A$; $\csc (180^{\circ} - A) = \csc A$.

The last four relations can be deduced by means of the figures, or by means of relations (1), (2), Art. 44. Hence, any ratio of an angle is equal in magnitude to the same ratio of its supplement; the sines of supplementary angles have the same algebraic sign, and so have the cosecants; the other ratios of supplementary angles have opposite signs.

C. Ratios of $90^{\circ} + A$. Describe the angles A, $90^{\circ} + A$. Let OP, OP_1 , be the terminal lines of A, $90^{\circ} + A$, respectively. In Figs. 43 a, b, c, d, A is an angle in the first, second, third, fourth quadrants, respectively. Take $OP_1 = OP$, and draw MP, M_1P_1 , at right angles to the initial line. In the two triangles, OM_1P_1 , OMP, (in each figure) the angles at M_1 , M, are right angles,

angle $M_1OP_1 = \text{angle } OPM$, $OP_1 = OP$. Hence, $M_1P_1 = OM$, and $OM_1 = MP$. In each figure M_1P_1 , OM, have the same algebraic signs, and OM_1 , MP, have opposite signs. Hence, for all angles A,


$$\sin (90^{\circ} + A) = \frac{M_1 P_1}{OP} = \frac{OM}{OP} = \cos A;$$

 $\cos (90^{\circ} + A) = \frac{OM_1}{OP_1} = -\frac{MP}{OP} = -\sin A.$

So also,
$$\tan (90^{\circ} + A) = -\cot A$$
; $\cot (90^{\circ} + A) = -\tan A$; $\sec (90^{\circ} + A) = -\csc A$; $\csc (90^{\circ} + A) = \sec A$.

These four relations can be deduced from the figures, or by means of (1), (2), Art. 44.

D. Ratios of -A. Describe the angles A, -A. Let OP, OP_{1} , be the terminal lines of A, -A, respectively. In Figs. 44 a,

b, c, d, A is in the first, second, third, fourth quadrants, respectively. Take $OP_1 = OP$, and draw PM, P_1M_1 , at right angles to the initial line. In the two triangles, OM_1P_1 , OMP, (in each figure) the angles at M_1 , M, are right, angle $M_1OP_1 = \text{angle } MOP$,

 $OP_1 = OP$. Hence, $M_1P_1 = MP$, $OM = OM_1$. In each figure, OM_1 , OM, have the same sign, and M_1P_1 , MP, have opposite signs. Hence, for all angles A,

$$\sin (-A) = \frac{M_1 P_1}{O P_1} = -\frac{M P}{O P} = -\sin A;$$

$$\cos (-A) = \frac{O M_1}{O P_2} = \frac{O M}{O P} = \cos A.$$

So also,
$$\tan (-A) = -\tan A$$
; $\cot (-A) = -\cot A$;
 $\sec (-A) = \sec A$; $\csc (-A) = -\csc A$.

The last four relations can be deduced from the figures, or by means of (1), (2), Art. 44.

Ex. 1. Show that
$$\sin (180^{\circ} + A) = -\sin A$$
, $\cos (180^{\circ} + A) = -\cos A$, $\tan (180^{\circ} + A) = \tan A$, etc.,

when A denotes an angle in any one of the four quadrants.

Ex. 2. Deduce the relations between each of the following angles and angle A, viz. $270^{\circ} - A$, $270^{\circ} + A$, $360^{\circ} - A$, $360^{\circ} + A$, $n \cdot 360^{\circ} + A$,

By means of the relations shown in this article, the ratios of any angle can be expressed in terms of the ratios of an angle between 0° and 45°. Thus, for example,

$$\sin 700^{\circ} = \sin (360^{\circ} + 340^{\circ}) = \sin 340^{\circ} = \sin (-20^{\circ}) = -\sin 20^{\circ};$$

$$\tan 975^{\circ} = \tan (2 \cdot 360^{\circ} + 255^{\circ}) = \tan 255^{\circ} = \tan (180^{\circ} + 75^{\circ})$$

$$= \tan 75^{\circ} = \cot 15^{\circ};$$

$$\csc (-1160^{\circ}) = -\csc 1160^{\circ} = -\csc (3 \cdot 360^{\circ} + 80^{\circ})$$

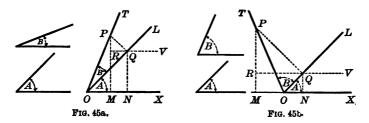
$$= -\csc 80^{\circ} = -\sec 10^{\circ}.$$

$$\therefore \sin 700^{\circ} = -.34202; \tan 975^{\circ} = 3.7321;$$

$$\csc (1160^{\circ}) = -\sec 10^{\circ} = \frac{-1}{\cos 10^{\circ}} = \frac{-1}{.98481} = -1.015.$$

This property, and the property that the ratio of an angle is the co-ratio of its complement, account for the arrangement and extent of the trigonometric tables.

EXAMPLES.


- 1. Express the ratios of the angles in Exs. 1-7, Art. 41, in terms of ratios of angles between 0° and 45° . Also find the ratios.
 - 2. Do likewise for the angles in Exs. 1, 3, Art. 38. Also find the ratios.
 - 8. Do likewise for the angles in Exs. 1, 2, 3, Art. 37. Also find the ratios.
- N.B. Questions and exercises suitable for practice and review on the subject-matter of Chap. V. will be found at page 186.

CHAPTER VI.

TRIGONOMETRIC RATIOS OF THE SUM AND DIFFERENCE OF TWO ANGLES.

- **N.B.** Another way of making the derivations shown in Arts. 46-48 is given in Note B of the Appendix. The method of projection, as it is called, used in Note B, is preferred by many.
- 46. Derivation of the sine and cosine of the sum of two angles when each of the angles is less than a right angle. In this article and the following one, careful regard must be paid to the directions in which lines and angles are measured, and to the order of the letters used in measuring them. See Arts. 36, 37, 40.

To deduce $\sin (A + B)$ and $\cos (A + B)$. Let A and B be two angles each of which is less than a right angle. Let the turning line revolve from the initial line OX, and about O describe the

angle XOL equal to A, and then revolve forward from the position OL and describe the angle LOT equal to B. Thus, angle XOT = A + B. [In Fig. 45 a, A + B is less than 90°; in Fig. 45 b, A + B is greater than 90°.] Take any point P on OT, the terminal line of the angle (A + B), and draw PQ at right angles to OL, the terminal line of the angle A. From P, Q, draw PM, QN, at right angles to the initial line; and through Q draw VQR parallel to OX and intersecting MP in R.

$$\sin (A + B) = \sin XOP = \frac{MP}{OP} = \frac{NQ + RP}{OP} = \frac{NQ}{OP} + \frac{RP}{OP}$$

$$= \frac{OQ \sin A}{OP} + \frac{QP \sin VQP}{OP}. \quad \text{(Definitions, Art. 40.)}$$

Now, by definitions in Art. 40, and by Art. 45,

$$\frac{OQ}{OP} = \cos QOP = \cos B; \quad \frac{QP}{OP} = \sin QOP = \sin B;$$

$$\sin VQP = \sin (180^{\circ} - PQR) = \sin PQR$$

$$= \cos RQO = \cos XOQ = \cos A.$$

$$\therefore \sin (A + B) = \sin A \cos B + \cos A \sin B. \tag{1}$$

$$\cos (A + B) = \cos XOP = \frac{OM}{OP} = \frac{ON - RQ}{OP}$$

$$= \frac{ON + QR}{OP} = \frac{ON}{OP} + \frac{QR}{OP}$$

$$= \frac{OQ \cos A}{OP} + \frac{QP \cos VQP}{OP}.$$
(Definitions, Art. 40.)

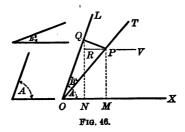
Now, by definitions in Art. 40, and by Art. 45,

$$\frac{OQ}{OP} = \cos B; \frac{QP}{OP} = \sin B;$$

 $\cos VQP = \cos (180^{\circ} - PQR) = -\cos PQR = -\sin RQO = -\sin A.$

$$\therefore \cos(\mathbf{A} + \mathbf{B}) = \cos \mathbf{A} \cos \mathbf{B} - \sin \mathbf{A} \sin \mathbf{B}. \tag{2}$$

EXAMPLES.


1. $\sin 75^\circ = \sin (30^\circ + 45^\circ) = \sin 30^\circ \cos 45^\circ + \cos 30^\circ \sin 45^\circ$ $= \frac{1}{2} \cdot \frac{1}{\sqrt{3}} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} = \frac{1 + \sqrt{3}}{2\sqrt{2}}.$

$$2\sqrt{2}$$
 $2\sqrt{2}$ $2\sqrt{2}$

- 2. Find $\cos 75^{\circ}$ by putting $30^{\circ} + 45^{\circ}$ for 75° and using formula (2).
- 3. Deduce the sine and cosine of 15° from the results in Exs. 1, 2.

- 4. Find $\sin 90^\circ$, $\cos 90^\circ$, by putting $90^\circ = 30^\circ + 60^\circ$. Also by putting $90^\circ = 45^\circ + 45^\circ$. Also by putting $90^\circ = 75^\circ + 15^\circ$.
- 5. Find $\sin 120^\circ$, $\cos 120^\circ$, by putting $120^\circ = 60^\circ + 60^\circ$; $120^\circ = 90^\circ + 30^\circ$; $120^\circ = 75^\circ + 45^\circ$.
 - 6. Find $\sin 150^{\circ}$, $\cos 150^{\circ}$, by putting $150^{\circ} = 75^{\circ} + 75^{\circ}$; $150^{\circ} = 90^{\circ} + 60^{\circ}$.
 - 7. Find $\sin 135^{\circ}$, $\cos 135^{\circ}$, by putting $135^{\circ} = 75^{\circ} + 60^{\circ}$; $135^{\circ} = 90^{\circ} + 45^{\circ}$.
- 8. Given $\sin x = \frac{1}{4}$, $\sin y = \frac{2}{5}$, x and y both in the first quadrant; find $\sin (x + y)$, $\cos (x + y)$.
- 47. Derivation of the sine and cosine of the difference of two angles when each of the angles is less than a right angle. The construction and derivation are very similar to that made in the preceding article.

To deduce $\sin(A - B)$ and $\cos(A - B)$. Let A and B be two angles each of which is less than a right angle, and let A be the greater. Let the turning line revolve from the initial line OX,

and about O describe the angle XOL equal to A, and then revolve backward from the position OL and describe the angle LOT equal to -B. Then angle XOT = A - B. Take any point P on OT, the terminal line of the angle (A - B), and draw PQ at right angles to OL, the terminal line of the angle A. From P, Q, draw PM, QN, at right angles to the initial line; and through P draw RPV parallel to OX and intersecting NQ in R.

$$\sin (A - B) = \sin XOP = \frac{MP}{OP} = \frac{NQ - RQ}{OP} = \frac{NQ}{OP} - \frac{RQ}{OP}$$
$$= \frac{OQ \sin A}{OP} - \frac{PQ \sin VPQ}{OP}. \quad \text{(Definitions, Art. 40.)}$$

Now, by definitions in Art. 40, and by Art. 45,

$$\frac{OQ}{OP} = \cos QOP = \cos (-B) = \cos B;$$

$$-\frac{PQ}{OP} = \frac{QP}{OP} = \sin QOP = \sin (-B) = -\sin B;$$

$$\sin VPQ = \sin (180^{\circ} - QPR) = \sin QPR = \cos RQP = \cos A.$$

$$\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B. \tag{3}$$

$$\begin{split} \cos{(A-B)} &= \cos{XOP} = \frac{OM}{OP} = \frac{ON + RP}{OP} = \frac{ON}{OP} - \frac{PR}{OP} \\ &= \frac{OQ\cos{A}}{OP} - \frac{PQ\cos{VPQ}}{OP}. \quad \text{(Definitions, Art. 40.)} \end{split}$$

Now, by definitions in Art. 40, and by Art. 45,

$$\frac{OQ}{OP} = \cos B$$
, and $-\frac{PQ}{OP} = -\sin B$, as shown above;

$$\cos VPQ = \cos (180^{\circ} - QPR) = -\cos QPR = -\sin RQP = -\sin A.$$

$$\therefore \cos(A - B) = \cos A \cos B + \sin A \sin B. \tag{4}$$

If B is greater than A, then the formula,

$$\sin(B-A) = \sin B \cos A - \cos B \sin A,$$

can be deduced as above. Since

$$\sin\left(A-B\right)=-\sin\left(B-A\right),$$

then

$$\sin (A - B) = \sin A \cos B - \cos A \sin B.$$

It is shown in Art. 48 that the formulas (1), (2), (3), (4), are true for all values of A and B. These formulas are called the addition and subtraction formulas or theorems in trigonometry. They are of such great importance, and so many thorems can be deduced by means of them, that they are called the fundamental formulas of trigonometry.* They should be memorized.

Note. Arts. 48, 49, may be omitted, if deemed advisable, until after the solution of triangles is completed. Art. 48 can also be shown geometrically.

^{*}Adrian Romanus (1561-1625), professor of mathematics and medicine at the University of Louvain, was the first to prove the formula for $\sin(A+B)$. The formulas for $\cos(A\pm B)$ and $\sin(A-B)$ were given by Pitiscus (1561-1613), a German mathematician and astronomer, in his Trigonometry published in 1595.

EXAMPLES.

- 1. Derive $\sin 15^{\circ}$, $\cos 15^{\circ}$, on putting $60^{\circ} 45^{\circ}$ for 15° .
- 2. Derive $\sin 15^\circ$, $\cos 15^\circ$, on putting $45^\circ 30^\circ$ for 15° .
- 3. Find sin (x-y), cos (x-y) in the cases in Ex. 8, Art. 46.
- 48. Proof of addition and subtraction formulas for all values of A and B. These formulas have been proved in Arts. 46, 47, for values of A and B which are less than a right angle. In Art. 45 c it has been shown that for any angle, say X,

$$\cos X = \sin (90^{\circ} + X), \sin X = -\cos (90^{\circ} + X).$$

Hence,
$$\cos A = \sin(90^{\circ} + A)$$
, $\sin A = -\cos(90^{\circ} + A)$,

$$\cos(A+B) = \sin(90^{\circ} + A + B), \sin(A+B) = -\cos(90^{\circ} + A + B).$$

The substitution of these values for $\cos A$, $\sin A$, $\cos (A + B)$, $\sin (A + B)$, in (1), Art. 46, gives

$$-\cos(90^{\circ}+A+B) = -\cos(90^{\circ}+A)\cos B + \sin(90^{\circ}+A)\sin B;$$

$$\therefore \cos(90^{\circ} + A + B) = \cos(90^{\circ} + A)\cos B - \sin(90^{\circ} + A)\sin B. \quad (1)$$

The substitution of the same values in (2), Art. 46, gives

$$\sin(90^{\circ} + A + B) = \sin(90^{\circ} + A)\cos B + \cos(90^{\circ} + A)\sin B.$$
 (2)

Hence, formulas (1), (2), Art. 46, are true when one of the angles is increased by a right angle. In a similar way, these formulas can be shown to remain true when one of the angles in (1), (2), of this article is increased by a right angle. It is thus evident that the formulas are true, no matter how many right angles are added to either one or both of the angles. It can easily be shown that $\sin A = \cos (A - 90^{\circ})$, $\cos A = -\sin (A - 90^{\circ})$. Then, in the same way as that just employed, it can be shown that the formulas (1), (2), Art. 46, hold when either one or both of the angles is diminished by integral multiples of 90°. Hence, formulas (1), (2), Art. 46, are true for angles in any quadrant, that is, for all angles. In a similar way, formulas (3), (4), Art. 47, can be shown to be universally true.

- 49. Each fundamental formula contains the others. From any one of the four fundamental formulas, the remaining three can be derived. Thus for example:
 - In (1) Art. 46, change A into $90^{\circ} A$; then

$$\sin (90^{\circ} - A + B) = \sin (90^{\circ} - A) \cos B + \cos (90^{\circ} - A) \sin B.$$

From this,

$$\sin(90^{\circ} - \overline{A - B})$$
, i.e. $\cos(A - B) = \cos A \cos B + \sin A \sin B$.

In (1) Art. 46, change B into (-B); then

$$\sin(A - B) = \sin A \cos(-B) + \cos A \sin(-B)$$

$$= \sin A \cos B - \cos A \sin B.$$

In (1) Art. 46, change A into $(90^{\circ} + A)$; then

$$\sin(90^{\circ} + A + B) = \sin(90^{\circ} + A)\cos B + \cos(90^{\circ} + A)\sin B$$

whence, $\cos(A+B) = \cos A \cos B - \sin A \sin B$.

- Ex. 1. From formula (2), Art. 46, derive the other three fundamental formulas.
 - Ex. 2. So also, from formula (3), Art. 47.
 - Ex. 3. So also, from formula (4), Art. 47.
- 50. Ratio of an angle in terms of the ratios of its half angle. In this article and Arts. 51, 52, a few deductions will be made from the addition and subtraction formulas, which have been shown to be true for all angles. These deductions are necessary for the explanations concerning triangles, as well as useful for other purposes. More ample opportunity will be afforded later for working exercises involving the use of these formulas. The fundamental formulas may be brought together:

$$\sin(\mathbf{A} + \mathbf{B}) = \sin \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B}. \tag{1}$$

$$\sin(\mathbf{A} - \mathbf{B}) = \sin \mathbf{A} \cos \mathbf{B} - \cos \mathbf{A} \sin \mathbf{B}. \tag{2}$$

$$\cos(\mathbf{A} + \mathbf{B}) = \cos \mathbf{A} \cos \mathbf{B} - \sin \mathbf{A} \sin \mathbf{B}. \tag{3}$$

$$\cos(\mathbf{A} - \mathbf{B}) = \cos \mathbf{A} \cos \mathbf{B} + \sin \mathbf{A} \sin \mathbf{B}. \tag{4}$$

(8)

Let B = A; then, from (1),

$$\sin(A+A) = \sin A \cos A + \cos A \sin A;$$

that is,
$$\sin 2 A = 2 \sin A \cos A$$
. (5)

Similarly, from (3),
$$\cos 2A = \cos^2 A - \sin^2 A$$
. (6)

Since $\cos^2 A + \sin^2 A = 1$, it follows that

$$\cos 2 A = 1 - 2 \sin^2 A. \tag{7}$$

and
$$\cos 2A = 2\cos^2 A - 1$$
.

In formulas (1)-(8), A, B, denote any angles whatsoever. These formulas occur so often, and are so useful, that it is well to translate them into words. Thus,

sine sum of any two angles = $\sin first \cdot \cos ine second$ + $\cos ine first \cdot \sin e second$

sine difference of any two angles = $sine first \cdot cosine second$ - $cosine first \cdot sine second$

cosine sum of any two angles = cosine first \cdot cosine second - sine first \cdot sine second

cosine difference of any two angles = cosine first \cdot cosine second + sine first \cdot sine second

Since A is one-half of 2A, formulas (5)–(8) can be translated as follows:

sine any angle = 2 sine half-angle \cdot cosine half-angle, cosine any $angle = (cosine \ half$ -angle)² $- (sine \ half$ -angle)², $= 1 - 2 (sine \ half$ -angle)², $= 2 (cosine \ half$ -angle)² - 1.

EXAMPLES.

1. Find cos 22½° from cos 45°.

2
$$\cos^2 22\frac{1}{2}^\circ = 1 + \cos 45^\circ$$
 by (8);

$$\therefore \cos^2 22\frac{1}{2}^\circ = \frac{1}{2}\left(1 + \frac{1}{\sqrt{2}}\right) = \frac{1 + \sqrt{2}}{2\sqrt{2}} = \frac{1 + 1.4142}{2 \times 1.4142} = .8536;$$

$$\therefore \cos 22\frac{1}{2}^\circ = .9239.$$

2. Express $\cos 4x$ in terms of $\sin x$ and $\cos x$.

 $\cos 4x = 2\cos^2 2x - 1 = 2(2\cos^2 x - 1)^2 - 1 = 8\cos^4 x - 8\cos^2 x + 1.$

- 3. Deduce sin 30°, cos 30°, from cos 60°.
- 4. Deduce sin 75°, cos 75°, from cos 150°. [Logarithms may be helpful.]
- 5. Deduce sin 221°, from cos 45°.
- 6. Deduce sin 15°, cos 15°, from cos 30°.
- 7. Express $\cos 6x$, $\sin 6x$, in terms of ratios of 3x.
- 8. Express $\cos 3x$, $\sin 3x$, in terms of ratios of $\frac{3}{2}x$.
- 9. Express $\sin \frac{x}{4}x$, $\cos \frac{x}{4}x$, in terms of ratios of $\frac{x}{8}x$.
- 10. Express $\cos 6 x$, $\sin 6 x$, in terms of ratios of 12 x.
- 11. Express $\cos 3x$, $\sin 3x$, in terms of ratios of 6x.
- 12. Express $\sin \frac{x}{2}$, $\cos \frac{x}{2}$, in terms of ratios of $\frac{x}{2}$.
- 13. Show that $\sin (n+1)A + \sin (n-1)A = 2 \sin nA \cos A$, and $\cos (n+1)A + \cos (n-1)A = 2 \cos nA \cos A$; and

hence, express $\sin 2 A$, $\cos 2 A$, in terms of $\sin A$, $\cos A$.

51. Tangents of the sum, and difference of two angles, and of twice an angle. Let A, B, be any two angles. It is required to find $\tan (A + B)$ and $\tan (A - B)$.

$$\tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

On dividing each term of the numerator and the denominator of the second member by $\cos A \cos B$, there is obtained

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$
 (1)

In the same way it can be shown that

$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$
 (2)

Formula (2) can also be deduced from (1) by changing B into -B.

If B = A, then (1) becomes

$$\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A} \tag{3}$$

Formulas (1), (2), (3), can be translated into words, as follows:

tangent sum any two angles =
$$\frac{\text{sum of tangents}}{1 - \text{product of tangents}}$$
;

tangent difference any two angles = $\frac{\text{difference of tangents}}{1 + \text{product of tangents}}$;

tangent any angle =
$$\frac{2 \text{ tangent half-angle}}{1 - (\text{tangent half-angle})^2}$$

EXAMPLES.

1.
$$\tan P = 2$$
, $\tan Q = \frac{1}{3}$. Find $\tan (P + Q)$, $\tan (P - Q)$.
 $\tan (P + Q) = \frac{2 + \frac{1}{3}}{1 - 2 \cdot \frac{1}{3}} = 7$; $\tan (P - Q) = \frac{2 - \frac{1}{3}}{1 + 2 \cdot \frac{1}{3}} = 1$.

- 2. Find tan 75° by means of tan 45°, tan 30°.
- 3. Find tan 15° by means of tan 60°, tan 45°.
- 4. Find tan 22½° from tan 45°.
- 5. Find tan 37½° from tan 75°.

6. Derive
$$\cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$
, $\cot 2 A = \frac{\cot^2 A - 1}{2 \cot A}$.

52. Sums and differences of sines and cosines. The set of formulas (1)-(4), Art. 50, can be transformed into two other sets which are very useful. From (1), (2), (3), (4), Art. 50, on addition and subtraction, there is obtained:

$$\sin (A + B) + \sin (A - B) = 2 \sin A \cos B. \tag{1}$$

$$\sin (\mathbf{A} + \mathbf{B}) - \sin (\mathbf{A} - \mathbf{B}) = 2 \cos \mathbf{A} \sin \mathbf{B}. \tag{2}$$

$$\cos (\mathbf{A} + \mathbf{B}) + \cos (\mathbf{A} - \mathbf{B}) = 2 \cos \mathbf{A} \cos \mathbf{B}. \tag{3}$$

$$\cos (A+B) - \cos (A-B) = -2 \sin A \sin B. \tag{4}$$

If
$$A+B=P$$
,

and
$$A-B = Q$$
,

then
$$2 A = P + Q$$
, and $A = \frac{1}{2} (P + Q)$,

$$2B = P - Q$$
, and $B = \frac{1}{2}(P - Q)$.

Substitution of these values of A, B, in (1)-(4) gives

$$\sin P + \sin Q = 2 \sin \frac{P+Q}{2} \cos \frac{P-Q}{2}. \tag{5}$$

$$\sin P - \sin Q = 2 \cos \frac{P+Q}{2} \sin \frac{P-Q}{2}. \tag{6}$$

$$\cos P + \cos Q = 2 \cos \frac{P+Q}{2} \cos \frac{P-Q}{2}. \tag{7}$$

$$\cos P - \cos Q = -2 \sin \frac{P+Q}{2} \sin \frac{P-Q}{2}. \tag{8}$$

Formulas (1)-(4) with the members transposed, are useful for transforming products of sines and cosines into sums and differences; formulas (5) to (8) are useful for transforming sums and differences of sines and cosines into products. These formulas may be translated into words: — Of any two angles,

the sum of two sines = 2 sin half sum
$$\cdot$$
 cos half difference, (5') the difference of two sines = 2 cos half sum \cdot sin half difference, (6') the sum of two cosines = 2 cos half sum \cdot cos half difference, (7') the difference of two cosines = -2 sin half sum \cdot sin half difference, (8')

The difference between the first members of A, Art. 50, and C should be noted.

N.B. Arts. 92-95 are similar in character to, and are merely a continuation of, Arts. 50-52. If deemed advisable, Arts. 91-95 can be taken up now. The student is advised to glance at them after solving the following exercises:

EXAMPLES.

1. Show that $\frac{\cos x - \cos y}{\cos x + \cos y} = -\tan \frac{1}{2}(x+y) \tan \frac{1}{2}(x-y)$.

$$\frac{\cos x - \cos y}{\cos x + \cos y} = \frac{-2\sin\frac{1}{2}(x+y)\sin\frac{1}{2}(x-y)}{2\cos\frac{1}{2}(x+y)\cos\frac{1}{2}(x-y)} = -\tan\frac{1}{2}(x+y)\tan\frac{1}{2}(x-y).$$

2. Show that
$$\frac{\sin 2 A}{1 + \cos 2 A} = \tan A.$$

$$\frac{\sin 2 A}{1 + \cos 2 A} = \frac{2 \sin A \cos A}{1 + (2 \cos^2 A - 1)} = \frac{\sin A}{\cos A} = \tan A.$$

8. Show that $2\sin{(A+45^{\circ})}\sin{(A-45^{\circ})} = \sin^2{A} - \cos^2{A}$.

$$2 \sin (A+45^{\circ}) \sin (A-45^{\circ}) = \cos (\overline{A+45^{\circ}} - \overline{A-45^{\circ}}) - \cos (\overline{A+45^{\circ}} + \overline{A-45^{\circ}}),$$
Art. 52, B (4')
$$= \cos 90^{\circ} - \cos 2 A = \sin^2 A - \cos^2 A.$$

4. Show that $\sin 5 A \sin A = \sin^2 3 A - \sin^2 2 A$.

$$\sin 5 A \sin A = \frac{1}{2} [\cos (5 A - A) - \cos (5 A + A)], \qquad \text{Art. 52, B (4')}$$

$$= \frac{1}{2} (\cos 4 A - \cos 6 A),$$

$$= \frac{1}{2} [1 - 2 \sin^2 2 A - (1 - 2 \sin^2 3 A)] = \sin^2 3 A - \sin^2 2 A.$$

5. $\frac{\sin A + \sin 3A}{\cos A + \cos 3A} = \tan 2A$.

$$\frac{\sin A + \sin 3 A}{\cos A + \cos 3 A} = \frac{2 \sin \frac{1}{2} (3 A + A) \cos \frac{1}{2} (3 A - A)}{2 \cos \frac{1}{2} (3 A + A) \cos \frac{1}{2} (3 A - A)}, \quad \text{Art. 52, C (5'), (7')}$$

$$= \frac{\sin 2 A}{\cos 2 A} = \tan 2 A.$$

Prove the following statements:

6.
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$$
7.
$$\frac{\sin 3x - \sin x}{\cos 3x + \cos x} = \tan x$$

8.
$$\cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B$$
.

9.
$$\cot A - \cot 2A = \csc 2A$$
.

10.
$$\sin(A+B)\sin(A-B) = \cos^2 B - \cos^2 A$$
.

11.
$$1 + \tan 2 A \tan A = \sec 2 A$$
.

12.
$$\tan (45^\circ + A) = \frac{1 + \tan A}{1 - \tan A}$$
 13. $\tan (45^\circ - A) = \frac{1 - \tan A}{1 + \tan A}$

13.
$$\tan (45^{\circ} - A) = \frac{1 - \tan A}{1 + \tan A}$$

14.
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A$$

14.
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A$$
. **15.** $\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2 = 1 - \sin A$.

16.
$$\frac{1-\cos 2 A}{\sin 2 A} = \tan A$$
.

$$17. \quad \frac{\sin 2 A}{1 - \cos 2 A} = \cot A.$$

$$18. \ \frac{1+\cos A}{\sin A}=\cot \frac{A}{2}.$$

19.
$$\frac{2 \tan A}{1 + \tan^2 A} = \sin 2 A$$
.

$$20. \quad \frac{\operatorname{cosec^2}}{\operatorname{cosec^2} A - 2} = \sec 2 A.$$

21.
$$\frac{2-\sec^2 A}{\sec^2 A} = \cos 2 A$$
.

22.
$$\frac{\sin{(A+B)}}{\cos{A}\cos{B}} = \tan{A} + \tan{B}.$$

23.
$$\frac{\sin{(A-B)}}{\cos{A}\cos{B}} = \tan{A} - \tan{B}.$$

24.
$$\frac{\cos{(A-B)}}{\cos{A}\sin{B}} = \cot{B} + \tan{A}.$$

25.
$$\frac{\cos{(A+B)}}{\sin{A}\cos{B}} = \cot{A} - \tan{B}.$$

$$26. \ \frac{\sin{(x+y)}}{\sin{(x-y)}} = \frac{\tan{x} + \tan{y}}{\tan{x} - \tan{y}}.$$

27.
$$\frac{\cos(x+y)}{\cos(x-y)} = \frac{1-\tan x \tan y}{1+\tan x \tan y}$$

- **28.** Given $\sin x = \frac{1}{2}$, $\sin y = \frac{2}{3}$. Find $\sin (x + y)$, $\sin (x y)$, $\cos (x + y)$, $\cos (x y)$, $\sin 2x$, $\sin 2y$, $\cos 2x$, $\cos 2y$, $\tan 2x$, $\tan 2y$, $\tan (x + y)$, $\tan (x y)$, when (a) both x, y, are in the first quadrant; (b) x is in the first, y in the second; (c) x in the second, y in the first; (d) both in the second quadrant. Check results by means of the tables.
 - 29. Given $\sin x = \frac{1}{4}$, $\sin y = \frac{3}{4}$. Do as in Ex. 28.
- 30. Given $\sin x = \frac{3}{5}$, $\sin y = -\frac{2}{5}$. Find the ratios named in Ex. 28, when x is in the first quadrant and y in the third, x in the first and y in the fourth, x in the second and y in the third, x in the second and y in the fourth.
- N.B. Examples suitable for exercise and review on the subject-matter of this chapter will be found in Arts. 91-95, and at page 187.

CHAPTER VII.

SOLUTION OF TRIANGLES IN GENERAL.

53. Cases for solution. In Art. 34 oblique triangles were solved by means of right-angled triangles. In this chapter some relations of the sides and angles of any triangle (whether right-angled or oblique) will be derived; methods of solution will be shown, which are applicable to the solution of both right-angled and oblique triangles, and which are independent of the special aid that can be afforded by right-angled triangles. In Art. 54 the chief relations between the sides and angles of a triangle will be deduced. These relations constitute the foundation for the remainder of the chapter. In Arts. 55–58 solutions of triangles are obtained without the use of logarithms; in Arts. 60–62 logarithms are employed in finding the solutions.

In order that a triangle may be constructed, three elements, one of which must be a side, are required. Hence, there are four cases for construction and solution, namely, when the given parts are as follows:

- I. One side and two angles.
- II. Two sides and the angle opposite to one of them.
- III. Two sides and their included angle.
- IV. Three sides.

Before proceeding, the student should test his ability to construct a triangle readily in each of these cases.

In the discussions that follow, the triangle is denoted by ABC, the angles by A, B, C, and the lengths of their opposite sides by a, b, c, respectively.*

^{*}The formulas are greatly simplified by the adoption of this notation, which was first introduced by Leonhard Euler (1707-1783).

54. Fundamental relations between the sides and angles of a triangle. The law of sines. The law of cosines.

I. The law of sines. From C in the triangle ABC draw CD at right angles to opposite side AB, and meeting AB or AB produced in D. (In Fig. 47 a B is acute, in Fig. 47 b B is obtuse, and in

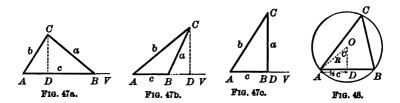


Fig. 47 c B is a right angle.) Produce AB to V. In what follows, AB is taken as the positive direction.

In
$$CDA$$
, $DC = b \sin A$.

In CDB (Figs. 47 a, b), $DC = a \sin VBC$ (Definition, Art. 40.) = $a \sin B$.

[:
$$\sin VBC = \sin (180^{\circ} - VBC)$$
, Art. 45, $= \sin CBA$]

In Fig. 47 c,

$$DC = BC = a = a \sin B$$
.

 $(: B = 90^{\circ}, \text{ and } \sin 90^{\circ} = 1)$

Therefore, in all three triangles,

$$a \sin B = b \sin A$$
.

Hence,

$$\frac{a}{\sin A} = \frac{b}{\sin B}.$$

Similarly, on drawing a line from B at right angles to AC, it can be shown that

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

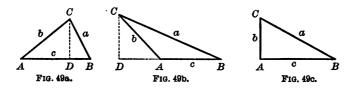
Hence, in any triangle ABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
 (1)

In words: The sides of any triangle are proportional to the sines of the opposite angles.

Each of the fractions in (1) gives the length of the diameter of the circle described about ABC. Let O (Fig. 48) be the centre and R the radius of the circle described about ABC. Draw OD at right angles to any one of the sides, say AB. Draw AO. Then $AD = \frac{1}{2}c$, AOD = C, by geometry. In triangle AOD,

$$AD = AO \sin AOD$$
; i.e. $\frac{1}{2}c = R \sin C$.


$$\therefore 2 R = \frac{c}{\sin C} \tag{2}$$

Ex. 1. Explain why the circumscribing circle of a triangle depends only upon one side and its opposite angle.

Ex. 2. Derive the law of sines by drawing a perpendicular from A to BC.

Ex. 3. Derive
$$2R = \frac{a}{\sin A}$$
, $2R = \frac{b}{\sin B}$, by means of figures.

II. The law of cosines. An expression for the length of the side of a triangle in terms of the cosine of the opposite angle and the lengths of the other two sides, will now be deduced. The angle A is acute in Fig. 49 a, obtuse in Fig. 49 b, right in Fig. 49 c. From C draw CD at right angles to AB. The direction AB is taken as positive.

In Figs. 49
$$a$$
, 49 b , $\overline{BC}^2 = \overline{DC}^2 + \overline{DB}^2$.
In Fig. 49 a , $DB = AB - AD$;
in Fig. 49 b , $DB = DA + AB = -AD + AB$.
Hence, in both figures, $\overline{BC}^2 = \overline{DC}^2 + (AB - AD)^2$
 $= \overline{DC}^2 + \overline{AD}^2 + \overline{AB}^2 - 2 AB \cdot AD$.

In Fig. 49 a,
$$AD = AC \cos BAC$$
;
in Fig. 49 b, $AD = AC \cos BAC$ (Art. 40).
Also, $\overline{DC}^3 + \overline{AD}^2 = \overline{AC}^2$.
Hence, in both figures, $\overline{BC}^2 = \overline{AC}^2 + \overline{AB}^2 - 2AC \cdot AB \cos A$;

Hence, in both figures, $BU = AU + AB - 2AU \cdot AB \cos A$;

that is,
$$a^2 = b^2 + c^2 - 2bc \cos A$$
. (3)

This formula also holds for Fig. 49 c; for there,

$$\cos A = \cos 90^{\circ} = 0.$$

Similar formulas for b, c, can be derived in like manner, or can be obtained from (3) by symmetry:

$$b^2 = c^2 + a^2 - 2 \cos B$$
, $c^2 = a^2 + b^2 - 2 ab \cos C$. (3')

These formulas can be expressed in words: In any triangle, the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides multiplied by the cosine of their included angle.

Note. In Fig. 49 a, A is acute and $\cos A$ is positive; in Fig. 49 b, A is obtuse and $\cos A$ is negative. Hence formula (3) shows that in Fig. 49 a, a^2 is less than $b^2 + c^2$, and that in Fig. 49 b, a^2 is greater than $b^2 + c^2$. In Fig. 49 c, $a^2 = b^2 + c^2$.

Relation (3) may be expressed as follows:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc},\tag{4}$$

and similarly for $\cos B$, $\cos C$.

Ex. Derive the formulas for b^2 and for c^2 .

Each of the relations (1), (3), (3'), involves four of the six elements of a triangle. If any three of the elements in any one of these relations are known, then the fourth element can be found by solving the equation. Inspection shows that relations (1) are serviceable in the solution of Cases I., II., Art. 53, and that relations (3), (3'), are serviceable in the solution of Cases III., IV., Art. 53. The student is advised to try to work some of the examples in Arts. 55–58 before reading the text of the articles. (See Arts. 20-24, 34.)

54 α . Substitution of sines for sides, and of sides for sines.

Since $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$, the sines of the opposite angles can be substituted for the sides of triangles, and *vice versa*, when they are involved *homogeneously* in the numerator and denominator of a fraction, or in both members of an equation.

Thus, on putting $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = x$, it follows that $a = x \sin A$, $b = x \sin B$, $c = x \sin C$.

Then, for example,
$$\frac{a^2}{b+c} = \frac{ax \sin A}{x \sin B + x \sin C} = \frac{a \sin A}{\sin B + \sin C}$$

EXAMPLES.

- 1. Show that in any triangle $\frac{a+b}{c} = \frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2}C}$.
- $\frac{a+b}{c} = \frac{\sin A + \sin B}{\sin C} = \frac{2\sin \frac{1}{2}(A+B)\cos \frac{1}{2}(A-B)}{2\sin \frac{1}{2}C\cos \frac{1}{2}C} = \frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2}C},$

for $\sin \frac{1}{2}(A+B) = \cos \frac{1}{2}C$, since $\frac{1}{2}(A+B) + \frac{1}{2}C = 90^\circ$.

- 2. Derive two other relations similar to that in Ex. 1.
- 3. Show that

$$\frac{3 a^2 + 2 b^2}{abc} = \frac{3 \sin^2 A + 2 \sin^2 B}{a \sin B \sin C} = \frac{3 \sin^2 A + 2 \sin^2 B}{b \sin A \sin C} = \frac{3 \sin^2 A + 2 \sin^2 B}{c \sin A \sin B}.$$

55. Case I. Given one side and two angles. In triangle ABC, suppose that A, B, a are known; it is required to find C, b, c. In this case (see Fig. 47 a, Art. 54),

$$C = 180^{\circ} - (A + B);$$

$$\frac{b}{\sin B} = \frac{a}{\sin A}, \text{ whence } b = \frac{a}{\sin A} \cdot \sin B;$$

$$\frac{c}{\sin C} = \frac{a}{\sin A}, \text{ whence } c = \frac{a}{\sin A} \cdot \sin C.$$

Checks: $a^2 = b^2 + c^2 - 2bc \cos A$, $\frac{b}{\sin B} = \frac{c}{\sin C}$, the result in Ex. 1, Art. 54 a. Other checks will be discovered later.

EXAMPLES

If S is an example
$$PQR$$
 to on P_1 = 12 m. Sommer $E = Q = 0$. $PE = P = 7$. $EQ = 0$

$$\hat{x} + Q = (90)^{2} + (40)^{2} + 75^{2} = 60^{2}$$

٠, ۽

$$RQ = \frac{PQ}{\sin R}$$

$$RQ = \frac{PQ}{\sin R}$$

$$RQ = \frac{PQ}{\sin R}$$

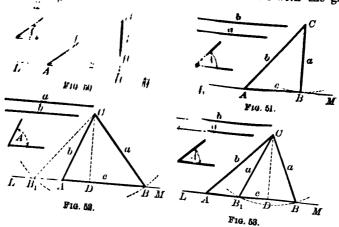
$$RQ = \frac{12}{\sin 65} \cdot \sin R$$

$$= \frac{12}{\sin 65} \cdot \sin \frac{\pi}{8}$$

$$= \frac{12}{9953} \times 9539$$

$$= 13.24 \times 9539$$

$$= 12.9 \text{ in.}$$


1 - 1 - 00 m Silve the triangle

 $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac$

8 to a - 102. Solve the triangle.

1 11 1 a - h 42. Solve the triangle.

if the block had an angle opposite to one of the block had be known, and C, B, c be all that he constructed with the given

3

elements. At any point A of a straight line LM, unlimited in length, make angle MAC equal to angle A, and cut off AC equal to b. About C as a centre, and with a radius equal to a, describe a circle. This circle will either:

- (1) Not reach to LM, as in Fig. 50.
- (2) Just reach to *LM*, thus having *LM* for a tangent, as in Fig. 51.
 - (3) Intersect LM in two points, as in Figs. 52, 53.

Each of these possible cases must be considered. In each figure, from C draw CD at right angles to AM; then $CD = b \sin A$.

In case (1), Fig. 50, CB < CD, and there is no triangle which can have the given elements. Hence, the triangle is impossible when $a < b \sin A$.

In case (2), Fig. 51, CB = CD. Hence, the triangle which has elements equal to the given elements is right-angled when $a = b \sin A$.

In case (3), Figs. 52, 53, CB > CD; that is, $a > b \sin A$. If a > b, then the points B, B_1 , in which the circle intersects LM, are on opposite sides of A, as in Fig. 52, and there is one triangle which has three elements equal to the given elements, namely, ABC. If a < b, then the points of intersection B, B_1 , are on the same side of A, as in Fig. 53, and there are two triangles which have elements equal to the given elements, namely, ABC, AB_1C . For, in ABC, angle BAC = A, AC = b, BC = a; in AB_1C , angle $B_1AC = A$, AC = b, $B_1C = a$. Both triangles must be solved. In this case, Fig. 53, the given angle is opposite to the smaller of the two given sides. Hence, there may be two solutions when the given angle is opposite to the smaller of the two given sides. The words "may be" are used, for in cases (1), (2), the given angle is opposite to the smaller of the two given sides. Case II. is sometimes called the ambiguous case in the solution of triangles.

The ambiguity in Case II. is also apparent in the trigonometric solution. The angle B is found by means of the relation,

$$\frac{\sin B}{b} = \frac{\sin A}{a}; \text{ or, } \sin B = \frac{b}{a} \sin A. \tag{1}$$

The angle B is thus determined from its sine. Now there is always an ambiguity when an angle of a triangle is determined

from its sine alone, for $\sin x = \sin(180^{\circ} - x)$. Figure 53 shows the two angles which have the same sine, namely, ABC, AB_1C . In Fig. 52, the given condition, namely, that b < a, shows that B < A; accordingly, only the acute angle corresponding to $\sin B$ can be taken. If, in equation (1), $b \sin A > a$, then $\sin B > 1$, and, accordingly, B is impossible and there is no solution. If, in equation (1), $b \sin A = a$, then $\sin B = 1$, and $B = 90^{\circ}$. The consideration of the trigonometric equation (1) leads, therefore, to the same results as the preceding geometrical investigation.

Checks: $A + B + C = 180^{\circ}$, and, as in Case I. Other checks will be found later.

EXAMPLES.

1. Solve the triangle STV, given: ST = 15, VT = 12, $S = 52^{\circ}$.

$$\frac{\sin V}{ST} = \frac{\sin S}{VT};$$

$$\frac{\sin V}{15} = \frac{\sin 52^{\circ}}{12} = \frac{.78801}{12} = .065668.$$
∴ sin $V = 15 \times .065668 = .98502$.

..
$$V = 80^{\circ} 4' 20''$$
, or $180^{\circ} - 80^{\circ} 4' 20''$, i.e. $99^{\circ} 55' 40''$. S V_1

Both values of V must be taken, since the given angle is opposite to the smaller of the given sides. The two triangles corresponding to the two values of V are STV, STV_1 , Fig. 54, in which

$$SVT = 80^{\circ} \ 4' \ 20'', \quad SV_{1}T = 99^{\circ} \ 55' \ 40''.$$
In STV_{1}
In STV
angle $STV_{1} = 180^{\circ} - (S + SV_{1}T)$

$$= 28^{\circ} \ 4' \ 20''.$$

$$\frac{SV_{1}}{\sin STV_{1}} = \frac{V_{1}T}{\sin S};$$

$$\frac{SV_{1}}{47059} = \frac{12}{.78801} = 15.228.$$

$$SV_{1} = 99^{\circ} \ 55' \ 40''.$$

$$= 47^{\circ} \ 55' \ 40''.$$

$$\frac{SV}{\sin STV} = \frac{VT}{\sin S};$$

$$\frac{SV}{\sin STV} = \frac{VT}{\sin S};$$

$$\frac{SV}{.74230} = 15.228.$$

The solutions are:

 $SV_1 = 7.17.$

 $\therefore SV = 11.3.$

In the ambiguous case, care must be taken that the calculated sides and angles are combined properly.

- **2.** Solve ABC, given: a = 29 ft., b = 34 ft., $A = 30^{\circ} 20'$.
- **3.** Solve ABC when a = 30 ft., b = 24 ft., $B = 65^{\circ}$.
- **4.** Solve ABC when a = 30 in., b = 24 in., $A = 65^{\circ}$.
- 5. Solve ABC when a = 15 ft., b = 8 ft., $B = 23^{\circ} 25'$.

57. Case III. Given two sides and their included angle. In the triangle ABC, a, b, C are known, and it is required to find A, B, c. In this case, c can be determined from the relation $c^2 = a^2 + b^2 - 2ab \cos C$, Art. 54; angle A can be determined from the relation

$$\frac{\sin A}{a} = \frac{\sin C}{c};$$

angle B can be determined from the relation

$$A + B + C = 180^{\circ}$$
, or from $\frac{\sin B}{b} = \frac{\sin C}{c}$.

Checks: $a^2 = b^2 + c^2 - 2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos A$, the result in Ex. 1, Art. 54 a; other checks will be found later.

EXAMPLES.

1. In triangle PQR, p = 8 ft., r = 10 ft., $Q = 47^{\circ}$. Find q, P, R. $q^{2} = p^{2} + r^{2} - 2 pr \cos Q$ $= 64 + 100 - 2 \times 8 \times 10 \times .6820 = 54.88.$

$$\therefore q = 7.408.$$

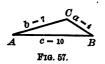
$$\sin P = \frac{p \sin Q}{q} = \frac{8 \times .7314}{7.408} = .7898. \quad \therefore P = 52^{\circ} 10'.$$

$$\sin R = \frac{r \sin Q}{q} = \frac{10 \times .7314}{7.408} = .9873. \quad \therefore R = 80^{\circ} 50'.$$
Fig. 56.

- **2.** Solve ABC, given: a = 34 ft., b = 24 ft., $C = 59^{\circ} 17'$.
- **3.** Solve ABC, given: a = 33 ft., c = 30 ft., $B = 35^{\circ} 25'$.
- **4.** Solve RST, given: r = 30 ft., s = 54 ft., $T = 46^{\circ}$.
- **5.** Solve PQR, given: p = 10 in., q = 16 in., $R = 97^{\circ} 54'$.

58. Case IV. Three sides given. If the sides a, b, c are known in the triangle ABC, then the angles A, B, C can be found by means of the relations (3), Art. 54.

Checks: Relations (1), Art. 54: $A + B + C = 180^{\circ}$. Other checks will be shown later.


EXAMPLES.

1. In ABC, a = 4, b = 7, c = 10; find A, B, C.

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc} = \frac{49 + 100 - 16}{2 \times 7 \times 10} = \frac{133}{140} = .9500. \qquad \therefore A = 18^{\circ} 12'.$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2 ca} = \frac{100 + 16 - 49}{2 \times 10 \times 4} = \frac{67}{80} = .8375.$$
 $\therefore B = 33^{\circ} 7' 30''.$

$$\cos C = \frac{a^2 + b^2 - c^2}{2 a b} = \frac{16 + 49 - 100}{2 \times 4 \times 7} = \frac{-35}{56} = -.6250. \quad \therefore \quad C = 128^{\circ} 40' 52''.$$

Angle C is in the second quadrant since its cosine is negative.

Check: 18°12′+33°7′30″+128°40′52″=180°0′22″. The discrepancy is due to the fact that four-place tables were used in the computation. Had five-place tables been used, the discrepancy would have been less.

- **2.** In PQR, p = 9, q = 24, r = 27. Find P, Q, R.
- 3. In RST, r = 21, s = 24, t = 27. Find R, S, T.
- 4. In ABC, a = 12, b = 20, c = 28. Find A, B, C.
- 5. In ABC, a = 80, b = 26, c = 74. Find A, B, C.
- 6. Solve Ex. 1, using five-place tables.

59. The aid of logarithms in the solution of triangles. It was pointed out in Art. 6 that an expression is adapted for logarithmic computation when, and only when, it is decomposed into factors. In Cases I., II., Arts. 55, 56, the expressions used in solving the triangle can be computed with the help of logarithms. On the other hand, the side opposite to the given angle in Case III., Art. 57, and the angles in Case IV., Art. 58, are found by evaluating expressions which are not adapted to the use of logarithms. Other relations between the sides and angles of a triangle will be found in Arts. 61, 62. By these relations the computations in Cases III., IV., can be made both without and with logarithms. These relations are useful not merely for purposes of computation; they are important in themselves, and valuable because many important properties of triangles can be deduced from them.

The explanations given in Arts. 55-57 are presupposed in Arts. 60-62. The general directions to be observed in working the problems are as follows:

 \boldsymbol{R}

FIG. 58.

- 1. Write down all the formulas which will be used in the computation.
 - 2. Express these formulas in the logarithmic form.

[As soon as the student perceives that this step does not afford any additional assistance, it may be omitted. See Art. 27, Ex. 1, Note 6.]

3. Make a skeleton scheme, and arrange the arithmetical work neatly and clearly.

The skeleton schemes in the worked examples that follow, are apparent when the numbers are omitted.*

Checks: The various formulas can serve as checks on the results of one another. The relations derived in Exs. 1, 2, Art. 54 a, are also useful as checks.

60. The use of logarithms in Cases I., II. An example worked out, will give sufficient explanation.

EXAMPLES.

1. In
$$ABC$$
, given: $a=447$, To find: $B=$ (Write the results here.) $b=576$, $C=$ $A=47^{\circ}35'$. $c=$

Since a < b, there may be two solutions. Construction shows there are two solutions.

Formulas: $\sin ABC = \frac{b}{a} \sin A = \sin AB_1C$.

$$ACB=180^{\circ}-(A+ABC)$$
. $ACB_1=180^{\circ}-(A+AB_1C)$.

$$AB = \frac{a}{\sin A} \sin ACB.$$
 $AB_1 = \frac{a}{\sin A} \sin ACB_1.$

$$\therefore \log \sin ABC = \log b + \log \sin A - \log a = \log \sin AB_1C;$$
$$\log AB = \log a + \log \sin ACB - \log \sin A;$$
$$\log AB_1 = \log a + \log \sin ACB_1 - \log \sin A.$$

^{*} Cologarithms are not used in the solutions in the text. In extensive computations the use of cologarithms is favoured by many computers; but it seems best for *beginners* in trigonometry first to become accustomed to the obvious and direct method of working with logarithms.

$$\log a = 2.65031$$

$$\log b = 2.76042$$

$$\log \sin A = 9.86821 - 10$$

$$\therefore \log \sin B = 9.97832 - 10$$

In obtaining $\log AB$, for instance, $\log \sin ACB$ may be written on the margin of a slip of paper, placed under $\log a$, the addition made, $\log \sin A$ placed beneath, and the subtraction made.

Solve the triangle ABC, when the following elements are given:

2.
$$A = 63^{\circ} 48'$$
, $B = 49^{\circ} 25'$, $a = 825$ ft.

3.
$$B = 128^{\circ} 3' 49''$$
, $C = 33^{\circ} 34' 47''$, $a = 240$ ft.

4.
$$A = 78^{\circ} 30'$$
, $b = 137$ ft., $a = 65$ ft.

5.
$$a = 275.48$$
, $b = 350.55$, $B = 60^{\circ} 0' 32''$.

6.
$$c = 690$$
, $a = 464$, $A = 37^{\circ} 20'$.

7.
$$a = 690$$
, $b = 1390$, $A = 21^{\circ} 14' 25''$.

61. Relation between the sum and difference of any two sides of a triangle. The Law of Tangents. Use of logarithms in Case III. In any triangle ABC, for any two sides, say a, b,

$$\frac{a}{b} = \frac{\sin A}{\sin B}.$$
 [By equation (1), Art. 54.]

$$\therefore \frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B}$$
 [By composition and division.]
$$= \frac{2\cos \frac{1}{2}(A+B)\sin \frac{1}{2}(A-B)}{2\sin \frac{1}{2}(A+B)\cos \frac{1}{2}(A-B)}.$$
 [Art. 52, Formulas (5), (6).]

$$\therefore \frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)}.$$
 [Art. 44, A, B.]

That is, the difference of any two sides of a triangle is to their sum as the tangent of half the difference of their opposite angles is

to the tangent of half their sum. This is sometimes called the law of tangents.

Now $A+B=180^{\circ}-C$, and, consequently, $\frac{1}{2}(A+B)=90^{\circ}-\frac{C}{2}$. Hence, $\tan \frac{1}{2}(A+B)=\cot \frac{C}{2}$, and, accordingly, relation (1) may be written

$$\tan\frac{1}{2}(\mathbf{A}-\mathbf{B}) = \frac{a-b}{a+b}\cot\frac{1}{2}C.$$
 (2)

Formulas for b, c, and c, a, similar to the formulas for a, b in (1), (2), can be derived in the same way as (1), (2), have been derived. These formulas can also be written down immediately, on noticing the symmetry in formulas (1), (2).

Ex. Write the formulas for sides b, c and c, a. Derive these formulas.

Case III. In a triangle ABC, a, b, C, are known, and c, B, A, are required. Here, $\frac{1}{2}(A+B)=90^{\circ}-\frac{1}{2}C$; also, $\frac{1}{2}(A-B)$ can be found by (2). Hence, A and B can be found; for

$$A = \frac{1}{2}(A+B) + \frac{1}{2}(A-B)$$
, and $B = \frac{1}{2}(A+B) - \frac{1}{2}(A-B)$.

The side c can then be found by (1), Art. 54. (In using (1), (2), write the greater side and the greater angle first, in order that the difference may be positive.) Formulas (1), (2), can also be used as a check in the cases discussed in the preceding articles. Other checks will be shown in the next article.

EXAMPLES.

Checks: $A+B+C=180^{\circ}$, formulas in preceding articles, and formulas shown in the next article.

$$\log \tan \frac{1}{2}(B-C) = \log(b-c) + \log \cot \frac{1}{2}A - \log(b+c),$$

$$\log a = \log b + \log \sin A - \log \sin B; \text{ or } = \log c + \log \sin A - \log \sin C.$$

Check: $A + B + C = 78^{\circ} \ 40' + 63^{\circ} \ 27' \ 1'' + 37^{\circ} \ 52' \ 59'' = 180^{\circ}$.

Note. Formulas (1), (2), are adapted to logarithmic computation; but the computations can be made without the aid of logarithms.

- **2.** Solve ABC, given b = 352, a = 266, $C = 73^{\circ}$.
- **8.** Solve PQR, given p = 91.7, q = 31.2, $R = 33^{\circ} 7' 9''$.
- **4.** Solve ABC, given a = 960, b = 720, $C = 25^{\circ} 40'$.
- 5. Solve ABC, given b = 9.081, c = 3.6545, $A = 68^{\circ} 14' 24''$.
- 6. Solve Exs. 1, 5, Art. 57, using the formulas of this article, without logarithms.
- 62. Trigonometric ratios of the half angles of a triangle. Use of logarithms in Case IV. In any triangle ABC,

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$$
 [Art. 54 (4).]

Now

$$1-\cos A=2\sin^2\tfrac{1}{2}A,$$

and

$$1 + \cos A = 2\cos^2 \frac{1}{2}A$$
. [Art. 50 (7), (8).]

Also,
$$1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc - (b^2 + c^2 - a^2)}{2bc}$$

$$= \frac{a^2 - (b^2 + c^2 - 2bc)}{2bc} = \frac{a^2 - (b - c)^2}{2bc}$$

$$= \frac{[a - (b - c)][a + (b - c)]}{2bc}.$$

$$\therefore 2\sin^2 \frac{1}{2}A = \frac{(a - b + c)(a + b - c)}{2bc}$$
(1)

Also,
$$1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc + (b^2 + c^2 - a^2)}{2bc}$$
$$= \frac{(b+c)^2 - a^2}{2bc}.$$

$$\therefore 2\cos^2 \frac{1}{2}A = \frac{(b+c+a)(b+c-a)}{2bc}.$$
 (2)

Let

$$a+b+c=2s;$$

then

$$2(s-c) = (a+b+c) - 2c = a+b-c$$

Similarly

$$2(s-b)=a-b+c,$$

$$2(s-a) = -a + b + c$$

The substitution of these values in (1) and (2) gives

$$2 \sin^{2} \frac{1}{2} A = \frac{2(s-b) \cdot 2(s-c)}{2bc}; \quad 2 \cos^{2} \frac{1}{2} A = \frac{2s \cdot 2(s-a)}{2bc}.$$

$$\therefore \sin^{2} \frac{1}{2} A = \frac{(s-b)(s-c)}{bc}; \tag{3}$$

$$\cos^2 \frac{1}{2} A = \frac{s(s-a)}{ba}.$$
 (4)

Since $\tan^2 \frac{1}{4}A = \sin^3 \frac{1}{4}A + \cos^2 \frac{1}{4}A$, it follows that

$$\tan^2 \frac{1}{2} A = \frac{(s-b)(s-c)}{s(s-a)}.$$
 (5)

$$\therefore \sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}; \cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}};$$

$$\tan\frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

Note. By geometry, b+c>a. Hence, -a+b+c>0, and, accordingly, s-a is positive. Similarly, s-b, s-c, are also positive. Therefore, the quantities under the radical signs are positive. The positive sign must be given to the radical, for A is less than 180° , and consequently $\frac{1}{2}$ A lies between 0° and 90° .

Similar formulas hold for $\frac{1}{2}B$ and $\frac{1}{2}C$. They can be deduced in the same manner as those for $\frac{1}{2}A$; or, they can be written immediately, from the symmetry apparent in the formulas (3)–(5). The student is advised to derive the similar formulas for $\frac{1}{2}B$, $\frac{1}{2}C$, viz.:

$$\sin^2 \frac{1}{2} B = \frac{(s-a)(s-c)}{ac};$$
 $\cos^2 \frac{1}{2} B = \frac{s(s-b)}{ac};$ (3')

$$\sin^2 \frac{1}{2} C = \frac{(s-a)(s-b)}{ab}$$
 $\cos^2 \frac{1}{2} C = \frac{s(s-c)}{ab}$ (4')

$$\tan^{2} \frac{1}{2} B = \frac{(s-a)(s-c)}{s(s-b)};$$

$$\tan^{2} \frac{1}{2} C = \frac{(s-a)(s-b)}{s(s-c)}.$$
(5')

Formula (5) can be given a more symmetrical form; for, on multiplying and dividing its second member by (s-a),

$$\tan^2 \frac{1}{2} A = \frac{(s-a)(s-b)(s-c)}{s(s-a)^2};$$

whence
$$\tan \frac{1}{s} A = \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
. (6)

If
$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
, (7)

then
$$\tan \frac{1}{2} A = \frac{r}{s-a}$$
 (8)

Similarly,
$$\tan \frac{1}{2}B = \frac{r}{s-b}$$
, $\tan \frac{1}{2}C = \frac{r}{s-c}$ (8')

When all the sides are known, the angles can be found by means of formulas (3)-(5') or, by (7)-(8'). When all the angles are required, the tangent formulas are better, since fewer logarithms are required than in (3), (4), (3'), (4'). It will be shown in Art. 69 that r is the radius of the circle inscribed in the triangle.

Check:

EXAMPLES.

1. In triangle
$$ABC$$
, $a = 25.17$, $b = 34.06$, $c = 22.17$. Find A , B , C .

Formulas: $r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.

 $\tan \frac{1}{2}A = \frac{r}{s-a}$; $\tan \frac{1}{2}B = \frac{r}{s-b}$; $\tan \frac{1}{2}C = \frac{r}{s-c}$.

 $\therefore \log r = \frac{1}{2}[\log (s-a) + \log (s-b) + \log (s-c) - \log s]$.

 $\log \tan \frac{1}{2}A = \log r - \log (s-a)$; $\log \tan \frac{1}{2}B = \log r - \log (s-b)$; $\log \tan \frac{1}{2}C = \log r - \log (s-c)$.

Check: $A + B + C = 180^\circ$.

 $a = 25.17$ $\log s = 1.60959$ $\log \tan \frac{1}{2}A = 9.64465 - 10$
 $b = 34.06$ $\log (s-a) = 1.19117$ $\frac{1}{2}A = 23^\circ 48' 28''$
 $c = 22.17$ $\log (s-b) = 0.82217$ $\log \tan \frac{1}{2}B = 10.01365 - 10$
 $2s = 81.40$ $\log (s-c) = 1.26788$ $\frac{1}{2}B = 45^\circ 54'$
 $s = 40.70$ $\therefore \log r^2 = 1.67163$ $\log \tan \frac{1}{2}C = 9.56794 - 10$
 $s - a = 15.53$ $\therefore \log r = 0.83582$
 $s - b = 6.64$
 $s - c = 18.53$ $\therefore A = 47^\circ 36' 56''$, $B = 91^\circ 48'$, $C = 40^\circ 35' 10''$

- **2.** Solve ABC, given a = 260, b = 280, c = 300.
- **8.** Solve ABC when a = 26.19, b = 28.31, c = 46.92.
- **4.** Solve PQR, given p = 650, q = 736, r = 914.
- 5. Solve RST, given r = 1152, s = 2016, t = 2592.
- 6. Solve Exs. 1, 4, Art. 58, using formulas (3)-(8'), without logarithms.

 $A + B + C = 180^{\circ} 0' 6''$.

63. Problems in heights and distances. Some problems in heights and distances have been solved in Art. 29 by the aid of right-angled triangles. Additional problems of the same kind will now be given, in the solution of which oblique-angled triangles may be used. It is advisable to draw the figures neatly and accurately. The graphical method should also be employed.

EXAMPLES.

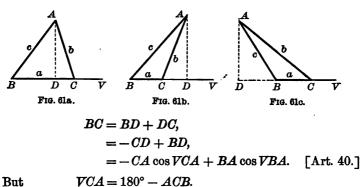
1. Another solution of Ex. 2, Art. 29.

In the triangle ABP (Fig. 23), AB = 100 ft., $BAP = 30^{\circ}$, $PBA = 180^{\circ} - 45^{\circ} = 135^{\circ}$. Hence the triangle can be solved, and BP can be found. When BP shall have been found, then in the triangle CBP, BP is known and $BP = 45^{\circ}$; hence CP can be found. The computation is left to the student.

- 2. Another solution of Ex. 3, Art. 29. In the triangle CBP (Fig. 24), BP = 30 ft., $BCP = 40^{\circ}20' 38^{\circ}20' = 2^{\circ}$, $PBC = 90^{\circ} + LCB = 128^{\circ}20'$. Hence CBP can be solved and the length of CB can be found. When CB shall have been found, then, in the triangle LCB, angle $C = 38^{\circ}20'$, CB is known, and hence LB can be found. The computation is left to the student.
- 3. Find the distance between two objects that are invisible from each other on account of a wood, their distances from a station at which they are visible being 441 and 504 yd., and the angle at the station subtended by the distance of the objects being 55° 40'.
- 4. The distance of a station from two objects situated at opposite sides of a hill are 1128 and 936 yd., and the angle subtended at the station by their distance, is 64° 28'. What is their distance?
- 5. Find the distance between a tree and a house on opposite sides of a river, a base of 330 yd. being measured from the tree to another station, and the angles at the tree and the station formed by the base line and lines in the direction of the house being 73° 15′ and 68° 2′, respectively. Also find the distance between the station and the house.
- 6. Find the height of a tower on the opposite side of a river, when a horizontal line in the same level with the base and in the same vertical plane with the top is measured and found to be 170 ft., and the angles of elevation of the top of the tower at the extremities of the line are 32° and 58°, the height of the observer's eye being 5 ft:
- 7. Find the height of a tower on top of a hill, when a horizontal base line on a level with the foot of the hill and in the same vertical plane with the top of the tower is measured and found to be 460 ft.; and at the end of the line nearer the hill the angles of elevation of the top and foot of the tower are 36° 24′, 24° 36′, and at the other end the angle of elevation of the top of the tower is 16° 40′.
- 8. A church is at the top of a straight street having an inclination of 14° 10′ to the horizon; a straight line 100 ft. in length is measured along the street in the direction of the church; at the extremities of this line the angles of elevation of the top of the steeple are 40° 30′, 58° 20′. Find the height of the steeple.
- 9. The distance between the houses C, D, on the right bank of a river and invisible from each other, is required. A straight line AB, 300 yd. long, is measured on the left bank of the river, and angular measurements are taken as follows: $ABC = 53^{\circ} 30'$, $CBD = 45^{\circ} 15'$, $CAD = 37^{\circ}$, $DAB = 58^{\circ} 20'$. What is the length CD?
- 10. A tower CD, C being the base, stands in a horizontal plane; a horizontal line AB on the same level with the base is measured and found to be 468 ft.; the horizontal angles BAC, ABC, are equal to 125° 40′, 12° 35′, respectively, and the vertical angles CAD, CBD, are equal to 30° 20′, 11° 50′, respectively. Find the height of the tower and its distances from A and B.

- 11. A base line AB 850 ft. long is measured along the straight bank of a river; C is an object on the opposite bank; the angles BAC, ABC, are observed to be 63° 40′, 37° 15′, respectively. Find the breadth of the river.
- 12. A tower subtends an angle α at a point on the same level as the foot of the tower and, at a second point, h feet above the first, the depression of the foot of the tower is β . Show that the height of the tower is h tan α cot β .
- 13. The elevation of a steeple at a place due south of it is 45°, and at another place due west of it the elevation is 15°. If the distance between the two places be a, prove that the height of the steeple is $a(\sqrt{3}-1)+2\sqrt[4]{3}$.
- 14. The elevation of the summit of a hill from a station A is α ; after walking c feet toward the summit up a slope inclined at an angle β to the horizon the elevation is γ . Show that the height of the hill above A is $c \sin \alpha \sin (\gamma \beta) \csc (\gamma \alpha)$ ft.
- **64.** Summary. The preceding discussions on the solution of triangles have shown that a triangle may be solved in the following ways:
 - I. By the graphical method. [Arts. 10, 14, 21-24.]
- II. If the triangle is right-angled, it can be solved, either with or without logarithms, by the methods shown in Arts. 25–27.
- III. If the triangle is oblique, it can be divided into right-angled triangles, each of which can be solved by either of the methods II. [Art. 34.]
- IV. The triangle, whether right-angled or oblique, can be solved without using logarithms, by means of formulas (1), (3), Art. 54; (1) or (2), Art. 61; (3)-(8), Art. 62.
- V. The triangle, whether right-angled or oblique, can be solved with the use of logarithms, by means of formulas (1), Art. 54; (1) or (2), Art. 61; (3)-(8), Art. 62.

Checks: Any formula not employed in the computation can be employed as a check; that is, as a test for the correctness of the result.


Two things are necessary on the part of one who wishes to do well in the solution of triangles:

- (1) The formulas referred to above should be clearly understood and readily derived.
 - (2) The arithmetical work required should be done accurately.
- N.B. Questions and exercises suitable for practice and review on the subject-matter of this chapter will be found at pages 189–193.

CHAPTER VIII.

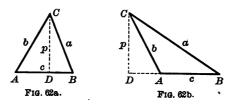
SIDE AND AREA OF A TRIANGLE. CIRCLES CON-NECTED WITH A TRIANGLE.

65. Length of a side of a triangle in terms of the adjacent sides and the adjacent angles. In this proof, regard is paid to the conventions about signs, described in Arts. 36, 37. Let ABC be any triangle. From A draw AD perpendicular to BC, or BC produced. The positive direction of BC is in the direction of V. [At the first reading, only Fig. 61 a may be regarded.]

 $\therefore \cos VCA = \cos (180^{\circ} - ACB) = -\cos ACB. \text{ [Art. 45.]}$

$$\therefore BC = CA \cos ACB + BA \cos CBA;$$

$$a = b \cos C + c \cos B. \tag{1}$$


Therefore, in any triangle each side is equal to the sum of the products of each of the other sides by the cosine of the angle which it makes with the first side.

When C is a right angle, (1) reduces to $a = c \cos B$.

i.e.

Example. Write the corresponding formulas for b and c. Derive these formulas.

66. Area of a triangle. Suppose that the area of a triangle ABC is required. Let the length of the perpendicular DC from

C to AB, or AB produced, be denoted by p, and let the area be denoted by S. The following cases may occur:

I. One side and the perpendicular on it from the opposite angle known, say (c, p).

$$S = \frac{1}{2} cp$$
. [By geometry.] (1)

II. Two sides and their included angle known, say, b, c, A. (See Figs. 62 a, 62 b.)

$$S = \frac{1}{2} cp = \frac{1}{2} c \cdot AC \sin BAC.$$
 [Art. 40.]

$$\therefore S = \frac{1}{2}bc \sin A$$
. [Compare Art. 31.] (2)

III. Three sides known.

$$S = \frac{1}{2}bc \sin A = \frac{1}{2}bc \cdot 2 \sin \frac{1}{2}A \cos \frac{1}{2}A, \qquad [Art. 50.]$$

$$= bc \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-a)}{bc}}. \quad [Art. 62.]$$

$$\therefore S = \sqrt{s(s-a)(s-b)(s-c)}. \qquad (3)$$

That is, the area of a triangle is equal to the square root of the product of half the sum of the sides by the three factors formed by subtracting each side in turn from this half sum. See Art. 34 a for another derivation of this formula.

IV. One side and the angles known, say, a, A, B, C.

$$S = \frac{1}{2} ab \sin C. \qquad \text{Now } b = \frac{a \sin B}{\sin A}.$$

$$\therefore S = \frac{1}{2} \frac{a^2 \sin C \sin B}{\sin A}. \tag{4}$$

Example. Write and also derive the similar formulas in b and c.

EXAMPLES.

- 1. Find the areas of the triangles in Exs. 1-5, Art. 61.
- 2. Find the areas of the triangles in Exs. 1-5, Art. 62.
- 3. Find the areas of the triangles in Exs. 2, 3, Art. 60.
- 67. Area of a quadrilateral in terms of its diagonals and their angle of intersection.

Area
$$ABCD$$
 = area ADC + area ABC .

Area ADC = area ALD + area CLD

$$= \frac{1}{2} AL \cdot LD \sin ALD$$

$$+ \frac{1}{2} CL \cdot LD \sin CLD \text{ [Art. 66 (2).]}$$

$$= \frac{1}{2} (AL + LC)DL \sin ALD, \text{ (since } \sin CLD = \sin ALD)}$$

$$= \frac{1}{2} AC \cdot DL \sin ALD.$$

Similarly,

area
$$ABC = \frac{1}{2} AC \cdot BL \sin BLC = \frac{1}{2} AC \cdot BL \sin ALD$$
.

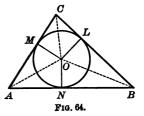
$$\therefore$$
 area $ABCD = \frac{1}{2} AC(DL + LB) \sin DLA = \frac{1}{2} AC \cdot BD \sin DLA$.

.. area of a quadrilateral is equal to one-half the product of the two diagonals and their angle of intersection.

EXAMPLES.

- 1. Find the area of a quadrilateral whose diagonals are 108, 240 ft. long, and inclined to each other at an angle 67° 40′. Find the sides and angles of a parallelogram having these diagonals.
- 2. So also when the diagonals are 360, 570 ft. long, and their inclination is 39° 47'.
- 3. The diagonals of a parallelogram are 347 and 264 ft., and its area is 40,437 sq. ft. Find its sides and angles.
- 4. Solve an isosceles trapezoid, knowing the parallel sides a=682.7 metres, c=1242.6 metres, and the non-parallel equal sides b=d=986.4 metres. Find the angles, the area, the lengths and angle of inclination of the diagonals.

68. The circumscribing circle. Let the radius of the circle described about a triangle ABC be denoted by R. It has been shown (see equation (2), Art. 54) that


$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C}.$$
 (1)

That is, the radius of the circumscribing circle of any triangle is equal to half the quotient of any side by the sine of the opposite angle.

From (2), Art. 66, $\sin A = \frac{2 S}{bc}$. Substitution of this in the first of equations (1), gives

$$R = \frac{abc}{4S} \tag{2}$$

69. The inscribed circle. Let the radius of the circle inscribed in a triangle ABC be denoted by r. Join the centre O and the points of contact L, M, N. By geometry, the angles at L, M, N are right angles. Draw OA, OB, OC.

Area
$$BOC$$
 + area COA

$$+ area AOB = area ABC.$$

$$\therefore \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr = \sqrt{s(s-a)(s-b)(s-c)}, \text{ or } S.$$

$$\therefore \frac{1}{2}(a+b+c)r = S,$$

i.e.

$$\therefore \mathbf{r} = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = \frac{S}{s}.$$
 (3)

That is, the length of the radius of the inscribed circle of a triangle is equal to the number of units in its area divided by half the sum of the lengths of its sides. See reference in Art. 62.

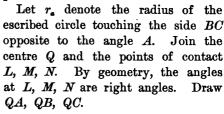
Note. Formula (8), Art. 62, can be readily derived from Fig. 64. By geometry, AN = MA, BL = NB, CM = LC.

Now
$$\tan \frac{1}{2} A = \tan BAO = \frac{NO}{AN}$$

But NO = r, and

$$AN = (AN + BL + CM) - (BL + LC) = s - a.$$

$$\therefore \tan \frac{1}{2} A = \frac{r}{s - a}.$$


i.e.

Similarly,

70. The escribed circles. An escribed circle of a triangle is a circle that touches one of the sides

of the triangle and the other two sides

produced.

F1G. 65.

Area
$$ABQ$$
 + area CAQ - area BCQ = area ABC .

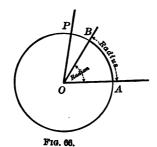
$$\therefore \frac{1}{2}r_{\mathbf{c}}c + \frac{1}{2}r_{\mathbf{c}}b - \frac{1}{2}r_{\mathbf{c}}a = S,$$

$$\therefore \frac{1}{2}(c + b - a)r_{\mathbf{c}} = S;$$

$$(s - a)r_{\mathbf{c}} = S.$$

$$\therefore r_{\mathbf{c}} = \frac{S}{s - a}$$
milarly,
$$r_{b} = \frac{S}{s - b}; \quad r_{c} = \frac{S}{s - c}.$$

Other interesting relations between the sides, angles, and related circles, of a triangle, are indicated in the exercises in the latter part of the book.


EXAMPLES.

- 1. Find the radii of the circumscribed, inscribed, and escribed circles of some of the triangles in Arts. 55-58.
- 2. Find the radii of these related circles of some of the triangles in Exs. 1-3, Art. 66.
- N.B. Questions and exercises suitable for practice and review on the subject-matter of this Chapter will be found at pages 193, 194.

CHAPTER IX.

RADIAN MEASURE.

71. The radian defined. The system of measuring angles with a degree as the unit angle, was described in Art. 11. Since the time of the Babylonians this system has been the common practical method employed. Another method of measuring angles was introduced early in the last century. This method is used to some extent in practical work, and is universally used in the higher branches of mathematics. It is employed, on account of

its great convenience, in the larger and more important part of what is now called trigonometry, namely, the part which is not concerned with the measurement of lines and angles, but which pursues investigation of the properties of the quantities that, so far in this book, have been called the trigonometric ratios. A very little knowledge of the trigonometric ratios is sufficient for the solution of triangles. The more detailed and extended study of angles and their six related numbers, constitutes part of what is sometimes called *Higher Trigonometry*, but, more generally, Analytical Trigonometry. This subject is a large one, and has close connections with many other branches of modern mathematics.

The system of angular measurement now to be described, is sometimes referred to as the theoretical system of measurement. In this system the unit angle is the angle which at the centre of a circle subtends an arc equal in length to the radius. This unit angle is called a radian. Thus, if a circle with any radius be described about O as a centre, and an arc AB be taken equal in length to the radius, then the angle AOB is a radian.

- 72. The value of a radian. In order that a quantity may be used as a unit of measurement, it must have a fixed value; that is, using the customary mathematical phrase, it must be a constant quantity. The proof that a radian has a fixed value, or is a constant quantity, depends upon two geometrical facts, viz.:
- (a) In the same circle two angles at the centre are in the same ratio as their intercepted arcs.
- (b) The ratio of a circumference of a circle to its diameter is the same for all circles. [See Art. 9 (b).]

For the proof of (a), reference may be made to any plane geometry; for instance, to Euclid VI., 33.* The proof of (b) is not contained in all geometries; for instance, Euclid does not give it.† Accordingly, an outline of such a proof and the calculation of π are given in Note C of the Appendix. This note should now be studied by those whose course in plane geometry has not included

^{*} The truth of theorem (a) can easily, by an inductive method, be made evident to students who have not proved the theorem in plane geometry. Thus, on taking angles which are twice, three times, four times, one-half, one-third, etc., of a given angle, it can be seen that their respective arcs bear the same relations to one another.

[†] Euclid lived about 323-283 B.C. Archimedes (287?-212 B.C.), the greatest mathematician of antiquity, measured the length of the circle and the area contained by it, and also measured the surface of the sphere. He showed that the ratio of the circle to its diameter lies between $\frac{2}{1}$ and $\frac{2}{1}$. In 1794 a French mathematician, Adrien Marie Legendre (1752-1833), published his *Elements of Geometry*, in which the works of Euclid and Archimedes on elementary geometry are blended together. The elementary textbooks now in use on the continent of Europe and in the United States, are written mainly on Legendrean lines; the geometrical text-books generally studied throughout the British Empire, are editions of Euclid's *Elements*.

the measurement of the circle. Theorems (a) and (b) are assumed in what follows.

In Fig. 66,
$$\frac{the\ radian\ AOB}{4\ right\ angles} = \frac{arc\ AB}{circumference\ of\ circle}$$
 [By (a).]

$$=\frac{r}{2\pi r}=\frac{1}{2\pi}$$
 [By (b).]

... the radian =
$$\frac{1}{2\pi} \times 4$$
 right angles = $\frac{2}{\pi} \times$ right angle. (1)

Since all right angles are equal, and since each radian is a fixed fraction, namely, $\frac{2}{\pi}$, of a right angle, it follows that all radians are equal. It will be remembered that the unit in the common practical system is one-ninetieth of a right angle.

From (1),

A radian =
$$\frac{180^{\circ}}{\pi}$$
 (2)
= $\frac{180^{\circ}}{3.14159...}$ = 57° 17′ 44″.81 approximately *
= 206265″ approximately.

Ex. With a protractor lay off an angle approximately equal to a radian. Compare it with angle 60° . An angle 60° , at centre of a circle, is subtended by a chord equal in length to the radius; a radian is subtended by an arc equal in length to the radius.

73. The radian measure of an angle. Measure of a circular arc. The radian measure of an angle is the ratio of the angle to a radian. [See Art. 8.] For instance, if an angle A is twice a radian, then its radian measure is 2; if an angle B is two-thirds of a radian, then its radian measure is $\frac{3}{4}$. This is expressed thus:

$$A=2 \text{ radians} = 2^r$$
; $B=\frac{2}{3} \text{ radians} = \frac{2^r}{3}$. (3)

Here, r is used as the symbol for radians just as $^{\circ}$ is used as the symbol for degrees in 23 $^{\circ}$. In general discussions the radian

^{*} The value of the radian has been calculated by J. W. L. Glaisher to 41 places of decimals of a second. [*Proc. Lond. Math. Soc.*, Vol. IV. (1871-73), pp. 308-312.]

measure of an angle is often expressed by Greek letters; thus, the angles α , β , θ , ϕ , etc., contain α , β , θ , ϕ , etc., radians. In these cases the symbol r is usually omitted, but it is always understood that the radian is the unit of measurement.

If the circular arc subtended by an angle is equal in length to twice the radius, then the radian measure of the angle is obviously two; if the arc is one-half the length of the radius, then the angle contains half a radian. The radian measure of an angle may be given a second definition, which depends on Theorem (a), Art. 72. Let AOP, Fig. 66, be any angle, and AOB be a radian. Describe a circle with any radius OA, equal to r, about the vertex O as a centre. Let arc AB be equal to the radius, and draw OB. Then angle AOB is a radian, by the definition in Art. 71.

Now,
$$\frac{\text{angle } AOP}{\text{radian } AOB} = \frac{\text{arc } AP}{\text{arc } AB}$$
 [Th. (a), Art. 72.] (4)

i.e.
$$\frac{\text{angle } AOP}{\text{the radian}} = \frac{\text{arc } AP}{\text{the radius}}.$$
 (5)

That is, the number of radians in an angle, or the radian measure of an angle, is the answer to the question: how many times does any circular arc subtended by it, contain the radius? Thus, for example, the radian measures of the angles which subtend circular arcs equal in length to 2, 3, 1.5, .825 radii are 2, 3, 1.5, .825, respectively.

The circular arc subtended by $360^{\circ} = 2 \pi r$;

hence, radian measure of
$$360^{\circ} = \frac{2 \pi r}{r} = 2 \pi$$
,
and radian measure of $180^{\circ} = \pi$. (6)

This shows that an angle 2π radians is described each time that the revolving line makes a complete revolution. Relation (6), namely,

$$180^{\circ} = \pi \text{ radians}, \tag{7}$$

connects the two systems of angular measurement. By means of (7), an angle expressed in the one system can be expressed in the other. The word *radians* is usually omitted from (7), but is always understood. Relation (7) may also be deduced directly

from (1). Just as angles are considered as unlimited in magnitude, so arcs are considered as unlimited in length.

Note 1. The term circular measure is often used for radian measure, and c is used as the symbol for radians. Thus (3) is written $A = 2^{\circ}$, $B = \frac{2}{3}^{\circ}$.

Ex. 1. Express 30° in radian measure.

Since
$$180^{\circ} = \pi, \ 1^{\circ} = \frac{\pi}{180};$$

$$30^{\circ} = \frac{80}{180} \pi = \frac{\pi}{6}. \quad \text{Also, } 30^{\circ} = \frac{\pi}{6} = \frac{3.14159^{\circ} \dots}{6} = .52359^{\circ} \dots.$$

The term radians and the symbol for radian is usually omitted from the second members of these equations, but is always understood to be there.

Ex. 2. Express 45°, 60°, 135°, 210°, 300°, 330°, 270°, 225°, - 75°, 63°, 27°, - 33°, - 150°, in radian measure, (a) as fractions of π , (b) numerically, on putting $\pi = \frac{2}{3}$.

Ex. 3. Express the angle $\frac{9}{10}\pi$ in degrees.

Here, " $\frac{9}{10}\pi$ " means " $\frac{9}{10}\times\frac{3}{7}$ radians."

Since
$$\pi = 180^{\circ}$$
, $\frac{9}{10} \pi = \frac{9}{10} \times 180^{\circ} = 162^{\circ}$.

Ex. 4. Express the angles $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$, $\frac{\pi}{6}$, $\frac{\pi}{5}$, $\frac{2}{3}\pi$, $\frac{7}{3}\pi$, 10π , 4π , 3π , 6π , $\frac{5}{2}\pi$, $\frac{5}{3}\pi$, in degrees, and their complements and supplements, in radians.

Ex. 5. Express the angles $-\frac{3}{4}\pi$, -5π , $-\frac{4}{3}\pi$, $-\frac{11}{12}\pi$, -25π , in degrees.

Ex. 6. Express 2^r (2 radians) in degrees.

Since
$$\pi = 180^{\circ}$$
,

$$\therefore 1^r = \frac{180^\circ}{\pi};$$

 $\therefore 2^r = 2 \times \frac{180^\circ}{\pi} = 114^\circ 35' 29.6''$ approximately.

Ex. 7. Express $\frac{1}{2}$, 4r, 3r, $\frac{1}{3}$, $\frac{1}{5}$, 5r, 10r, $\frac{1}{10}$, in degrees.

Measure of an arc. Since, by (5),

 $\frac{\text{subtended circular arc}}{\text{radius}} = \text{number of radians in the angle,}$

then length of arc = radius × number of radians in the angle.

If a denote the length of any arc AP, r the radius, θ the radian measure of angle AOP, then

$$a=r\mathbf{0}. \tag{8}$$

In words: The length of any circular arc is equal to the product of the radius and the radian measure of its subtended central angle. For example, the arc of $360^{\circ} = 2\pi$ radii, arc of $180^{\circ} = \pi$ radii, etc. These arcs are usually referred to as the arcs 2π , π , etc.; but it is always understood that the radius is the unit of measurement. The symbol π , which always denotes the incommensurable number $3.14159 \cdots$, can thus be used in three connections in trigonometry:

- (1) With other numbers, as a number simply.
- (2) With reference to angles; in which case it denotes an angle containing π radians, i.e. 3.14159 ... radians.
- (3) With reference to arcs; in which case it denotes an arc containing 3.14159 radii. This is an arc subtended by a central angle of π radians.

The expression $180^{\circ} = \pi$ does not mean $180^{\circ} = 3.14159 \cdots$; it means $180^{\circ} = 3.14159$ radians.

The expression "arc π " does not mean arc 3.1416; it means "arc of 3.1416 radii." In any particular instance, the context will show to what π refers, whether to angle or arc.

It is evident from the second definition of radian measure that, like the trigonometric ratios, the radian measure of an angle is also a ratio of one line to another, namely, the ratio of the subtended circular arc to its radius.

Note 2. If the radius be taken as unit length, then, by (8) or (5), the number of units of length in the arc is the same as the number of radians in the angle.

EXAMPLES.

8. What is the radian measure of the angle which at the centre of a circle of radius $1\frac{1}{2}$ yd. subtends an arc of 8 in.? Also express the angle in degrees.

Let θ denote the radian measure of the angle. Then

$$\theta = \frac{\text{arc}}{\text{rad}} = \frac{8 \text{ in.}}{1.5 \text{ yd.}} = \frac{8}{54} = \frac{4}{27}.$$

$$\pi = 180^{\circ},$$

$$\therefore 1^{r} = \frac{180}{\pi};$$

Since

9. Give the trigonometric ratios of

$$\frac{\pi}{6}$$
, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, π , $\frac{3}{4}\pi$, $-\frac{5}{3}\pi$, $-\frac{7}{4}\pi$, $-\frac{5}{6}\pi$.

- 10. Find the numerical values of (a) $\sin^2 \frac{\pi}{6} + \cos^2 \frac{7}{4}\pi + \tan^2 \frac{2\pi}{3}$,
 - (b) $3\sin\frac{\pi}{8}\pi\cos\frac{17}{8}\pi\tan\frac{23}{8}\pi$, (c) $2\sin\frac{28}{8}\pi\cos\frac{23}{8}\pi\tan\frac{23}{8}\pi$.
- 11. Find the number of radians (a) as fractions of π , (b) numerically (on putting $\pi = \frac{2}{7}$), in each interior and exterior angle of the following regular polygons: pentagon, hexagon, heptagon, octagon, decagon, dodecagon, quindecagon.
- 12. Find the number of radians and the number of degrees in the following angles subtended at the centres of circles: (1) arc 10 in., radius 3.5 in.; (2) arc \(\frac{1}{7}\) ft., radius 2 ft.; (3) arc 1 mi., radius 7920 mi.; (4) arc 250 mi., radius 8000 mi.; (5) arc 10 yd., radius 10 mi.; (6) arc \(\frac{1}{10}\) mi., radius 10 ft.
- 13. What are the radii when an arc 10 in. in length subtends central angles containing 1, 2, 4, 6, 8, 12, 15, 20, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$, radians respectively?
- 14. What are the radii when an arc 10 in. in length subtends central angles containing 1°, 2°, 3°, 16°, 28°, 120°, 30′, 20′, 10′, 10″, 20″, 45″, respectively?
- 15. In a circle whose radius is 10 in., what are the lengths of the arcs subtended by central angles containing 1, 4, 7, 8, 12, .5, .375, .125, radians respectively?
- 16. In the circle in Ex. 15, what are the lengths of the arcs subtended by central angles containing 2°, 25°, 48°, 135°, 250°, 30′, 45′, 30″, 50″, respectively?
- 17. What are the areas of the circular sectors in Exs. 13, 15? [See Note C, 5.]
- N.B. Questions and exercises suitable for practice and review on the subject-matter of this Chapter will be found at pages 194, 195.

CHAPTER X.

ANGLES AND TRIGONOMETRIC FUNCTIONS.

- 74. Chapters II., V., contain little more about the trigonometric ratios than is needed in the solution of triangles. In this and the following chapters a further study of these ratios is made. Although the results of this study are not applicable to such ordinary practical uses as the measurement of triangles, heights, and distances, yet they are very interesting in themselves, and help to give a better and fuller understanding of the connection between angles and trigonometric ratios. These results are also useful in further mathematical work, and in the study of various branches of mechanical and physical science. In reading Chapters X., XI., acquaintance will be made, or renewed, with some important general ideas of mathematics.
- 75. Function. Trigonometric functions. If a number is so related to one or more other numbers, that its values depend upon their values, then it is a function of these other numbers. Thus the circumference of a circle is a function of its radius; the area of a rectangle is a function of its base and height; the area of a triangle is a function of its three sides.

Note. The values of such expressions as 2x - 5, $x^2 - 4x + 7$, $\log_{10} x$, 2^x , depend upon the values given to x. These expressions are, accordingly, functions of x. A function of x is usually denoted by one of the symbols f(x), F(x), $\phi(x)$, etc., which are read "the f-function of x," "the F-function of x " "the F-f

The trigonometric ratios of an angle depend upon the value (i.e. magnitude) of the angle. On this account the trigonometric ratios are very often called the trigonometric functions. They are also frequently called the circular functions.

The trigonometric (or circular) functions include not only the

4. $\cot A = .7$.

six functions previously discussed, namely, sine, eosine, tangent, cotangent, secant, cosecant, but also three others, viz.:

versed sine of $A=1-\cos A$, written vers A, coversed sine of $A=1-\sin A$, written covers A, suversed sine of $A=1+\cos A$, written suvers A.

The versed sine is used not unfrequently; the latter two are rarely used.

EXAMPLES.

Find the remaining eight trigonometric functions when:

- 1. $\sin A = .3$. 2. $\cos A = .4$. 3. $\tan A = -3$.
- 5. $\sec A = -3$. 6. $\csc A = .8$. 7. $\operatorname{vers} A = 1.5$. 8. $\operatorname{vers} A = .5$.
- 9. Show that $\frac{\sqrt{2 \text{ vers } A \text{vers}^2 A}}{1 \text{vers } A} = \tan A.$
 - 10. Show that $\cos \theta$ vers θ (1 + $\sec \theta$) = $\sin^2 \theta$.

76. Algebraical note.

It will be useful to have an idea of the meaning of the word *limit* as used in mathematics. In the geometrical series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{12} + \cdots$$

the sum of 2 terms is $1\frac{1}{2}$, of 3 terms is $1\frac{3}{4}$, of 4 terms is $1\frac{7}{4}$, of 5 terms is $1\frac{1}{4}$. The sum of the series varies with the number of terms taken; and the greater the number of terms taken, the more nearly does their sum approach 2. It is stated in arithmetic and algebra that the sum of an infinitely great number of terms of this series is $1 + (1 - \frac{1}{4})$, i.e. 2. This simply means that, by making the number of terms as great as one please, the sum can be made to approach as nearly as one please to 2; or, in other words, the greater the number of terms taken, the more nearly does their sum approach the value 2. This idea is expressed in mathematics in slightly different language: "The limit of the sum of this series is 2." In geometry (see Note C) it is shown that if a regular polygon be inscribed in a circle, the length of the perimeter of the polygon approaches nearer and nearer to the length of the circle as the number of the sides of the polygon is increased; also the area of the polygon approaches nearer and nearer to the area of the circle. The length of the circle is said to be the limit of the length of the perimeter of the inscribed polygon, and the area of the circle is said to be the limit of the area of the polygon, as the number of its sides is indefinitely increased.

Definition. If a varying quantity approaches nearer and nearer to a fixed quantity (or given constant), so that the difference between the two quanti-

continues and the same, then the fixed quantity . . vier . auty.

. there in inte. and its absolute value either

. S. i. in !. 1 either remains

-.s-ca. :11 :remain ; r.g.

to the a mer does to become; which was the care with a approaches zero. and the second s the state of the state of the state of the limit. In A 1 Committee of the section of the reward infinity the 4 the vision a crises are universitien is the former wassumen. In triums use stated,

It so I hon to no.

See A Court des he offent, a remark If a approaches sero representes uthan as a mar. The same idea is also ex-

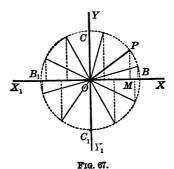
1 mm 4 F = d 2 = w

oriminin di copez pi t por mi il illinito

approaches un infinitei) quat value, a approaches

v = & shop & :0; or, Limit of

the state of the s


 $\frac{1}{v} \inf_{x} \frac{\pi}{u} = 0.$

77. Changes in the trigonometric functions as the angle increases from 0° to 360°. For convenience the revolving line will be kept constant in length in the following explanations. The student should try to deduce the changes in the functions for himself, especially after reading about the changes in the sine.

Change in sin A as A increases from 0° to 360°.

If OP be any position of the revolving line, then

$$\sin XOP = \frac{MP}{OP}$$

Now OP is kept the same in length, say length a, as XOP increases from 0° to 360°. Hence, in order to trace changes in the sine as the angle changes, it is necessary to consider only the changes in MP. Let the angle be denoted by A.

When A = 0, OP coincides with OB, and MP = 0. $\therefore \sin 0^\circ = \frac{0}{a} = 0$.

As OP revolves from OX to OY, MP increases in length and is positive.

When $A = 90^{\circ}$, OP coincides with OC, and MP = a. $\therefore \sin 90^{\circ} = \frac{a}{a} = 1$.

Hence, as the angle A increases from 0° to 90° , its sine increases from 0 to 1.

As OP revolves from OY to OX_1 , MP decreases in length and is positive.

When $A = 180^{\circ}$, OP coincides with OB_1 , and MP = 0. $\therefore \sin 180^{\circ} = \frac{0}{a} = 0$.

Hence, as the angle A increases from 90° to 180°, its sine decreases from 1 to 0.

As OP revolves from OX_1 to OY_1 , MP increases in length and is negative; i.e. MP really decreases.

When $A = 270^{\circ}$, OP coincides with OC_1 , MP = a and is negative.

$$\therefore \sin 270^\circ = \frac{-a}{a} = -1.$$

Hence, as the angle A increases from 180° to 270°, its sine decreases from 0 to -1.

As OP revolves from OY_1 to OX, MP decreases in length and is negative; i.e. MP really increases.

When $A = 360^{\circ}$, OP coincides with OB, and MP = 0. $\therefore \sin 360^{\circ} = \frac{0}{\pi} = 0$. Hence, as the angle A increases from 270° to 360°, its sine increases from - 1 to 0.

If OP continues to revolve, then the sine again undergoes the same changes in the same order, and does so during each successive revolution.

Change in cos A as A increases from 0° to 360°.

In Fig. 67, $\cos XOP = \frac{OM}{OP}$. Hence, in order to trace the changes in the cosine as the angle changes, it is necessary to consider only the changes in OM, since OP is kept at a constant length a.

When $A = 0^{\circ}$, OP coincides with OB, and OM = a. $\therefore \cos 0^{\circ} = \frac{a}{a} = 1$.

As OP revolves from OX to OY, OM decreases in length and is positive.

When $A = 90^\circ$, OP coincides with OC, and OM = 0. $\therefore \cos 90^\circ = \frac{0}{a} = 0$.

Hence, as the angle A increases from 0° to 90°, its cosine decreases from 1 to 0.

As OP revolves from OY to OX_1 , OM increases in length and is negative, i.e. OM really decreases.

When $A = 180^{\circ}$, OP coincides with OB_1 , OM = a, and is negative.

$$\cos 180^{\circ} = \frac{-a}{a} = -1.$$

Hence, as the angle increases from 90° to 180°, its cosine decreases from 0 to -1.

On proceeding in the same manner, the student will discover that:

As A increases from 180° to 270° , $\cos A$ increases from -1 to 0;

As A increases from 270° to 360° , $\cos A$ increases from 0 to 1.

If OP continues to revolve, then the cosine again undergoes the same changes in the same order, and does so during each successive revolution.

Change in $\tan A$ as A increases from 0° to 360° .

In Fig. 67, $\tan XOP = \frac{MP}{OM}$. Hence, in order to trace the changes in the tangent as the angle changes, it is necessary to consider the changes in MP and OM.

When $A = 0^{\circ}$, OP coincides with OB, MP = 0, OM = a. \therefore tan $A = \frac{0}{a} = 0$.

As OP revolves from OX to OY, MP increases and OM decreases, and both are positive; hence, tan A increases.

When $A = 90^{\circ}$, OP coincides with OC, MP = a, OM = 0.

$$\therefore \tan 90^{\circ} = \frac{a}{0} = \infty.$$

As OP revolves from OY to OX_1 , MP decreases and is positive, OM increases in length and is negative; hence, $\tan A$ decreases in magnitude and is negative; i.e. $\tan A$ really increases. [When OP passes at OY from the first quadrant into the second, the value of the tangent changes from $+\infty$ to $-\infty$, for OM changes its sign from + to -.]

When $A = 180^{\circ}$, OP coincides with OB_1 , MP = 0, OM = -a.

$$\therefore \tan 180^{\circ} = \frac{0}{-a} = 0.$$

Hence, as A increases from 90° to 180° tan A increases from $-\infty$ to 0. On proceeding in the same manner the student will discover that:

As A increases from 180° to 270°, $\tan A$ increases from 0 to $+\infty$;

As A increases from 270° to 360°, $\tan A$ increases from $-\infty$ to 0.

If OP continues to revolve, then the tangent again undergoes the same changes in the same order, and does so during each successive revolution.

In the same way as above, the student can trace the changes in $\sec A$, $\csc A$, $\cot A$, as A increases from 0° to 360°. The changes in these functions can also be deduced from the results obtained for $\sin A$, $\cos A$, $\tan A$, and the relations

$$\sec A = \frac{1}{\cos A}, \ \operatorname{cosec} A = \frac{1}{\sin A}, \ \cot A = \frac{1}{\tan A}.$$

The results are collected in the following table: *

^{*}This method of indicating the changes in the trigonometric functions is that given in Loney's *Plane Trigonometry*, p. 57.

Y									
In the second quadrant the					In the first quadrant the				
sine	decreases fro	m 1	to	0	sine	increases	from	0 to	1
cosine	decreases fro	m 0	to -	-1	cosine	decreases	from	1 to	0
tangent	increases fro	m –∞	to	0	tangent	increases	from	0 to) α
cotangent	decreases fro	m 0	to -	00	cotangent	decreases	from	oo to	0
secant	increases fro	m – ∞	to -	-1	secant	increases	from	1 to) œ
cosecant	increases fro	m 1	to	œ	cosecant	decreases	from	oo to	1
<i>X</i> ₁									x
•					<i>0</i>				
In the third quadrant the					In the fourth quadrant the				
sine	decreases fro	\mathbf{m} 0	to -	-1	sine	increases	from	-1 to	0
cosine	increases fro	m -1	to	0	cosine	increases	from	0 to	1
tangent	increases fro	m 0	to	œ	tangent	increases	from	—∞ to	0
cotangent	decreases fro	m ∞	to	0	cotangent	decreases	from	0 to) — œ
secant	decreases fro	m —1	to -	- ∞	secant	decreases	from	oo ta	1
cosecant	increases fro	m –∞	to .	-1	cosecant	decreases	from	-1 to) — œ
$egin{array}{cccccccccccccccccccccccccccccccccccc$									
1 1									

Note. It should be observed that the algebraic sign of each function changes when the function passes through either of the values zero and infinity.

Ex. Trace the changes in the versed sine as the angle changes from 0° to 360° .

78. Periodicity of the trigonometric functions. It has been seen in Arts. 40-44 that all angles coterminal with XOP have the same

ratios. That is, the same ratios as XOP has, are obtained each time that the revolving line returns to the position OP, no matter how many complete revolutions in the positive or negative direction it may make in the meantime. In the last article it was pointed out that the sine, for instance, always goes through all its changes (the

cycle of changes, namely, 0 to 1, 1 to 0, 0 to -1, -1 to 0) in the same order when the turning line revolves from the position OX through the angle 360° or 2π . According to the opening remarks of this article, all angles which differ by any integral multiple (positive or negative) of 2π radians have the same sine. These facts are expressed mathematically by saying:

The sine is a periodic function, and the period of the sine is 2π .

Similar considerations show that the cosine, secant, cosecant, are periodic functions, and that each of them has a period 2π .

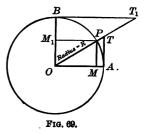
The tangent and cotangent, however (Art. 77), go through all their changes, while the angle increases by 180° or π radians. Hence, the period of the tangent and cotangent is π .

Note 1. These properties may be expressed as follows, m denoting any positive or negative whole number, and x being any angle:

$$\sin x = \sin(2 m\pi + x), \cos x = \cos(2 m\pi + x),$$

and similar for $\sec x$, $\csc x$;

$$\tan x = \tan(m\pi + x), \quad \cot x = \cot(m\pi + x).$$


Note 2. (Algebraic.) When a function f(x) has the property that f(x)=f(x+k), in which x can have any value and k is a constant, the function f(x) is said to be a periodic function. If k is the least quantity for which this equation is true, then k is called the period of the function.

If f(x) = f(x+k), then f(x) = f(x+nk), n being any positive or negative whole number. For f(x+k) = f(x+k+k) = f(x+2k), and so on. Also, since f(x) = f(x+k) for all values of x, this equation holds when x-k is put for x; that is, f(x-k) = f(x). Similarly, f(x-2k) = f(x-k) = f(x), and so on.

Note 3. It has been shown above that each of the trigonometric functions has but one period, namely, π , in the case of the tangent and cotangent, and 2π in the case of each of the other functions. Hence, the trigonometric functions are singly periodic functions. Functions which have more than one period appear in some branches of higher mathematics. For instance, certain functions called elliptic functions have two periods, and, accordingly, are said to be doubly periodic. See Questions on Chap. X., Ex. 16.

79. The old or line definitions of the trigonometric functions. The trigonometric functions were formerly considered as belonging to

arcs rather than to angles, and were certain lines related to these arcs. Let APB be a circle described with any radius R about O as a centre. Let OA, OB, be at right angles to each other, and let AP be any arc having A for its initial point. Draw OP; from P draw PM at right angles to OA; through A draw a tangent AT to meet OP produced in T; through B draw a tangent

 BT_1 to meet OP produced in T_1 ; from P draw PM_1 at right angles

to OB. The lines MP, ΛT , OT, ΛM , were called respectively, the sine, tangent, secant, coversed sine, of the arc ΛP ; and M_1P , BT_1 , OT_1 (the sine, tangent, secant, of the complementary arc PB) were called respectively, the cosine, cotangent, cosecant, of the arc ΛP . These definitions are expressed in words as follows:

The sine of an arc is a straight line drawn from one extremity of the arc perpendicular to the radius passing through the other extremity. The tangent of an arc is a straight line touching the arc at one extremity, and limited by the radius produced through the other extremity. The secant of an arc is the straight line joining the centre of the circle, and the further extremity of the tangent drawn at the origin of the arc.

The sine, tangent, and secant of the complement of an arc are called the cosine, cotangent, and cosecant of that arc.

Since the arc measures the angle at the centre (the number of degrees in this arc is the same as the number of degrees in the subtended angle), these lines were also called the *sine*, *cosine*, ..., of the central angle AOP measured by the arc AP. These lines were known as the trigonometric lines.

Note. By "the length of a line" is meant the number of units of length which it contains. The lengths of these lines depend on the length of the radius of the circle, as well as on the magnitude of the central angle subtended by the arc. Hence it was necessary to specify the radius when the functions were discussed. This inconvenience has led to the adoption of the ratio definitions.

In Fig. 69 let R denote the length of the radius. Then, on using the ratio definitions,

$$\sin AOP = \frac{MP}{R}$$
, $\tan AOP = \frac{AT}{R}$, $\sec AOP = \frac{OT}{R}$.

Hence, the ratio definitions of the trigonometric functions can be derived from the line definitions by dividing the lengths of the lines by the length of the radius. If the length of the radius is unity, then the lengths of the lines used in the line definitions are equal to the ratios in the ratio definitions. This suggests a geometrical or graphical method of representing the trigonometric functions, which is shown in the next article.

80. Geometrical representation of the trigonometric functions. Let a circle of radius equal to unity be drawn. This circle is

called a unit-circle. Let the construction described in Art. 79 be made for each of the angles AOP_1 , AOP_2 , AOP_3 , In any circle the lines M_1P_1 , M_2P_2 , M_3P_3 , ..., are proportional to, and hence represent the sines of these angles,

the lines AT_1 , AT_2 , AT_3 , ...,

represent the tangents of these angles,

the lines OT_1 , OT_2 , OT_3 , ...,

represent the secants of these angles,

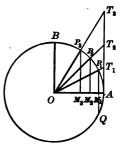


Fig. 70.

and so on for the other ratios. In the unit-circle, however, the measures of these lines, the radius being the unit of length, are the very same numbers as the respective ratios mentioned. In the unit-circle also, the linear measure of the arc is the same as the radian measure of the angle which it subtends. [See Art. 73, Note 2.]

SUGGESTED EXERCISES. (1) By means of the lines on the unit-circle, trace the changes in the trigonometric functions as the angle changes from 0° to 90°. Compare the results with those of Art. 77.

- (2) For particular values of the angle AOP₁, measure the lengths of the related lines on the unit-circle, and compare the results with the values given in the tables of natural sines and tangents.
- Note 1. The origin of the terms circular functions, tangent, secant, is apparent from Art. 79.
- Note 2. The name sine comes from the Latin word sinus, which was the translation of the Arabic word for this trigonometric function. The Arabic word for the sine resembled a word meaning an indentation or gulf.
- Note 3. In trigonometry the Greeks used the whole chord P_1Q instead of the half-chord or sine. For example, Ptolemy, the celebrated astronomer who flourished about 125-151 a.d., gave a table of chords in Book I. of the Almagest, his work on astronomy. The Hindoos, on the other hand, always used the half-chord or sine. The Arabian astronomer, Al Battani (or Albatagnius) (877-929), in his work The Science of the Stars, like the Hindoos determined angles "by the semi-chord of twice the angle," i.e. by the sine of the angle, taking the radius as unity. The translation of this work into Latin in the twelfth century introduced the word sine into trigonometry. The Hindoo sine was finally adopted in Europe in preference to the Greek chord in the fifteenth century. [See Art. 12, foot-note.]

81. Graphical representation of functions.

Graphical representation. The different values which a varying quantity takes, are often represented by means of a curve. Many illustrations can be given of the graphical representation of various things whose values can be denoted by means of *numbers*. For example, the curve in Fig. 71 shows the record of the barometer at Ithaca from May 22 to May 29, 1899.

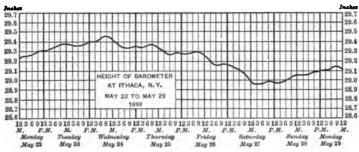
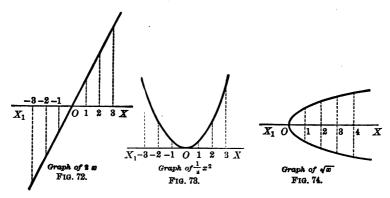



FIG. 71.

In this figure an hour is represented by a certain length, and the lengths representing hours are measured along a horizontal line. Each inch of height of the barometer is also represented by a certain length. At the points corresponding to the successive times perpendiculars are drawn, the lengths of which represent the heights of the barometer at the respective times. (In the figure the position of the horizontal line marked 29, represents the upper ends of heights of 29 inches.) The smooth curve drawn through the extremities of the perpendiculars is the barometric curve or curve of barometric heights for the period May 22 to May 29, 1899. This curve will give to most persons a clearer and more vivid idea of the range and variation of the height of the barometer during this period than a column of numbers of inches of heights is likely to give. If the scales used in representing the hours and the heights of the barometer were changed, then the curve would be somewhat altered, but its general appearance would remain the same.

The graph of a function. The graph of a function of x, say f(x), is obtained in the following way: Take a horizontal line X_1OX ; choose a point O, from which, distances representing the different values of x are measured along the line; measure positive values of x toward the right from O, and negative values toward the left. At particular points of X_1OX , at convenient distances apart, draw perpendiculars to represent the values of f(x) at the respective points. Draw the perpendiculars upward from X_1OX when the values of f(x) are positive, and downward when these values are negative. The smooth curve drawn through the extremities of these perpendiculars is the graph of f(x). The nearer the perpendiculars

are to one another, the better is the graph. For example, the function 2x is represented (for certain values of x) by Fig. 72, the function $\frac{1}{2}x^2$, by Fig. 73, the function \sqrt{x} , by Fig. 74. The pupil is advised to construct these graphs by following the method just described above.

Exs. Draw the graphs for $3x, \frac{1}{4}x, 4x + 5, 4x - 5, \frac{1}{4}x^2, \frac{1}{6}x^8$. $\sqrt{25 - x^2}$.

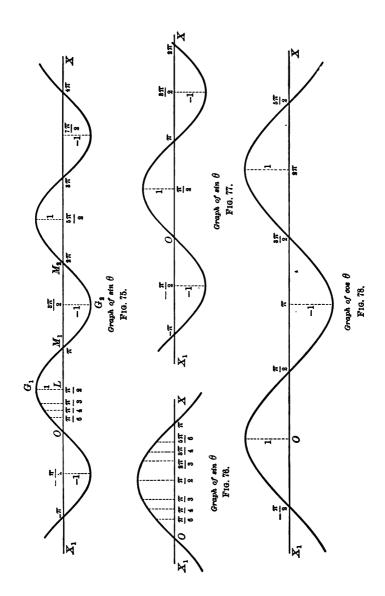
Note. The notion of representing a function by a curve is the fundamental notion in algebraic geometry, or, as it is usually termed, analytic geometry. This geometry was invented, in the form in which it is now known, by the philosopher and mathematician, René Descartes (1596–1650), and first published by him in 1637. This article may be regarded as a short lesson in the subject.

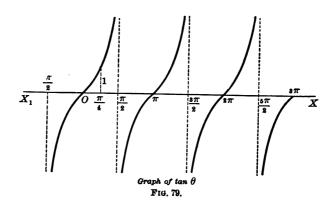
82. Graphs of the trigonometric functions.

Graph of sin 6. In order to draw the graph of $sin \theta$ take distances, measured from O along the line X_1OX , to represent the number of radians in the angle θ . At points (not too far apart) on X_1OX draw perpendiculars to represent the sines of the angles corresponding to these points. The smooth curve drawn through the extremities of these perpendiculars will be the graph of the sine. Thus, for example, let a radian be represented by a unit length, and let the ratio unity be also represented by a unit length. Then (see Fig. 75) angle π (i.e. 180°) is represented by $OM_1 = 3\frac{1}{7}$. The perpendiculars at O and M_1 are zero, since $\sin O = 0$ and $\sin \pi = 0$. Erect perpendiculars equal to ..., $\sin 30^\circ$, $\sin 45^\circ$, $\sin 60^\circ$, $\sin 90^\circ$, ..., for instance, at the points corresponding to ..., $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, ..., (i.e. ..., 30° , 45° , 60° , 90° , ...,) respectively. Do the

same at points between L and M_1 , and draw the smooth curve OG_1M_1 through the extremities of the perpendiculars. The successive perpendiculars from π to 2π are the same in length as those from 0 to π , but negative. From 2π to 4π the values of the sine are repeated in the same order as from 0 to 2π . Hence, the graph of the sine can be obtained by merely successively reproducing the double undulation $OG_1M_1G_2M_2$, as indicated in Fig. 75. This is called the curve of sines, sine curve, or sinusoid.

Note 1. The unit circle (Art. 80) will be of service in drawing the graphs of the sine and the other trigonometric functions. For, if the scales for radians and ratios be those adopted above, then the horizontal distances from O will be equal to the lengths of the arcs (Art. 73, Note 2), and the lengths of the perpendiculars will be the lengths of the lines in the line definitions (Art. 79).

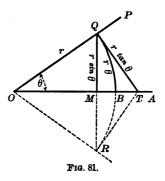

Note 2. If π radians (i.e. 180°) be represented by a length different from that adopted in Fig. 75, then the graph of the sine will differ somewhat from Fig. 75, but its main features will be the same as in that figure. Figures 76 and 77 show portions of the graph of $\sin \theta$ when π is represented on two other scales, while the $\sin \frac{\pi}{2}$ (i.e. 1) is represented by a unit length. Hence the curve of sines, or the sinusoid, may be defined as the curve in which horizontal distances measured on a certain line are proportional to an angle, and the perpendiculars to this line are proportional to its sine.


Ex. Draw the graphs for $\cos \theta$, $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$.

Graph of cos θ . On using the same scales for radians and ratios as those adopted in Fig. 75, the graph of $\cos \theta$ takes the form shown in Fig. 78. It is the same as the graph of $\sin \theta$ in Fig. 75 would be if O and the other points in X_1OX were all moved a distance $\frac{1}{2}\pi$ toward the right. This might have been expected, since the sine of an angle is equal to the cosine of its complement. The values of the sine and the cosine alike range from +1 to -1.

Graph of tan θ . On using the same scales for radians and ratios as have been adopted in Fig. 75, the graph of $\tan \theta$ takes the form shown in Fig. 79.

Graph of sec 0. On using the same scales for radians and ratios as have been adopted in Fig. 75, the graph of $\sec \theta$ takes the form shown in Fig. 80.



EXAMPLES.

- 1. Draw the graph for $\cot \theta$, using the scales adopted in Fig. 75.
- 2. Draw the graph for cosec θ , using the scales adopted in Fig. 75.
- 3. Construct various graphs for $\sin \theta$, $\cos \theta$, $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$, by varying the scales used in representing radians and ratios.
 - 4. Draw graphs for:
 - (a) $\sin x + \cos x$, (b) $\sin x \cos x$, (c) $\sin 2x$, (d) $\cos 2x$.
- 83. Relations between the radian measure, the sine, and the tangent of an acute angle.
 - A. If θ be the radian measure of an acute angle, then $\sin \theta < \theta < \tan \theta$.

Let angle $AOP = \theta$, make the angle AOR equal to θ , and with any radius r describe the arc QBR about O as a centre. Draw the chord QR intersecting OB in M, and draw the tangents at Q and R. By geometry, arc $QB = \operatorname{arc} BR$, QR is at right angles to OB, MQ = MR, the tangents at Q and R intersect at a point T on OA, QT = RT.

Note. If r=1, that is, if QB is an arc of a unit circle, then the linear measures of MQ, BQ, TQ are equal to $\sin \theta$, θ , $\tan \theta$, respectively.

It can be easily shown by mechanical means that

$$MQ < BQ < TQ. \tag{1}$$

For suppose that pegs are placed at Q, R, T, and that a string is drawn taut from Q to R; suppose that another string is drawn from Q to R, but constrained to lie on the circular arc QR, like a string stretched along the tire of a wheel. Also let a third string be drawn taut from R to Q, but passed over the peg at T. Then it is obvious that the first of the three strings is the shortest, and the third is the longest. The second string cannot be drawn away from the arc QBR without being stretched, and if peg T were removed, the string QTR would lie loosely on the arc QBR. Since QMR < QBR < QTR, then MQ < BQ < TQ; that is, $r\sin\theta < r\theta < r\tan\theta$. Hence, $\sin\theta < \theta < \tan\theta$.

The truth of A may be perceived from the following mathematical consideration. Draw the chord QB. Evidently,

area triangle OQB < area sector OQB < area triangle OQT.

That is,
$$\frac{1}{2} OB \cdot MQ < \frac{1}{2} OQ \cdot \operatorname{arc} BQ < \frac{1}{2} OQ \cdot QT;$$

or, $\frac{1}{2} r \cdot r \sin \theta < \frac{1}{2} r \cdot r \theta < \frac{1}{2} r \cdot r \tan \theta.$
Hence, $\sin \theta < \theta < \tan \theta.$ (1)

B. When angle θ approaches zero, each of the ratios $\frac{\sin \theta}{\theta}$, $\frac{\tan \theta}{\theta}$, approaches unity as a limit. On dividing each of the members of the inequality (1) by $\sin \theta$, there is obtained

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

But when θ approaches zero, $\cos \theta$ approaches unity as a limit (Art. 77). Hence, when θ approaches zero, $\frac{\theta}{\sin \theta}$ must also approach unity as a limit; that is, the limit of $\frac{\sin \theta}{\theta}$ is 1.

On dividing the members of (1) by $\tan \theta$, there is obtained

$$\cos\theta < \frac{\theta}{\tan\theta} < 1.$$

As before, when θ approaches zero, $\cos \theta$ approaches unity as a limit, and hence $\frac{\theta}{\tan \theta}$ approaches unity as a limit; *i.e.* the limit of $\frac{\tan \theta}{\theta}$ is 1. These results may be briefly expressed:

$$\underset{\theta}{\operatorname{Limit}} \left(\frac{\sin \theta}{\theta} \right) = 1 ; \quad \underset{\theta}{\operatorname{Limit}} \left(\frac{\tan \theta}{\theta} \right) = 1.$$
 (2)

These are two of the most important theorems in elementary trigonometry; they are frequently employed both in practical work and in pure mathematics.

A very important corollary to (2) is the following:

If θ be the radian measure of a very small angle, then θ can be used for $\sin \theta$ and $\tan \theta$ in calculations.

For instance, $\sin 10''$ to 12 places of decimals is .000048481368. This is also the radian measure of 10'' to 12 places of decimals. The radian measures, sines, and tangents, of angles from 0° to 6° , agree in the first three places of decimals. For

radian measure
$$6^{\circ} = (.10472) = .105$$
; $\sin 6^{\circ} = (.10453) = .105$; $\tan 6^{\circ} = (.10510) = .105$.

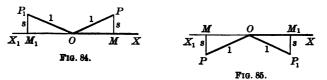
EXAMPLES.

1. Find the angle subtended by a man 6 ft. high at a distance of half a mile.

Here,
$$\theta = \tan \theta = \frac{6}{2640} = \frac{1}{440}$$
.
Now $\frac{1^r}{440} = \frac{1}{440} \times \frac{180^\circ}{\pi} = \frac{7 \times 180^\circ}{22 \times 440} = 7' \cdot 48'' \cdot 6$. Fig. 82.

2. What must be the height of a tower, in order that it subtend an angle 1° at a distance of 4000 ft.?

$$\frac{x}{4000} = \tan 1^{\circ} = \text{radian measure } 1^{\circ} = \frac{\pi}{180} = \frac{22}{7 \times 180}.$$


$$\therefore x = \frac{22 \times 4000}{7 \times 180} = 69.84 \text{ ft.}$$
Fig. 83.

- 3. Verify the statements made in Art. 11, Note 1. (Take $\pi = 3.14159265$.)
- 4. The moon's mean angular diameter as observed at the earth is 31'5'', and its actual diameter is about 2160 miles. Find the mean distance of the moon. How many full moons would make a chaplet across the sky?
- 5. Taking the earth's equatorial radius as 3963 mi., find the angular semi-diameter of the earth as it would appear if observed from the moon. Compare the relative apparent sizes of the moon as seen from the earth, and the earth as seen from the moon.
- 6. The semi-diameter of the earth as seen from the sun is very nearly 8".8. (See Art. 11, Note 1.) What is the sun's distance from the earth, the radius of the earth being assumed as 4000 miles?
- 7. At least how many times farther away than the sun is the nearest fixed star α Centauri, at which the mean distance between the earth and sun (about 92,897,000 miles) subtends an angle something less than 1"? How long, at least, will it take light to come from this star to the earth?
- 8. Find approximately the distance at which a coin an inch in diameter must be placed so as just to hide the moon, the latter's angular diameter being taken 31'5".
- 9. The inclination of a railway to a horizontal plane is 50'. Find how many feet it rises in a mile.
- 10. Find the angle subtended by a circular target 4 ft. in diameter at a distance of 1000 yd.
- 11. Find the height of an object whose angle of elevation at a distance of 900 yd. is 1°.
 - 12. Find the angle subtended by a pole 20 ft. high at a distance of a mile.
 - 13. Exs. 5, 6, Art. 34 b.
- N.B. Questions and exercises suitable for practice and review on the subject-matter of Chapter X. will be found at page 195.

CHAPTER XI.

GENERAL VALUES. INVERSE TRIGONOMETRIC FUNCTIONS. TRIGONOMETRIC EQUATIONS.

- 84. General values. Articles 40-43 should be reviewed carefully before this chapter is taken up. It has been seen in these articles that all co-terminal angles have the same trigonometric ratios. It was also pointed out in Art. 43 that two sets of co-terminal angles, each set being infinite in number, correspond to any given ratio. For example, in Art. 42, Ex. 1, Fig. 38, any angle whose terminal line is either OP or OP_1 has a sine, $\frac{3}{2}$; in Ex. 2, Fig. 39, any angle whose terminal line is either OP or OP_1 has a tangent, $-\frac{3}{4}$. One of the objects of this chapter is to derive expressions or formulas that will include all angles which have the same sine, cosine, tangent, cotangent, secant, cosecant, respectively. These general expressions are sometimes called general values. The student is advised to deduce, after reading Art. 85, the general values for cosine, tangent, etc., without the help of the book.
- 85. General expression for all angles which have the same sine. Let s be the given value of the sine. It is required to find an expression that will represent and include every angle whose sine is s. All the angles whose sines are equal to s can be repre-

sented geometrically, as shown in Art. 42, and indicated in Figs. 84, 85. In Fig. 84, s is positive; in Fig. 85, s is negative.

Let XOP be the least positive angle whose sine is s. Let

XOP = A; then $XOP_1 = 180^{\circ} - A$. Every angle whose terminal line is either OP or OP_1 has its sine equal to s. Now all angles having OP for a terminal line are obtained by adding all numbers of complete revolutions (positive and negative) to XOP. Hence, these angles are represented by

$$m \cdot 360^{\circ} + A$$
, i.e. $2 m \cdot 180^{\circ} + A$, (1)

in which m is any positive or negative whole number.

Similarly, all angles having OP_1 for a terminal line are represented by

$$m \cdot 360^{\circ} + (180^{\circ} - A), i.e. (2 m + 1) 180^{\circ} - A.$$
 (2)

An expression that will include both sets of angles, (1) and (2), will now be obtained. In the expression (1), the coefficient of 180° is even, and the sign of A is positive; in (2), the coefficient of 180° is odd, and the sign of A is negative. Hence, n being any positive or negative whole number, the expression

$$n \cdot 180^{\circ} + (-1)^{n} A,$$
 (3)

includes the angles in (1) and (2). This is, accordingly, the general expression for all the angles which have the same sine as A. If radian measure is used, and $XOP = \alpha$, then (3) takes the form

$$n_{\pi} + (-1)^n a. \tag{4}$$

The result may be thus expressed:

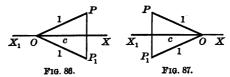
$$\sin A = \sin \{n \cdot 180^{\circ} + (-1)^{n} A\}, \sin \alpha = \sin \{n\pi + (-1)^{n} \alpha\}.$$
 (5)

Since $\csc \theta = \frac{1}{\sin \theta}$, the general expression for all angles which have the same cosecant is the same as the general expression for all angles which have the same sine.

EXAMPLES.

1. Find an expression to include all angles which have the same sine as 135° .

By (3), (4), the expression is
$$n \cdot 180^{\circ} + (-1)^{n} \cdot 135^{\circ}$$
, or $n\pi + (-1)^{n} \cdot \frac{3\pi}{4}$.


9. Find the general value of the angle whose sine is $+\frac{1}{\sqrt{2}}$. Give the four least positive angles which have sines equal to $+\frac{1}{\sqrt{2}}$.

The least angle whose sine is $+\frac{1}{\sqrt{2}}$ is 45°, i.e. $\frac{\pi}{4}$. Hence the general value is

$$n \cdot 180^{\circ} + (-1)^{n} 45^{\circ}$$
, i.e. $n\pi + (-1)^{n} \frac{\pi}{4}$.

To find the four least positive angles, put n=0, 1, 2, 3, in this expression. This gives 45°, 135°, 405°, 495°, i.e. $\frac{\pi}{4}$, $\frac{3}{4}\pi$, $\frac{9}{4}\pi$, $\frac{11}{4}\pi$. These four angles can also be obtained by means of a figure.

- 3. Given that $\sin \theta = \frac{\sqrt{3}}{2}$; find the general value of θ , and find the four least positive values of θ .
 - **4.** As in Ex. 3 when $\sin \theta = -\frac{1}{2}$. **5.** As in Ex. 3 when $\sin \theta = .95372$.
 - **6.** As in Ex. 3 when $\sin \theta = .39741$. **7.** As in Ex. 3 when $\sin \theta = -.57833$.
- 86. General expression for all angles which have the same cosine. Let c be the given value of the cosine. It is required to find an expression to include every angle whose cosine is c. All the angles that have c for a cosine can be represented geometrically, as shown in Figs. 86, 87. In Fig. 86, c is positive; in Fig. 87, c is negative.

Let XOP be the least positive angle whose cosine is c, and let XOP = A (in degree measure) = a (in radian measure). Angle $XOP_1 = -A = -a$, also has its cosine equal to c. All angles whose terminal line is OP, have cosines equal to c. All these angles are included in

$$n \cdot 360^{\circ} + A$$
, i.e. $2 n\pi + a$, (1)

in which n denotes any positive or negative whole number. Also, all angles whose terminal line is OP_1 , have cosines equal to c. All these angles are included in

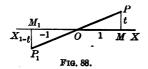
$$n \cdot 360^{\circ} - A$$
, i.e. $2 n\pi - a$, (2)

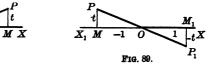
n being as before. Both the expressions, (1), (2), are evidently included in

$$n \cdot 360^{\circ} \pm A$$
, or $2 n\pi \pm a$, (3)

in which n is any positive or negative whole number. Hence (3) is the general expression for all angles which have the same cosine as A or a. The result may be thus expressed:

$$\cos A = \cos (n \cdot 360^{\circ} \pm A); \cos a = \cos (2 n\pi \pm a).$$
 (4)


Since $\sec\theta = \frac{1}{\cos\theta}$, the general expression for all angles which have the same secant is the same as the general expression for all angles which have the same cosine.


EXAMPLES.

1. What is the general value of the angles which have the cosine, $-\frac{1}{2}$? Give the three least positive angles.

The least positive angle whose cosine is, $-\frac{1}{2}$, is 120°. Hence, the general value is, by (3), $n \cdot 360^{\circ} \pm 120^{\circ}$, i.e. $2 n\pi \pm \frac{2}{3}\pi$. On putting n=0 and 1, the three least positive angles are found to be 120° , $360^{\circ} - 120^{\circ}$, or 240° , $360 + 120^{\circ}$, or 480° . These three angles may also be found by means of a figure.

- 2. Given that $\cos \theta = \frac{+\sqrt{3}}{2}$: find the general value of θ , and find the four least positive values of θ .
 - **3.** As in Ex. 2 when $\cos \theta = .99106$. **4.** As in Ex. 2 when $\cos \theta = .46690$.
 - **5.** As in Ex. 2 when $\cos \theta = -.72637$. **6.** As in Ex. 2 when $\cos \theta = -.40141$.
- 87. General expression for all angles which have the same tangent. Let t be the given value of the tangent. It is required to find an expression to include all angles which have the same tangent t.

All the angles which have the same tangent t can be represented geometrically as in Figs. 88, 89. In Fig. 88, the tangent t is positive, in Fig. 89, it is negative.

Let XOP = A (in degrees) = a (in radians). Then

$$XOP_1 = 180^{\circ} + A = \pi + a$$
.

Each angle which has either OP or OP_1 for its terminal line, has its tangent equal to t. All the angles which have OP for a terminal line are included in the expression $m \cdot 360^{\circ} + A$, that is, in

$$2 m \cdot 180^{\circ} + A$$
, or $2 m\pi + a$, (1)

in which m denotes any positive or negative whole number.

All the angles which have OP_1 for a terminal line are included in the expression $m \cdot 360^{\circ} + (180^{\circ} + A)$, that is, in

$$(2m+1)180^{\circ} + A$$
, or $(2m+1)\pi + a$. (2)

Both these sets of angles, (1) and (2), are included in the expression

$$n \cdot 180^{\circ} + A$$
, or $n\pi + a$, (3)

in which n denotes any positive or negative whole number. Hence (3) is the general expression for all angles which have the same tangent as A or a. The result may be thus expressed:

$$\tan A = \tan (n \cdot 180^{\circ} + A); \tan \alpha = \tan (n\pi + \alpha). \tag{4}$$

Since $\cot \theta = \frac{1}{\tan \theta}$, the general expression for all angles which have the same cotangent is the same as the general expression for all angles which have the same tangent.

EXAMPLES.

1. Find the general value of θ when $\tan \theta = 1$. The least positive angle whose tangent is 1, is $\frac{\pi}{4}$. Hence $\theta = n\pi + \frac{\pi}{4}$, in which n is any positive or negative whole number.

Find the general value of θ , and the four least positive values of θ when:

- 2. $\tan \theta = \sqrt{3}$.
- **3.** $\tan \theta = .36727$.
- **4.** $\tan \theta = 2.2998$.

- **5.** $\tan \theta = .71769$.
- **6.** $\tan \theta = -.90040$.
- 7. $\tan \theta = -2.6511$.
- 8. Find the general expression for all angles which have the same sine and cosine.

88. Inverse trigonometric functions. It has been seen that, on the one hand, the value of the sine depends on the value of the angle, and, on the other hand, the value of the angle depends on the value of the sine. If the angle is given, the sine can be determined; if the sine is given, the angle can be expressed. Hence, on the one hand, the sine is a function of the angle, and, on the other hand, the angle is a function of the sine. The latter function is said to be the inverse function of the former. The same holds in the case of each of the other trigonometric functions. Inverse functions are usually denoted by the symbol described below.

The two statements: the sine of the angle
$$\theta$$
 is m , (1)

$$\theta$$
 is the angle whose sine is m , (2)

are briefly expressed:
$$\sin \theta = m$$
, (3)

$$\theta = \sin^{-1} m. \tag{4}$$

The symbols $\sin^{-1} m$, $\cos^{-1} m$, $\tan^{-1} m$, ..., are called inverse trigonometric functions, or anti-trigonometric functions, or inverse circular functions. The symbol " $\sin^{-1} m$ " is read, "angle whose sine is m," "anti-sine of m," "inverse sine of m," "sine minus one m." It should be carefully remembered that here, -1 is not an algebraical exponent, but is merely part of a mathematical symbol; $\sin^{-1} m$ does not denote $(\sin m)^{-1}$, that is, $\frac{1}{\sin m}$; $\sin^{-1} m$ denotes each and every angle whose sine is m. The trigonometric functions are pure numbers; the inverse circular functions are angles, and are denoted by the number of degrees or radians in these angles. For instance, if $\theta = \frac{\pi}{4}$ in (3), then $m = +\frac{1}{-6}$;

if
$$m = +\frac{1}{\sqrt{2}}$$
 in (4), then $\theta = \sin^{-1}\left(\frac{1}{+\sqrt{2}}\right) = n\pi + (-1)^n \frac{\pi}{4}$
= $n \cdot 180^\circ + (-1)^n 45^\circ$,

in which n is any whole number. This example illustrates what has already been noted in Arts. 42, 43, 78, namely:

For a given value of the angle θ , $\sin \theta$ or m has a single definite value.

For a given value of the sine m, $\sin^{-1} m$ or θ has an infinite number of values.

The same is the case with each of the other inverse trigonometric functions. Thus the trigonometric functions are single-valued, and the inverse circular functions are multiple-valued.

For example, if
$$\cos\theta = \frac{\sqrt{3}}{2}$$
, then $\theta = \cos^{-1}\frac{\sqrt{3}}{2} = 2 n\pi \pm \frac{\pi}{6}$ (Ex. 2, Art. 86); if $\theta = \tan^{-1}1$, then $\theta = n\pi + \frac{\pi}{4}$ (Ex. 1, Art. 87), in which n denotes any whole number. The smallest numerical value of an inverse trigonometric function is called the **principal value** of the inverse function. For instance, the principal value of $\sin^{-1}\frac{1}{2}$ is 30° , of $\tan^{-1}(-1)$ is -45° , of $\cos^{-1}(-\frac{1}{2})$ is 120° , of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is -60° .

Note 1. In some books the symbols $arc \sin x$, $arc \cos x$, $arc \tan x$, ..., are used for inverse trigonometric functions. These symbols are read, "arc $\sin x$," The derivation of these names is apparent from Art. 79.

Note 2. Algebraic. If y is a function of x, say f(x), then x also depends on y, and hence, is some function of y. This function of y is called the inverse function of f(x) or y, and is usually denoted by $f^{-1}(y)$. For instance, if $y = f(x) = x^2$, then $x = f^{-1}(y) = \pm \sqrt{y}$.

It will be observed in this simple example that, while the function of x has a single value, the inverse function has two values. In other words, y is a single-valued function of x, and x is a two-valued function of y. As shown above, if $y = \sin x$, then $x = \sin^{-1} y$; y is a single-valued function of x, but x is a multiple-valued function of y.

It appears from Notes 1, 2, that the English notation for inverse trigonometric functions avoids the old geometrical conceptions of trigonometric functions, and is also more general in character. The inverse trigonometric functions are frequently met in calculus and applied mathematics.

89. Sum and difference of two anti-tangents. Exercises on inverse functions.

Find
$$\tan^{-1} m + \tan^{-1} n$$
, and $\tan^{-1} m - \tan^{-1} n$.
Let $x = \tan^{-1} m$, and $y = \tan^{-1} n$.
Then $\tan x = m$, $\tan y = n$.

Now
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
 (Art. 51) $= \frac{m+n}{1 - mn}$

$$\therefore x + y = \tan^{-1} \frac{m+n}{1-mn}; i.e. \tan^{-1} m + \tan^{-1} n = \tan^{-1} \frac{m+n}{1-mn}.$$
 (1)

In a similar manner it can be shown that

$$\tan^{-1} m - \tan^{-1} n = \tan^{-1} \frac{m-n}{1+mn}$$
 (2)

EXAMPLES.

1. Find $\tan^{-1} 2 \pm \tan^{-1} \frac{1}{4}$. (Compare Ex. 1, Art. 51.)

$$\tan^{-1}2 + \tan^{-1}\frac{1}{8} = \tan^{-1}\frac{2 + \frac{1}{8}}{1 - 2 \cdot \frac{1}{8}} = \tan^{-1}7 = n \cdot 180^{\circ} + 81^{\circ}52'11''.5.$$

$$\tan^{-1}2 - \tan^{-1}\frac{1}{8} = \tan^{-1}\frac{2-\frac{1}{8}}{1+2\cdot\frac{1}{4}} = \tan^{-1}1 = n\pi + \frac{\pi}{4}$$

By the tables, taking acute angles only, $\tan^{-1} 2 = 63^{\circ} 26' 4''.3$, $\tan^{-1} 4$ $=18^{\circ}26'6''$, the sum is $81^{\circ}52'10''.3$, and the difference is $44^{\circ}59'58''.3$. The slight discrepancy between the results obtained by the two methods is due to the fact that the angles found by the tables are only approximately correct.

In the following examples test or verify the result in the manner shown in Ex. 1.

- **2.** Find $\tan^{-1} 7 \pm \tan^{-1} 3$.
- 3. Find $\tan^{-1} 2 + \tan^{-1} \cdot 5$.
- 4. Find $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{1}{4}$.
- 5. Find $\tan^{-1}3 + \tan^{-1}2 + \tan^{-1}.6$. (Suggestion. Find tan-13+tan-12, then combine the result with tan-1.6.)
- 6. Find $2 \tan^{-1} 1.5$, $2 \tan^{-1} 3$, $2 \tan^{-1} 2$, $3 \tan^{-1} .2$.
- 7. Show that $2 \tan^{-1} m = \tan^{-1} \frac{2 m}{1 m^2}$. Show that $2 \theta = \tan^{-1} \left(\frac{2 \tan \theta}{1 \tan^2 \theta} \right)$.
- 8. Show that $4 \tan^{-1} \frac{1}{5} \tan^{-1} \frac{1}{2 \cdot 5 \cdot 9} = \frac{\pi}{4}$ when the angles are between 0° and 90°.
 - 9. Find $\sin (\sin^{-1} \frac{1}{2} + \sin^{-1} \frac{1}{3})$ when the angles are between 0° and 90° .
 - 10. When the angles are between 0° and 90°, show that:

(a)
$$\sin (\sin^{-1} m \pm \sin^{-1} n) = m\sqrt{1 - n^2} \pm n\sqrt{1 - m^2}$$
.
(Suggestion. Let $x = \sin^{-1} m$, $y = \sin^{-1} n$.)

- (b) $\cos (\sin^{-1} m \pm \sin^{-1} n) = \sqrt{1 n^2} \sqrt{1 m^2} \mp mn$.
- (c) $\sin (\sin^{-1} m + \cos^{-1} n) = mn \pm \sqrt{1 m^2} \sqrt{1 n^2}$
- (d) $\cos(\sin^{-1}m \pm \cos^{-1}n) = n\sqrt{1-m^2} \mp m\sqrt{1-n^2}$.
- 11. Find $\sin (\sin^{-1} \frac{2}{3} + \sin^{-1} \frac{4}{7})$, $\cos (\sin^{-1} \frac{1}{7} \cos^{-1} \frac{1}{4})$,

 $\sin(\cos^{-1}\frac{2}{5}-\cos^{-1}\frac{3}{10})$, $\sin(\tan^{-1}4-\cos^{-1}\frac{2}{3})$, $\tan(\sec^{-1}3-\sin^{-1}\frac{1}{2})$,

- (a) when the angles are between 0° and 90°, (b) when this restriction is not imposed.
- 12. Two lines, AB, AC, intersect a horizontal line at B, C, making angles whose tangents are $\{1, 3\}$. Find the angle BAC.
- 13. Two lines, LM, LN, make angles whose tangents are $\frac{1}{2}$, $\frac{1}{2}$, with a horizontal line. Find the angle MLN.

is

90. Trigonometric equations. Trigonometric equations have appeared in many of the preceding articles. When an angle, θ say, is the unknown quantity in a trigonometric equation, the complete solution is the general value of θ which satisfies the equation. For example, if α be an angle whose sine is s, then the solution of the equation,

 $\sin \theta = s$, that is, of $\theta = \sin^{-1} s$, $\theta = n\pi + (-1)^n a$, n being any integer.

EXAMPLES.

(See the definition of principal value in Art. 88.)

1. Solve the equation $\cos \theta = \frac{\sqrt{3}}{2}$.

The principal value of θ is $\frac{\pi}{6}$. Hence the complete solution is $\theta = 2 \pi \pi \pm \frac{\pi}{6}$, $\theta = 2 \pi \pi \pm \frac{\pi}{6}$, $\theta = 2 \pi \pi \pm \frac{\pi}{6}$. (See Ex. 2, Art. 86.)

9. Nolve the equation $\theta = \tan^{-1}1$. The principal value is $\frac{\pi}{4}$. $\therefore \theta = n\pi + \frac{\pi}{4}$. (See Ex. 1, Art. 87.)

8. Nolve the equation $\sin x \cos x = -\frac{1}{4} \sqrt{3}$.

 $\therefore \sin x \sqrt{1 - \sin^2 x} = -\frac{1}{4}\sqrt{3}. \qquad \therefore \sin^2 x (1 - \sin^2 x) = \frac{3}{16}.$

 $\therefore \sin^4 x - \sin^2 x + \frac{8}{16} = 0. \qquad \therefore (\sin^2 x - \frac{3}{4}) (\sin^2 x - \frac{1}{4}) = 0.$

 $\therefore \sin^2 x = \frac{3}{4}; \qquad \sin^2 x = \frac{1}{4}.$

Whence (a) $\sin x = \pm \sqrt{\frac{3}{2}}$; (b) $\sin x = \pm \frac{1}{2}$.

The given equation shows that $\sin x$ and $\cos x$ have opposite algebraic signs. Hence, x can only be in the second and fourth quadrants.

.. In (a), $x = 120^{\circ}$, 300°, etc., its general value is $n \cdot 180 - 60^{\circ}$, where n is any positive integer.

In (h), x . 150°, 330°, etc.; its general value is $n \cdot 180^{\circ} - 30^{\circ}$, n being any positive integer.

4. Noive the equation $\sin 5\theta + \sin \theta = \sin 8\theta$.

$$\therefore 2 \sin 3\theta \cos 2\theta = \sin 3\theta. \quad \therefore \sin 3\theta (2\cos 2\theta - 1) = 0.$$

$$\therefore (a) \sin 3\theta = 0, \quad (b) 2\cos 2\theta - 1 = 0.$$

From (a), $3\theta = 0$ ', 180', etc.; the general value of 3θ is $n\pi$ (a being fine up integer).

... $\theta = 0$ ', the poweral value of 3 θ is $\frac{n\pi}{3}$.

#'m'lli (*), '''w # # - \ '' \ # - \ 60°, etc.; its general value is $2 n\pi \pm \frac{\pi}{3}$.

 $\therefore \theta = \pm 30^{\circ}$, etc.; its general value is $n\pi \pm \frac{\pi}{6}$

Find solutions of these equations:

5.
$$3(\sec^2\theta + \cot^2\theta) = 13$$
.

7.
$$\sec x + \tan x = 2$$
.

9.
$$\sec^2 x - \tan x = 3$$
.

11.
$$2\sin x + 5\cos x = 2$$
.

13.
$$4 \sin \theta \cos 2 \theta = 1$$
.

15.
$$3(\tan^2\theta + \cot^2\theta) = 10$$
.

6.
$$\cot \theta - \tan \theta = 2$$
.

8.
$$\sec^2 x + \tan x = 7$$
.

10.
$$\cos \theta - \cos 7 \theta = \sin 4 \theta$$
.

12.
$$\sin 2\theta + \sin 4\theta = \sqrt{2} \cdot \cos \theta$$
.

14.
$$\tan^4 A - 4 \tan^2 A + 3 = 0$$
.

16.
$$\cos^{-1} x - \sin^{-1} x = \cos^{-1} x \sqrt{3}$$
.

N.B. Questions and exercises suitable for practice and review on the subject-matter of Chapter XI. will be found at pages 197-199.

CHAPTER XII.

MISCELLANEOUS THEOREMS AND EXERCISES.

91. Chapters II.-VIII. were devoted to the oldest and the simplest application of trigonometry; namely, the measurement of triangles. Angles and the trigonometric functions connected with angles were more fully discussed in Chapters IX.-XI. This chapter does not introduce any new principles. Most of its articles may be regarded as exercises on the relations shown in Chapters II.-VIII., and more especially on the properties announced in Arts. 44, 50-52. The articles just mentioned should be reviewed. Some of the results in the exercises in this chapter are useful and important; but the student should direct attention mainly to the methods whereby the results are obtained, so that he can proceed quickly and confidently to the solutions of similar These solutions require a ready and an accurate exercises. knowledge of (that is, an intelligent familiarity with) the formulas deduced in the earlier chapters. It is on this account, perhaps, that such exercises are regarded with favor by examiners.

92. Functions of twice an angle. Functions of half an angle.

Relations (5)-(8), Art. 50, (3), Art. 51, give the sine, cosine, and tangent of twice an angle in terms of the functions of the angle. On rearranging (7), (8), Art. 50, there is obtained,

$$\sin A = \sqrt{\frac{1 - \cos 2 A}{2}}, \cos A = \sqrt{\frac{1 + \cos 2 A}{2}};$$
 (1)

whence,

$$\tan A = \frac{\sin A}{\cos A} = \sqrt{\frac{1 - \cos 2 A}{1 + \cos 2 A}}.$$
 (2)

On putting $\frac{1}{2}x$ for A, these relations take the forms

(a)
$$\sin \frac{1}{2}x = \sqrt{\frac{1 - \cos x}{2}}$$
, (b) $\cos \frac{1}{2}x = \sqrt{\frac{1 + \cos x}{2}}$, (c) $\tan \frac{1}{2}x = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$. (3)

In (1), (2), (3), angles A and x denote any angles.

EXERCISES.

- 1. Express the results (1), (2), (3), in words.
- 2. Find $\sin 45^{\circ}$, given that $\cos 90^{\circ} = 0$.

From (3)
$$a$$
, $\sin 45^{\circ} = \sqrt{\frac{1 - \cos 90^{\circ}}{2}} = \frac{1}{\sqrt{2}}$.

- 3. Find sin 22° 30′, cos 22° 30′, tan 22° 30′ by means of (1), (2). Compare the values with those given in the tables.
- 93. Functions of three times an angle. Functions of an angle in terms of functions of one-third the angle.

To express tan 3 A in terms of tan A. Let A denote any angle.

$$\tan 3 A = \tan (2 A + A)$$

$$= \frac{\tan 2 A + \tan A}{1 - \tan 2 A \tan A} = \frac{\frac{2 \tan A}{1 - \tan^2 A} + \tan A}{1 - \frac{2 \tan^2 A}{1 - \frac{2 \tan$$

$$\therefore \tan 3 A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}.$$
 (1)

On putting x for 3A, (1) becomes

$$\tan x = \frac{3 \tan \frac{1}{3} x - \tan^3 \frac{1}{3} x}{1 - 3 \tan^2 \frac{1}{3} x}$$

To express sin 3 A in terms of sin A.

$$\sin 3A = \sin (2A + A) = \sin 2A \cos A + \cos 2A \sin A$$
 [Art. 50, (1)]
= $2 \sin A \cos^2 A + (1 - 2 \sin^2 A) \sin A$
= $2 \sin A (1 - \sin^2 A) + (1 - 2 \sin^2 A) \sin A$.

$$\therefore \sin 3 A = 3 \sin A - 4 \sin^3 A. \tag{2}$$

In a similar way, $\cos 3A$ can be expressed in terms of $\cos A$.

$$\cos 3 A = 4 \cos^3 A - 3 \cos A. \tag{3}$$

EXERCISES.

- 1. Derive formula (3).
- 2. On substituting x for 3A, write (2), (3).
- 3. Express formulas (1), (2), (3), and the results of Ex. 2, in words.
- 4. Assuming the value of sin 30°, calculate sin 90°.

- 5. From cos 30°, derive cos 90°; from tan 30°, derive tan 90°.
- 6. Derive $\sin 180^{\circ}$, $\cos 180^{\circ}$, $\tan 180^{\circ}$, from $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, respectively.
- 7. Derive $\sin 75^\circ$, $\cos 75^\circ$, $\tan 75^\circ$, from $\sin 25^\circ$, $\cos 25^\circ$, $\tan 25^\circ$, respectively, as given in the tables.
 - 8. Derive sin 37° 30′, cos 37° 30′, tan 37° 30′, from the ratios of 75°.

94. Functions of the sum of three angles.

$$\tan(A+B+C) = \tan(\overline{A+B}+C) = \frac{\tan(A+B) + \tan C}{1 - \tan(A+B) \tan C'}$$

$$= \frac{\frac{\tan A + \tan B}{1 - \tan A \tan B} + \tan C}{1 - \frac{\tan A + \tan B}{1 - \tan A \tan B} \cdot \tan C}$$

$$= \frac{\tan A + \tan B + \tan C}{1 - \tan A \tan B \tan C}$$

$$= \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B \tan C - \tan C \tan A}.$$
(1)

Cor. 1. If A = B = C, (1) reduces to (1), Art. 93.

COR. 2. If $A + B + C = 180^{\circ}$, then $\tan(A + B + C) = 0$, and, accordingly, the numerator of (1) is equal to zero. Hence, if A, B, C, are the three angles of a triangle,

$$\tan A + \tan B + \tan C = \tan A \tan B \tan C. \tag{2}$$

Cor. 3. If $A+B+C=90^{\circ}$, then $\tan(A+B+C)=\infty$, and, accordingly, the denominator of (1) is equal to zero. Hence,

 $\tan A \tan B + \tan B \tan C + \tan C \tan A = 1$, when $A + B + C = 90^{\circ}$. (3)

EXERCISES.

1. Show that $\sin(A+B+C) = \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C$.

If $A + B + C = 180^{\circ}$, the first member is zero. Division of the second member by $\cos A \cos B \cos C$ will give relation (2) above.

2. Show that $\cos(A + B + C) = \cos A \cos B \cos C - \cos A \sin B \sin C - \sin A \cos B \sin C - \sin A \sin B \cos C$. What does this become when

$$A + B + C = 180^{\circ}$$
?

If $A + B + C = 90^{\circ}$, the first member is zero. Division of the second member by $\cos A \cos B \cos C$ will give relation (3) above.

[Art. 52 (8)]

3. If
$$A + B + C = 180^{\circ}$$
, prove that $\cos A + \cos B + \cos C = 1$

$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$$
Since $A + B + C = 180^{\circ}$, $\frac{A + B}{2} = 90^{\circ} - \frac{C}{2}.$

$$\cos A + \cos B + \cos C = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2} + \cos C \qquad [Art. 52 (7)]$$

$$= 2 \sin \frac{C}{2} \cos \frac{A - B}{2} + 1 - 2 \sin^2 \frac{C}{2} \qquad [Art. 50 (7)]$$

$$= 1 + 2 \sin \frac{C}{2} \left(\cos \frac{A - B}{2} - \sin \frac{C}{2} \right)$$

$$= 1 + 2 \sin \frac{C}{2} \left(\cos \frac{A - B}{2} - \cos \frac{A + B}{2} \right)$$

$$= 1 + 2 \sin \frac{C}{2} \cdot 2 \sin \frac{A}{2} \sin \frac{B}{2} \qquad [Art. 52 (8)]$$

4. If
$$A + B + C = 180^{\circ}$$
, prove that
$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

5. If $A + B + C = 180^{\circ}$, prove that $\cos A + \cos B - \cos C = -1 + 4\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}$

- **6.** Also, that $\sin(A+B)\sin(B+C) = \sin A\sin C$
- 7. Also, that $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2 \cos A \cos B \cos C$.
- **8.** If $A + B + C = 90^{\circ}$, show that

 $\sin 2A + \sin 2B - \sin 2C = 4\sin A\sin B\cos C.$

 $=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$

- 9. Find $\tan 4A$, $\tan 5A$, $\tan 6A$, $\tan 7A$, in terms of $\tan A$.
- 95. Identities. In the following exercises it is required that the first member be changed into the second member. When it is difficult to do this, help is sometimes afforded by taking some steps in changing the second member into the first. steps to be taken from the first member to the second may be indicated by this means. No general directions can be given concerning the making of these transformations. The two following suggestions, however, are frequently useful:
- (a) Since $\sin^2 A + \cos^2 A = 1$, unity can be substituted for the first expression, and the first expression can be substituted for unity.
- (b) The change of $\tan x$, $\cot x$, $\sec x$, $\csc x$, into their values in terms of the sine and cosine, is sometimes helpful.

The examples in Art. 52 belong to this class.

EXERCISES.

1. Show that
$$\frac{1 - \cos 2 A}{1 + \cos 2 A} = \tan^2 A$$
.

$$\frac{1-\cos 2A}{1+\cos 2A} = \frac{1-(1-2\sin^2A)}{1+(2\cos^2A-1)} = \frac{\sin^2A}{\cos^2A} = \tan^2A.$$

3. Show that
$$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$$

$$\tan^2 A = \frac{\sin^2 A}{\cos^2 A} = \frac{\frac{1}{2}(1 - \cos 2A)}{\frac{1}{2}(1 + \cos 2A)} = \frac{1 - \cos 2A}{1 + \cos 2A}$$

Norm. The fact that $\tan^2 A = \frac{\sin^2 A}{\cos^2 A}$, suggests that the numerator in Ex. 1 be expressed in terms of the sine, and the denominator in terms of the cosine. In Ex. 2, the plan of transformation is more obvious.

Prove the following identities:

3.
$$\frac{\sec^2 B}{2 - \sec^2 B} = \sec 2 B$$
.

4.
$$1-2\sin^2(45^\circ-A)=\sin 2A$$
.

5.
$$\cos^2 A + \sin^2 A \cos 2B = \cos^2 B + \sin^2 B \cos 2A$$
.

6.
$$1 + \cot 2\theta \cot \theta = \csc 2\theta \cot \theta$$
.

7.
$$4 \sin A \sin(60^\circ + A) \sin(60^\circ - A) = \sin 3A$$

8.
$$\cos 5\theta = \cos(3\theta + 2\theta) = 16\cos^5\theta - 20\cos^8\theta + 5\cos\theta$$
.

9.
$$\sin 5\theta = 16 \sin^5 \theta - 20 \sin^8 \theta + 5 \sin \theta$$
.

10.
$$\tan(45^{\circ} + A) - \tan(45^{\circ} - A) = 2 \tan 2 A$$
.

11.
$$\cos^4 B - \sin^4 B = \cos 2 B$$
.

18.
$$\frac{\sin 3 A - \cos 3 A}{\sin A + \cos A} = 2 \sin 2 A - 1.$$

$$13. \frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x.$$

14.
$$4(\cos^6 x + \sin^6 x) = 1 + 3\cos^2 2x$$
.

15.
$$\sin 4 A = 4 \sin A \cos^8 A - 4 \cos A \sin^8 A$$
.

16.
$$\cos 4A = 1 - 8\cos^8 A + 8\cos^4 A$$
.

96. For an acute angle of
$$\theta$$
 radians, $\cos \theta > 1 - \frac{\theta^2}{2}$, $\sin \theta > \theta - \frac{\theta^3}{4}$.

By Art. 50, (7),
$$\cos \theta = 1 - 2 \sin^2 \frac{\theta}{2}$$
; by Art. 83, $\sin \frac{\theta}{2} < \frac{\theta}{2}$

Hence,
$$\cos \theta > 1 - 2\left(\frac{\theta}{2}\right)^2$$
, i.e. $\cos \theta > 1 - \frac{\theta^2}{2}$

By Art. 50, (5),

$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \cos^2 \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \left(1 - \sin^2 \frac{\theta}{2}\right)$$

96, 97.] COMPUTATION OF TRIGONOMETRIC FUNCTIONS. 161

But by Art. 83,
$$\tan \frac{\theta}{2} > \frac{\theta}{2}$$
, and $\sin \frac{\theta}{2} < \frac{\theta}{2}$.
Hence $\sin \theta > \frac{2\theta}{2} \left\{ 1 - \left(\frac{\theta}{2}\right)^2 \right\}$; *i.e.* $\sin \theta > \theta - \frac{\theta^3}{4}$.

97. One method of computing the trigonometric functions. A method of computing the trigonometric functions of angles which are in an arithmetic progression having the common difference D'', will now be shown.

$$\sin (n+1)D'' + \sin (n-1)D'' = 2 \sin nD'' \cos D''. \text{ [Art. 52, (5).]}$$

$$\therefore \sin (n+1)D'' = 2 \sin nD'' \cos D'' - \sin (n-1)D''. \tag{1}$$
Also
$$\cos D'' = \sqrt{1-\sin^2 D''}.$$

Hence, if the sines of the angles D'', 2D'', 3D'', up to nD'' be known, then $\sin(n+1)D''$ can be computed by formula (1). The other functions can be derived from the sine.

The functions for angles from 0° to 45° will serve for the angles from 45° to 90° , since the ratio of an angle is the co-ratio of its complement. When the functions have been computed for angles up to 30° , the computations for angles greater than 30° can be made more easily. For, if A is an angle less than 30° ,

$$\sin(30^{\circ} + A) + \sin(30^{\circ} - A) = 2\sin 30^{\circ} \cos A = \cos A.$$

$$\sin(30^{\circ} + A) = \cos A - \sin(30^{\circ} - A). \tag{2}$$

Similarly,
$$\cos(30^{\circ} + A) = \cos(30^{\circ} - A) - \sin A$$
. (3)

In formula (1) suppose that D'' = 10'', and let its radian measure be denoted by θ .

Then
$$\sin 10'' < \theta$$
, $> \theta - \frac{\theta^3}{4}$ [Arts. 83, 96.] Since $180^\circ = \pi$,

$$10'' = \frac{10 \pi}{180 \times 60 \times 60} = \frac{3.1415926535}{64800} = .000048481368 \dots \text{ radians.}$$

$$\therefore \sin 10'' < .00004848 \cdots, > [.00004848 \cdots - \frac{1}{4}(.00004848 \cdots)^{3}].$$

Hence, to 12 places of decimals, $\sin 10'' = .000048481368$.

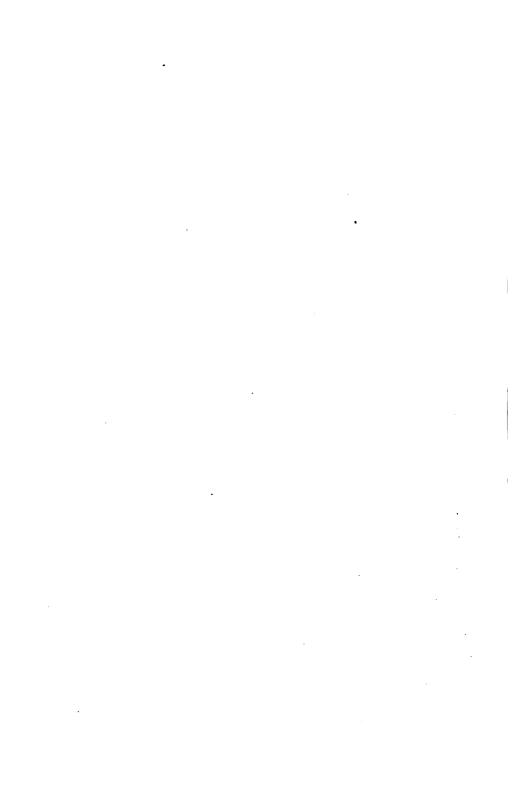
From this, $\sin 20''$ can be found by (1); then $\sin 30''$, then $\sin 40''$, and so on.

The functions of several angles can be found independently of the method just shown. Formulas involving these angles, and Euler's and Legendre's verification formulas, may be used to test the accuracy of the tables. The latter formulas are (see Exs. 7– 10, Ch. XII.),

$$\sin(36^{\circ} + A) - \sin(36^{\circ} - A) - \sin(72^{\circ} + A) + \sin(72^{\circ} - A) = \sin A, (4)$$

$$\cos(36^{\circ} + A) + \cos(36^{\circ} - A) - \cos(72^{\circ} + A) - \cos(72^{\circ} - A) = \cos A. (5)$$

EXERCISES.


- Test the tables of natural sines and cosines by means of formulas (4), (5), taking A equal to 4°, 10°, 15°, and other values.
 Assuming the functions of 1° as known, calculate the sines of 2°, 3°, 4°, 5°, 6°, by formula (1).
 By means of formulas (2). (3), calculate the sines and cosines of 33°, 37°, 41°, 47°, 53°, 67°, and other angles.
- 98. Trigonometry defined. Branches of trigonometry. Before concluding this text-book it may be well to indicate to the student the relation of the part of trigonometry treated in the preceding pages to the subject as a whole, and also to try to give him a little idea of another branch of trigonometry; namely, analytical trigonometry.

In Chapters II.-IX., plane angles, the solution of plane triangles, and applications connected therewith were discussed. This is what is usually known as plane trigonometry. The study of solid angles, the solution of spherical triangles, and the associated practical applications, constitute spherical trigonometry. These branches of mathematics are founded on geometrical considerations, and may be looked upon as applications of algebra to geometry. Pure mathematics is sometimes regarded as consisting of two great branches; namely, geometry and analysis. Analysis includes algebra, infinitesimal calculus, and other subjects which employ the symbols, rules, and methods of algebra, and do not rest upon conceptions of space. (Geometrical ideas may be used in analysis, however, for the sake of exposition and illustration, and, on the other hand, algebra may be employed in expounding the principles of geometry.) Since the eighteenth century, trigonometry has also been treated as a branch of analysis.*

^{*}The meaning of the word "analysis" thus used in mathematics, should not be confounded with the ordinary meaning of the word, or with the meaning attached to the term "analysis" in logic.

Analytical (or algebraical) trigonometry treats of the general relations of angles and their trigonometric functions without any reference to measurement. It discusses, among other things, the development of exponential and logarithmic series, the connections between trigonometric and exponential functions, the expansions of an angle and its trigonometric functions into infinite series, the calculation of π , the summation of series, and the factorization of certain algebraic expressions. The properties stated in formulas, (1)–(3) Art. 44, (1)–(8) Art. 50, (1)–(8) Art. 52, (1)–(3) Art. 93, are analytical properties, and can be derived without the aid of geometry. Analytical trigonometry includes hyperbolic trigonometry; that is, the treatment of what are called the hyperbolic functions.

While the trigonometric functions may be defined and discussed on a geometrical basis, as done in this book (and this is the easiest way for beginners), it may be stated that they can also be defined and their properties deduced on a purely algebraic basis. beyond the scope of this work to show this, but the student may obtain a little light on the subject by reading Notes A and D. It may be stated further, that, under certain restrictions, some of the most important theorems and properties found in analytical trigonometry can be derived easily in an elementary course in the infinitesimal calculus. It has been pointed out that the trigonometric functions can be defined in a purely geometrical manner, and in a purely algebraic manner; they can also be given definitions depending on the infinitesimal calculus, and their properties deduced therefrom. Finally, it may be said that trigonometry is merely a brief chapter in the modern Theory of Functions, and may be defined as the science of singly periodic functions (see Art. 78). For a treatment of trigonometry, either as a part of algebra, or, as "an elementary illustration of the application of the Theory of Functions," see Lock, Higher Trigonometry; Loney (Part II.), Analytical Trigonometry; W. E. Johnson, Treatise on Trigonometry, Chaps. XII.-XXII.; Casey, A Treatise on Plane Trigonometry; Levett and Davison, Elements of Plane Trigonometry (Parts II., III., Real Algebraical Quantity, Complex Quantity); Hayward, Vector Algebra and Trigonometry; Hobson, A Treatise on Plane Trigonometry; Chrystal, Algebra, Part I., Chap. XII.; Part II., Preface, and Chaps. XXIX., XXX.

APPENDIX.

NOTE A.

HISTORICAL SKETCH.

The most ancient mathematical writing known at the present time is an Egyptian papyrus preserved in the British Museum. It is the work of Ahmes, an Egyptian priest who lived at least seventeen hundred years B.C., and is believed to have been founded on older works dating as far back as 3400 B.C. The treatise is concerned with practical mathematics, and merely gives rules for making geometrical constructions and determining areas. The area of an isosceles triangle is obtained by taking the product of half the base and one of the sides. The area of a circle is found by deducting from the diameter one-ninth of its length, and squaring the remainder—a proceeding which is equivalent to taking $\pi=3.1604\cdots$.

The ancient Greeks brought geometry to a high state of perfection, but showed little aptitude for algebra and trigonometry. They were not inclined to be satisfied with approximate results, and regarded the practical application of mathematics as degrading to the science. Trigonometry was invented to supply practical needs, and its development, in the earlier stages, was due to men of the Egyptian, the Hindoo, and the Semitic races.

Astronomy was one of the studies most cultivated by the ancients, but astronomy could not advance, or even become a science, without the aid of trigonometry. Hipparchus of Nicæa in Bithynia, the greatest astronomer of antiquity, who flourished about 160–120 B.C., is regarded as the founder of trigonometry, which he developed solely as a necessary part of astronomy. Moreover, trigonometry continued to exist, for the most part, merely as a handmaid of astronomy for over eighteen hundred years. On this account, the theorems of spherical trigonometry were developed earlier than those of plane trigonometry. Of the writings of Hipparchus, all but one have been lost; but it is known that he constructed a table of chords, which serves the same purpose as a table of natural sines. Hero of Alexandria, who flourished some time between 155 and 100 B.C., and is supposed to have been a native Egyptian, found the area of a triangle in terms of its sides, and placed

engineering and land-surveying on a scientific basis. Ptolemy, a native of Egypt, the records of whose observations cover the period 127-151 a.d., wrote the Syntaxis Mathematica (called the Almagest by the Arabs), a work founded on the investigations of Hipparchus. This was regarded as a kind of astronomical Bible for thirteen hundred years, until the Ptolemaic theory, namely, that the sun, planets, and stars revolve around the earth, was shown to be erroneous by Copernicus and Galileo. The Almagest is divided into thirteen books. Book I. treats of plane and spherical trigonometry, contains a very accurate table of chords, probably derived from Hipparchus, and shows the method of forming the table. It develops spherical before plane trigonometry, and does not give the solution of plane triangles. "Whereas the Ptolemaic system (of astronomy) was . . . overthrown, the theorems of Hipparchus and Ptolemy, on the other hand, will be, as Delambre * says, forever the basis of trigonometry." †

Whatever advance was made in trigonometry during the thousand years after Ptolemy, was due to the Hindoos and Arabs. The Hindoos had tables of the half-chords, or sines, and found that the arc equal in length to the radius contained 3438'. Aryabhatta (476-530 A.D.?) wrote a work containing sections on astronomy, spherical and plane trigonometry. This contained tables of natural sines of the angles in the first quadrant at intervals of $3\frac{3}{4}$ °, the sine being defined as the semi-chord of twice the angle. He gave 3.1416 as the value of π . Other writers were Brahmagupta, born 598, and Bhaskara, about 1150, who gave some trigonometric formulas. The Hindoos knew how to solve plane and spherical right triangles.

During the period of the Dark Ages in Europe, the sciences of the Greeks and Hindoos were preserved, and, to some slight extent, improved by the Arabs. The latter studied trigonometry only for the sake of astronomy. The term sine is due to the celebrated Arabian astronomer Al Battani (Albatagnius), a native of Syria, who died about 930 a.d. Another Arabian astronomer, Abú'l Wafá (940-998), a native of Persia, was the first to introduce the tangent of the arc into the science; he calculated a table of tangents. Among the Western Arabs, to whom the development of the subject is indebted, were Ibn Yúnos of Cairo (died 1008), and Gabir ben Afah, who was born at Seville and who died at Cordova in the latter part of the eleventh century. The latter wrote an astronomy in nine books, the first of which is devoted to trigonometry; he also contributed to the advancement of spherical trigonometry.

The next stage in the history of trigonometry is marked by the introduction of the Arabian works into Europe, and the development of the arithmetical part of the subject, especially the calculation of tables. This was largely

^{*} Jean Baptiste Delambre (1749-1822), a French mathematician who derived important formulas in spherical trigonometry.

[†] Ency. Brit., Art. Ptolemy.

the work of German astronomers, and chiefly of Regiomontanus and Rheticus. Georg Purbach (1423-1461), professor of mathematics and astronomy at the University of Vienna, wrote a table of natural sines computed for intervals of ten minutes, which was published in 1541. Regiomontanus (John Müller) (1436-1476), a native of Franconia, who was one of the greatest mathematicians that Germany has ever produced, in conjunction with Purbach made a translation of the Almagest, which was published in 1496. In this he substituted sines for chords, and gave a table of natural sines. He reinvented the tangent, and made a table of natural tangents for all degrees of the quadrant: this was published in 1490. In 1464 he wrote his De Triangulis, which was the earliest modern systematic exposition of plane and spherical trigonometry. This was printed in 1533, and a second edition appeared in 1561. The only functions introduced were sines and cosines. Copernicus (1473-1543), born in Prussia, wrote a short text-book on the subject about 1500, which was published in 1542. Rheticus (Georg Joachim) (1514-1576), a native of the Tyrol, professor of mathematics at Heidelberg, constructed tables (published in 1596) which are the basis of those still in use. He introduced secants and cosecants, and found the values of $\sin 2\theta$, $\sin 3\theta$ in terms of $\sin \theta$, $\cos \theta$. Hitherto the trigonometric functions had been considered as lines related to circular arcs. Rheticus was the first who constructed the right triangle and used the ratio definitions which depend directly on the angle. These definitions were not adopted, however, and, although introduced two hundred years later by Euler in 1748, they did not come into common use until after the middle of the present century. Pitiscus (1561-1613), professor of mathematics at Heidelberg, made important corrections in and additions to the tables of Rheticus. His trigonometry, published in 1599, contained formulas for $\cos(A \pm B)$, $\sin(A - B)$. Adrian Romanus (1561-1625), a Belgian mathematician, professor at the University of Louvain, first found the formula for $\sin (A + B)$. François Vieta (1540-1603), the greatest French mathematician of the sixteenth century, extended the tables of Rheticus. He made one of the earliest attempts to find the value of π by means of infinite series, and was the first who made any considerable application of algebra to trigonometry. In his work, Ad Angulares Sectiones, he gave formulas for $\sin n\theta$, $\cos n\theta$, in terms of $\sin \theta$, $\cos \theta$. John Napier (1550-1617) discovered the important formulas in spherical trigonometry which are commonly called Napier's Analogies. His invention of logarithms greatly lessened the arithmetical work necessary in astronomy and trigonometry, and thus ushered in a new era in the history of these sciences. Edmund Gunter (1581-1626), professor of astronomy at Gresham College, London, gave the first tables of logarithms of sines and tangents. He first used the terms cosine, cotangent, cosecant. Albert Girard (1590-1634), a Flemish mathematician, published a trigonometry in which the contractions sin, tan, sec were used. William Oughtred (1575-1660), an English mathematician, wrote a trigonometry, published in 1657, containing abbreviations for sine,

cosine, but they did not come into general use until Euler reintroduced them nearly a century later.*

Thus far, trigonometry had been confined to the bounds set by the ancients, namely, to expressing the relations between the sides and angles of plane and spherical triangles, to the solution of triangles, and to the calculation of Trigonometry had been founded on geometrical conceptions, and was regarded mainly as an appendage of geometry and astronomy. In the seventeenth and eighteenth centuries, however, a new branch of the subject, namely, analytical trigonometry, was created, chiefly by the genius of De Moivre and Euler. In the new development of the science, the symbols, rules, and methods of algebra were employed, and geometrical conceptions were disregarded. [See Art. 98 and Note D.] The older trigonometry still retains its position as a necessary department of applied mathematics. The modern analytical (or algebraical) side of the subject, however, has been so highly developed since the middle of the eighteenth century, and its results are so much employed in other branches of mathematical and physical science, that it may be regarded as the larger and more important part of trigonometry.

The new development began with the discovery and investigation of exponential, logarithmic, and trigonometric series. The chief investigators of infinite series were: John Wallis (1616–1703), professor of geometry at Oxford; James Gregory (1638–1675), professor of mathematics at Edinburgh; Nicolaus Mercator, died 1687, a native of Holstein, who settled in England; Isaac Newton (1642–1727); Gottfried William Leibnitz (1646–1716). Several of these series greatly simplified the calculation of π ; some of them were obtained by means of the infinitesimal calculus invented by Newton and Leibnitz. Before 1669, Newton obtained the series for the arc in powers of the sine, and the series for the sine and cosine in powers of the arc. In 1670, Gregory discovered the series for the arc in powers of the tangent, and the series for the tangent and secant in powers of the arc; Leibnitz discovered the first of these independently in 1673.

^{*&}quot;To England falls the honour of having produced the earliest European writers on trigonometry." (Cajori, History of Mathematics, p. 135.) Thomas Bradwardine (1290?-1349), archbishop of Canterbury, Richard of Wallingford (1292?-1336), abbot of St. Albans, John Mauduith (about 1310), fellow of Merton College, Oxford, who were mathematicians and astronomers, left writings containing trigonometry and tables drawn from Arabic sources. The earliest English books in which spherical trigonometry is used, are those of Thomas Digges (died 1595), one of the foremost English mathematicians of the sixteenth century. The earliest book in which plane trigonometry is introduced, is a work published by Thomas Blundeville in 1594.

John Bernoulli (1667-1748), a native of Switzerland, originated the idea of trigonometric functions, and treated trigonometry as a branch of analysis. He was the first to obtain real results by using the symbol $\sqrt{-1}$. Abraham de Moivre (1667-1754), a French Huguenot who settled in London, did much to advance analytical trigonometry, by his use of (so-called) imaginary quantities, and the discovery of the great fundamental theorems, which are called by his name. (See Note D.) Johann Heinrich Lambert (1728-1777), a native of Alsace, developed de Moivre's theorems, introduced the functions called hyperbolic sine and cosine, and showed their connection with the hyperbola. He also found that w is incommensurable. Modern trigonometry is indebted most of all to Leonhard Euler (1707-1783), a native of Switzerland. In his Introductio in Analysin Infinitorum, published in 1748, he systematized and generalized what was then known about algebra and trigonometry. He discussed the expressions of functions in series, and treated trigonometry as a branch of analysis. The latter was effected by regarding trigonometric functions, not as straight lines belonging to arcs, and thus depending on the radius of a circle, but as ratios, and thus as functions of the angle only. He reintroduced the abbreviations now used. [This was done simultaneously in England by Thomas Simpson (1710-1761), professor of mathematics at Woolwich, in his trigonometry, also published in 1748.] Euler first showed the connection between exponential and trigonometric functions (see Note D), and discovered many of their analytical properties.* Since the time of Euler, analytical trigonometry has benefited by the immense advances made in the theory of functions of complex quantities; that is, quantities of the form $x + \sqrt{-1}y$. It is now coming to be regarded, more properly and more logically, as an elementary chapter in the modern theory of functions. See Chrystal, Algebra, Part II., p. vii.†

NOTE B.

1. Projection definition of the trigonometric ratios. [Supplementary to Art. 40.] In Fig. 20, Art. 28, MN is the projection of AB on LR, and NM is the projection of BA on LR. In naming the projection, the points obtained by projection are taken in the same order as the corresponding points in the original line. It is apparent that, for any line, the projections upon a series of parallel lines are equal. For instance, AD = MN, Fig. 20. This may also be seen by drawing a series of lines parallel to LR and projecting AB upon them.

^{*}The first English book in which trigonometry received an analytical treatment was that of Robert Woodhouse (1773-1827), professor at Oxford, which was published in 1809.

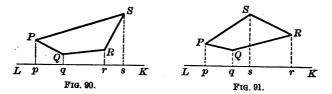
[†] The principal sources from which this historical sketch has been drawn, are Hobson, Article Trigonometry (Encyclopædia Britannica, 9th edition), Ball, A Short History of Mathematics, Cajori, A History of Mathematics.

Suppose that in Fig. 36, Art. 40, YOY_1 be drawn at right angles to X_1OX . Then

OM is the projection of the turning line OP upon OX,

MP is equal to the projection of the turning line OP upon OY.

In two cases in Fig. 36, the projection of OP on OX is in the direction opposite to OX, that is, it is negative; in two cases, the projection of OP on OY is opposite to the direction of Y, that is, it is negative.


The definitions, Art. 40, may now be stated as follows:

$$\sin A = \frac{\text{proj. } OP \text{ on } OY}{OP}. \quad \tan A = \frac{\text{proj. } OP \text{ on } OY}{\text{proj. } OP \text{ on } OX}. \quad \sec A = \frac{OP}{\text{proj. } OP \text{ on } OX}.$$

$$\cos A = \frac{\text{proj. } OP \text{ on } OX}{OP} \cdot \cot A = \frac{\text{proj. } OP \text{ on } OX}{\text{proj. } OP \text{ on } OY} \cdot \cot A = \frac{OP}{\text{proj. } OP \text{ on } OY}$$

These differ from (1), Art. 40, merely in the fact that names are given to OM and MP. The properties shown in Chap. V. follow from these definitions.

Theorem on projection. The projection of one side of a polygon upon any straight line is equal to the algebraic sum of the projections of the other sides.

Let PQRS be any polygon. Draw parallel lines Pp, Qq, Rr, Ss, from its vertices to any straight line LK. Then it is apparent that

$$ps = pq + qr + rs;$$

i.e. proj. PS = proj. PQ + proj. QR + proj. RS.

In Fig. 91, rs, the projection of RS, is negative. This proposition is true whether the projection be oblique or orthogonal. The theorem may also be stated thus:

The projection of a broken line upon a straight line is equal to the projection of the line drawn from the initial point to the terminal point of the broken line. Thus, the projection of the broken line PQRS upon any straight line is equal to the projection of PS upon the same line.

3. The sine and cosine of the sum of two angles. [Supplementary to Art. 46.]

Let the construction be made as indicated in Art. 46. Then

$$\sin(A + B) = \frac{\text{proj. } OP \text{ on } OY}{OP} = \frac{\text{proj. } OQ \text{ on } OY}{OP} + \frac{\text{proj. } QP \text{ on } OY}{OP}$$
[Theorem in (2)]
$$= \frac{\text{proj. } OQ \text{ on } OY}{OQ} \cdot \frac{OQ}{OP} + \frac{\text{proj. } QP \text{ on } OY}{QP} \cdot \frac{QP}{OP}$$

$$= \sin A \cos B + \sin VQP \sin B$$

$$= \sin A \cos B + \cos A \sin B.$$

$$\cos(A + B) = \frac{\text{proj. } OP \text{ on } OX}{OP} = \frac{\text{proj. } OQ \text{ on } OX}{OP} + \frac{\text{proj. } QP \text{ on } OX}{OP}$$

$$= \frac{\text{proj. } OQ \text{ on } OX}{OQ} \cdot \frac{OQ}{OP} + \frac{\text{proj. } QP \text{ on } OX}{QP} \cdot \frac{QP}{OP}$$

$$= \cos A \cos B + \cos VQP \cdot \sin B$$

$$= \cos A \cos B - \sin A \sin B.$$

In the projection proof of the addition formulas for the sine and cosine, A and B can have any magnitudes, positive or negative. The formulas for $\sin(A-B)$, $\cos(A-B)$, can also be derived by substituting -B for +B in the addition formulas.

NOTE C.

[Supplementary to Arts. 9, 72.]

ON THE LENGTH AND AREA OF A CIRCLE.

1. The main purpose of this note is to outline a method of approximating to the value of π ; that is, to the ratio of the length of a circle to its diameter. This method depends only on elementary geometry.* There are simpler and more expeditious methods of finding π , but they require a greater knowledge of mathematics than beginners in trigonometry generally possess.

By the methods of elementary geometry, as shown in the texts of Euclid and others, regular polygons of 3, 4, 5, 6, 15 sides can be inscribed in, and circumscribed about a given circle. Moreover, inscribed and circumscribing regular polygons of 2, 4, 8, 16, ..., times each of those numbers of sides can also be constructed by successively bisecting the arcs subtended by the sides, and joining the consecutive points of division. This process can evidently be

^{*} A section on the mensuration of the circle is given in many geometries. Reference may be made to the geometries of Beman and Smith (Ginn & Co.), Gore (Longmans, Green, & Co.), Phillips and Fisher (Harpers), and others.

carried on until the inscribed and circumscribing polygons have an infinitely great number of sides; that is, regular polygons of 3.2^n , 4.2^n , 5.2^n , 15.2^n sides, n being any positive integer, can be inscribed in, or circumscribed about, a given circle.

- 2. Outline of a proof of the theorem that the lengths of circles are proportional to their diameters.
- (a) The length of a circle is greater than the perimeter of an inscribed polygon, and is less than the perimeter of a circumscribing polygon of any finite number of sides.
- (b) As the number of sides of a regular polygon inscribed in, or circumscribed about, a circle is increased, the length of the perimeter of the polygon approaches nearer and nearer to the length of the circle. In other words, by increasing the number of sides, the difference between the length of the perimeter of the polygon and the length of the circle may be made as small as one please, and this difference approaches zero when the number of sides approaches infinity.
- (c) Let any two circles be taken, and let the radii be R, r. Let AB be a side of a regular polygon of n sides inscribed in the circle having centre O

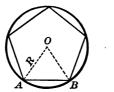


Fig. 92.

and radius R, and let ab be the side of a regular polygon of n sides inscribed in the circle having centre o and radius r. Let P denote the perimeter of the first polygon, p that of the second; let C denote the length of the first circle, and c that of the second. Then

$$P=C-D, \ p=c-d,$$

where D, d may each be made smaller than any assignable quantity by making the number of sides, n, infinitely great.

The polygons are similar, since they are regular and have the same number of sides. Hence, by geometry,

$$\frac{P}{p} = \frac{OA}{oa} = \frac{R}{r};$$
 that is,
$$\frac{C - D}{c - d} = \frac{R}{r}.$$
 From this,
$$rC - rD = Rc - Rd;$$
 whence,
$$rC - Rc = rD - Rd.$$

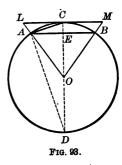
Now, let n become infinitely great. Then the second member becomes smaller than any assignable quantity, since r, R, each remains finite, and d, D, each approaches zero. Hence, when n is infinitely great,

$$rC - Rc = 0. (1)$$

From (1),
$$\frac{C}{c} = \frac{R}{r}$$
, and $\frac{C}{R} = \frac{c}{r}$. (2)

The first of equations (2) may be expressed in words: lengths of circles are to one another as their radii. According to the second equation, the length of the first circle is to its radius as the length of the second circle is to its radius. But these are any two circles. Hence, the ratio of the length of a circle to its radius, and, consequently, to its diameter, is constant. The ratio of the length of a circle to its diameter, which ratio is denoted by π , will now be approximately determined. [See Arts. 9 (b), (c), 72.]

- 3. The formulas used in this determination of π are deduced in problems A, B, that follow:
- A. Given the radius of a regular inscribed polygon, to compute the side of a similar circumscribing polygon.


Let AB be the side of the inscribed polygon, and OC = R, the radius of the circle; let LM be a side of the similar circumscribing polygon. Let LM be obtained by producing OA, OB, to intersect the tangent drawn at C, the middle point of the arc AB.

The triangles LCO, AEO, are similar. Hence,

$$\frac{LC}{AE} = \frac{OC}{OE}.$$

$$\therefore LC = \frac{OC \times AE}{OE} = \frac{R \times AE}{OE}.$$

$$\therefore LM = \frac{R \times AB}{OE}.$$

In the right-angled triangle OAE,

$$OE = \sqrt{\overline{OA}^2 - \overline{AE}^2} = \sqrt{R^2 - \frac{\overline{AB}^2}{4}} = \frac{1}{2}\sqrt{4R^2 - \overline{AB}^2}.$$

$$\therefore LM = \frac{2R \times AB}{\sqrt{4R^2 - \overline{AB}^2}}.$$
(1)

B. Given the radius and the side of a regular inscribed polygon, to compute the side of the regular inscribed polygon of double the number of sides.

In Fig. 93, let AB be the side of a regular inscribed polygon of n sides. Draw AC; then AC is the side of a regular inscribed polygon of double the number of sides, namely, 2n sides. It is required to express AC in terms of the radius R and the side AB. Produce CO to D and draw DA. The triangles ACD, ACE, are similar, since the angles DAC, AEC, are equal,

both being right angles, and the angle ACE is common to both triangles. Hence,

$$CD: AC = AC: CE.$$

$$\therefore \overline{AC^2} = CD \cdot CE = CD(CO - EO) = 2R(R - EO) = R(2R - 2EO).$$
But
$$EO = \sqrt{\overline{OA^2} - \overline{AE^2}} = \sqrt{R^2 - \frac{\overline{AB^2}}{4}} = \frac{1}{2}\sqrt{4R^2 - \overline{AB^2}}.$$

$$\therefore \overline{AC^2} = R(2R - \sqrt{4R^2 - \overline{AB^2}}).$$

$$\therefore AC = \sqrt{R(2R - \sqrt{4R^2 - \overline{AB^2}})}$$
(2)

4. To determine approximately the ratio of the circumference of a circle to its diameter. If the radius is 1, the length of the circle is 2π , and the length of the semicircle is π . Hence the length of the semiperimeter of each inscribed and circumscribing regular polygon, is an approximate value of π , and approaches nearer and nearer to π , the greater the number of sides in the polygon. The side of the inscribed square of the circle of radius 1 is $\sqrt{2}$; its semi-perimeter is 2.8284271. Successive applications of (2), Art. 3, give the sides of the inscribed polygons of 8, 16, 32, ... sides, and successive applications of (1) give the sides of the similar circumscribing polygons. The successive semi-perimeters are obtained by taking one-half the product of the length of a side and the number of sides in the polygons. The results of the computation are given in the following table. The table also gives the results when the initial polygon taken, is the inscribed hexagon. The figures in bold type show the approximations.

Lengths of semi-perimeters of regular inscribed and circumscribing polygons of circle of radius = 1.

Number of Sides.	Inscribed.	CIRCUMSCRIBING.	NUMBER OF SIDES.	Inscribed.	CIBCUMSCRIBING
4 8 16 32 64 128 256 512 1024 2048 4096 8192	2.8284271 3.0614675 3.1214452 3.1365485 3.1403312 3.1412773 3.1415138 3.1415729 3.1415877 3.1415914 3.1415923 3.1415926	4.0000000 3.3137085 3.1825979 3.1517249 3.1441184 3.1422236 3.1417504 3.1416321 3.1416025 3.1415951 3.1415933 3.1415928	6 12 24 48 96 192 384 768 1536	3.1058285 3.1326286 3.1323502 3.1410319 3.1414524 3.1415576 3.1415838 3.1415904	3.4641016 3.2153903 3.1596599 3.1460862 3.1427146 3.1418730 3.1416627 3.1416101 3.1415970

5. Area of a circle. Area of a circular sector. The area of a circumscribing polygon of a circle is equal to one-half the product of the lengths of the perimeter and the radius. When the number of sides of the polygon increases indefinitely, the perimeter of the polygon approaches the length of the circle as its limit, and the area of the polygon approaches the area contained by the circle as its limit. Hence,

area of circle $= \frac{1}{2}$ length of circle \times length of radius;

i.e. area of circle
$$= \frac{1}{2} \times 2 \pi R \times R = \pi R^2$$
.

Since the area of a sector of a circle has the same ratio to the area of the circle that the arc of the sector has to the length of the circle,

area of circular sector $= \frac{1}{2}$ length of arc \times length of radius.

Hence, if θ is the radian measure of the angle of the sector,

area sector =
$$\frac{1}{2} R\theta \times R = \frac{1}{2} R^2 \theta$$
.

[For example, see Art. 73, Ex. 17.]

6. Historical Note. The problem to find a square whose area is equal to that of a given circle, which is commonly known as "squaring the circle," or "the quadrature of the circle," has long been of interest to mathematicians and others. Since the area of a circle is one-half the radius by the length of the circle, and the ratio of the length of the circle to the diameter is a constant, it follows that "squaring the circle" comes to determining this ratio.

The ancient peoples used 3 as the value of π ; see 1 Kings vii. 23. 2 Chron. iv. 2. Ahmes used 3.1604; Archimedes showed, by the method described above, and by successively inscribing and circumscribing regular polygons of 6, 12, 24, 48, 96 sides, that π is between $3\frac{1}{12}$ and $3\frac{1}{12}$. Ptolemy used 317, and Aryabhatta, 3.1416. Adrian of Metz, in 1527, by using polygons up to 1536 sides, showed that the ratio is between $\frac{377}{120}$ and $\frac{333}{100}$. By taking the mean of the numerators for a new numerator, and the mean of the denominators for a new denominator, he obtained the value 355, which is correct to six places of decimals. In 1579, Vieta by using polygons of 32,316 (i.e. 6×2^{16}) sides, got the value of π correctly to ten places. His method is not the same as that of Archimedes. (Professor Newcomb has remarked that the value of π to ten places of decimals would give the circumference of the earth correctly to within a fraction of an inch, if the diameter were accurately known.) In 1593, Adrian Romanus of Louvain computed π to 15 places of decimals and Ludolph van Ceulen (d. 1610), a German residing in Holland, calculated it to 35 places. Hence w is often referred to in Germany as "the Ludolphian number."

The discoveries of trigonometric series (see Note A) made the work of computers easier and more mechanical. In 1699, Abraham Sharp (1651-1742),

found π to 71 places, and in 1706, John Machin, died 1751, professor of astronomy at Gresham College, London, extended the value to 100 places. Fautet de Lagny (1660-1734) carried it, in 1719, to 127 places; Baron Georg Vega (1756-1802), in 1794, to 136 places; Z. Dase of Vienna, in 1844, to 200 places; William Rutherford (1798?-1871), Royal Military Academy, Woolwich, in 1853, to 440 places; Richter, in 1854, to 500 places; and W. Shanks, in 1873, to 707 places of decimals. The laborious calculations of the " π -computers" have neither theoretical nor practical value.

About 1761 Lambert showed that π is incommensurable, and in 1882, F. Lindemann, in Freiburg, showed that it is transcendental, that is, it cannot be a root of any algebraic equation with integral coefficients. See article, "Squaring the circle," Ency. Brit., 9th edition.

N.B. The ratio π is often calculated approximately by means of Gregory's series (discovered in 1670) and certain identities, namely,

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots + \infty, \quad \frac{\pi}{4} = 4 \tan^{-1}\frac{1}{5} - \tan^{-1}\frac{1}{235},$$

$$\frac{\pi}{4} = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{5}, \quad \frac{\pi}{4} = 4 \tan^{-1}\frac{1}{5} - \tan^{-1}\frac{1}{70} + \tan^{-1}\frac{1}{79},$$

in which the principal values of the inverse tangents are taken.

The student is advised to verify these identities, and to find an approximate value of π by means of Gregory's series; also to verify the remark made above concerning the circumference of the earth. Also to show that the method of Ahmes (see Note A) for finding the area of a circle is equivalent to taking $\pi = 3.1604 \cdots$.

NOTE D.

DE MOIVRE'S THEOREM, AND OTHER RESULTS IN ANALYTICAL TRIGONOMETRY.

[In what follows i denotes $\sqrt{-1}$.]

1. De Moivre's Theorem. For all values of n, positive and negative, integral and fractional,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta.$$

(a) When n is a positive integer.

$$(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)$$

$$= \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)$$

$$\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2). \tag{1}$$

On multiplying each member of (1) by $\cos \theta_8 + i \sin \theta_8$, there is obtained, $(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)(\cos \theta_3 + i \sin \theta_3)$ $= \{\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)\}(\cos \theta_3 + i \sin \theta_3)$ $= \{\cos(\theta_1 + \theta_2)\cos \theta_3 - \sin(\theta_1 + \theta_2)\sin \theta_3\}$ $+ i \{\sin(\theta_1 + \theta_2)\cos \theta_8 + \cos(\theta_1 + \theta_2)\sin \theta_3\}$

In a similar way, the product of four or more such factors can be found. Thus, for n factors,

 $=\cos(\theta_1+\theta_2+\theta_3)+i\sin(\theta_1+\theta_2+\theta_3).$

$$(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \cdots (\cos \theta_n + i \sin \theta_n)$$

$$= \cos(\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin(\theta_1 + \theta_2 + \cdots + \theta_n)$$
(2)
If $\theta_1 = \theta_2 = \cdots = \theta_n = \theta$, then (2) becomes

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta. \tag{3}$$

(b) When n is a negative integer, say, -m

$$(\cos\theta + i\sin\theta)^{-m} = \frac{1}{(\cos\theta + i\sin\theta)^m} = \frac{1}{\cos m\theta + i\sin m\theta}$$

$$= \frac{1}{\cos m\theta + i\sin m\theta} \cdot \frac{\cos m\theta - i\sin m\theta}{\cos m\theta - i\sin m\theta} = \frac{\cos m\theta - i\sin m\theta}{\cos^2 m\theta + \sin^2 m\theta}$$

$$= \cos m\theta - i\sin m\theta = \cos(-m)\theta + i\sin(-m)\theta. \tag{4}$$

(c) In (3) let
$$n\theta = \phi$$
; then $\theta = \frac{\phi}{n}$, and (3) becomes
$$\left(\cos\frac{\phi}{n} + i\sin\frac{\phi}{n}\right)^n = \cos\phi + i\sin\phi.$$

On transposing and taking the nth root of each member of this equation, there is obtained

$$(\cos\phi + i\sin\phi)^{\frac{1}{n}} = \cos\frac{\phi}{n} + i\sin\frac{\phi}{n}.$$
 (5)

(The second member of (5) is one of the n roots of the first member.)

(d) When n is a fraction, $\frac{p}{q}$. $(\cos \theta + i \sin \theta)^{\frac{p}{q}} = [(\cos \theta + i \sin \theta)^{p}]^{\frac{1}{q}} = (\cos p\theta + i \sin p\theta)^{\frac{1}{q}}$ $= \cos \frac{p}{q} \theta + i \sin \frac{p}{q} \theta.$ (6)

(The second member of (6) is one of the q roots of the first member.)

For all the roots of the first members of (5), (6), see one of the works referred to in Art. 98. For a geometrical representation of the factors considered above and the results (1)-(6), and for a proof of these results, see Hobson, *Plane Trigonometry*, Chap. XIII.; Chrystal, *Algebra*, Part I., Chap. XII.

2. Following are some of the theorems proved in analytical trigonometry, which will be met by those who read only a little farther in mathematics:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \text{ to } \infty.$$
 (1)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \text{ to } \infty.$$
 (2)

Expansions (1) and (2) were first shown by Newton in 1669.

If
$$e^x$$
 denote the series $1 + x + \frac{x^2}{2!} + \frac{x^8}{3!} + \cdots$ to ∞ , (3)

then $\cos x = \frac{e^{tx} + e^{-tx}}{2}, \sin x = \frac{e^{tx} - e^{-tx}}{2i}.$ (4)

Formulas (4) were first given by Euler. The expansions (1), (2), (3), are also derived in works on the differential calculus. They are convergent for all finite values of x. Either (1), (2), or (3), (4), may be taken as definitions of the sine and cosine.

Hyperbolic functions. The hyperbolic sine and cosine of x, denoted by $\sinh x$, $\cosh x$, may be defined in either one of the following ways, namely,

$$\begin{vmatrix}
\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots & \cos \omega \\
\sinh x = x + \frac{x^8}{3!} + \frac{x^5}{5!} + \cdots & \cos \omega
\end{vmatrix} . \quad . \quad . \quad . \quad (5)$$

and
$$\cosh x = \frac{e^x + e^{-x}}{2}, \sinh x = \frac{e^x - e^{-x}}{2}.$$
 (6)

A geometrical definition may also be given to the hyperbolic functions. In this definition, they are related to the hyperbola in a manner analogous to a way in which the trigonometric (circular) functions are related to a circle. It may be said that the formulas or definitions (1)-(6) may be applied to all numbers x, real, pure imaginary, or complex; *i.e.* quantities of the form $a+b\sqrt{-1}$. (When x is real in (1)-(4), it denotes the radian measure of the angle.) See Chrystal, Part II., Chap. XXIX.

EXERCISES.

- 1. Substitute 1 for x in the series (3), and thus deduce 2.71828 as an approximate value of e.
- 2. (a) Write the series for e^{ix} and e^{-ix} by substituting ix and -ix for x in (3).
 - (b) Then find the value of $\cos x$ in (4), and compare the result with (1).
 - (c) Then find the value of $\sin x$ in (4), and compare the result with (2).
 - 3. Using formulas (4), show that $\cos^2 x + \sin^2 x = 1$.
- **4.** Substitute ix for x in (1) and (2), and compare the results with (5). Substitute ix for x in (4), and compare the results with (6). Each substitution shows that $\cos(ix) = \cosh x$, and $\sin(ix) = i \sinh x$.
- 5. Show by means of the formulas (1)-(4) that the cosine of an angle of magnitude zero is unity, and that the sine of such an angle is zero.
- **6.** By means of (1), (2), find approximate values of $\sin 10^{\circ}$, $\cos 10^{\circ}$, $\sin 15^{\circ}$, $\cos 15^{\circ}$, $\sin 20^{\circ}$, $\cos 20^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$. [First, express the angles in radian measure.]

,

QUESTIONS AND EXERCISES FOR PRACTICE AND REVIEW.

∞ಜ∾

It is not intended that all these exercises be worked by any one person, or by any one class. It is advisable to consider only a few of them on the completion of each chapter, and to use them chiefly in the general reviews. In each set there are a number of direct questions on the principles and theorems explained in the corresponding chapter; these questions will enable the pupil to examine himself concerning his knowledge of the text. Teachers will often do well to take examples from other sources.

CHAPTER I.

- 1. (a) Define and illustrate logarithms, characteristic, mantissa. (b) What is meant by the base of a system of logarithms? (c) What is meant by a system of logarithms? (d) Show that in all systems $\log 1 = 0$, and that the logarithms of all proper fractions are negative.
- 2. What are the advantages gained by the use of logarithms calculated to the base 10? Show that the characteristic of any logarithm to the base 10 may be found by inspection.
 - 3. What are the logarithms to base 3, of 81, $\frac{1}{81}$, $\sqrt[4]{729}$?
- **4.** Find, by using logarithms, the values of the following quantities: (a) $\sqrt{375}$, $\sqrt{37.5}$, $\sqrt{3.75}$, $\sqrt{.375}$, $\sqrt{.375}$, $\sqrt{.375}$; (b) $\sqrt[3]{12.5}$, $\sqrt[3]{1.25}$, $\sqrt[3]{.125}$, $\sqrt[3]{.0125}$; (c) $\sqrt[5]{784}$, $\sqrt[7]{93}$, $\sqrt[9]{834}$; (d) $(19)^{\frac{1}{5}}$, $(212)^{\frac{2}{3}}$, $(31.7)^{\frac{3}{5}}$; (e) 4^{-7} , $5^{-\frac{1}{3}}$, $(67)^{-\frac{2}{3}}$.
- 5. The following calculations are to be made at first without the use of logarithmic tables. The results may then be checked by comparing them with the values obtained by means of the tables. (a) Given $\log 3 = .477121$, find $\log \{(2.7)^8 \times (81)^{\frac{4}{5}} (90)^{\frac{3}{5}}\}$. (b) Given $\log 5 = .69897$, find $\log 200$, $\log .025$, $\log \sqrt[6]{62.5}$. (c) Given $\log 2 = .30103$, find the logarithms of 5, $\frac{1}{15}5$, $\sqrt[4]{.005}$. (d) Given $\log 2 = .3010$ and $\log 3 = .4771$, find $\log \frac{1}{24}$, $\log .25$,

log 16.2, log $\sqrt{\frac{2}{8}}$. (e) Given log 2 = .3010, log 3 = .4771, log 5 = .6990, log 7 = .8451, find the logarithms of $\frac{2}{18}$, 175, .0054, $(12)^{\frac{2}{3}}$, $\sqrt[4]{35}$. (f) Given log 8 = .903, log 9 = .954, find the logarithms of 2, 3, 12, 500, .075.

- 6. Find by logarithms the values of the following quantities:
- (a) $372.48 \times (\frac{134}{134})^{60}$, $(.006)^5 \div 125$; (b) $3487 \times (.00345)^{\frac{1}{2}} \div (-83)^{\frac{1}{3}}$; (c) $\sqrt[5]{\frac{5}{7}} \div \sqrt[7]{\frac{9}{23}}$; (d) $\left(\frac{345.4 \times 958.3}{23.4 \times 317.9}\right)^{\frac{1}{2}}$, $\left(\frac{417.9 \times 813.1}{964.7 \times 313.2}\right)^{\frac{1}{2}}$; (e) $(23\frac{3}{7})^{\frac{2}{3}} \times (41\frac{3}{8})^{\frac{3}{5}} \div (7.93)^{3.5}$.
- 7. Find an approximate value of x in each of the following equations: (a) $x^2 = 237$, (b) $x^3 = 17$, (c) $x^{-2} = 17$, (d) $x^{-3} = 4\frac{1}{2}$, (e) $2^{2x} = 9$, (f) $3^{5x} = 197$, (g) $3^x = 32$, (h) $(25)^{3-2x} = 2^{x+3}$, (i) $\log(x^2) + \log(2x) + 1 = 0$.
 - 8. If the logarithm of 27 is $-\frac{3}{5}$, what is the base?

CHAPTER II.

- 1. If on a map a square inch represents 10 acres, how many yards are represented by the diagonal of a square inch?
- 2. Explain the English and French methods of measuring angles, and show how, when the measure of an angle according to either method is known, its measure according to the other may be found. Express 100° in grades. (See Note 2, Art. 11.)
 - 3. If A is an acute angle, show that $\tan A$ is greater than $\sin A$.
- 4. By aid of an equilateral triangle find the numerical values of the six trigonometric ratios of 60° and 30° . Find the numerical values of the ratios of 45° .
 - 5. Show that (a) $\sqrt{\frac{\sin 45^{\circ} \sin 30^{\circ}}{\sin 45^{\circ} + \sin 30^{\circ}}} = \sec 45^{\circ} \tan 45^{\circ}$,

(b)
$$\frac{1+\cot 60^{\circ}}{1-\cot 60^{\circ}} = \left\{ \frac{1+\cos 30^{\circ}}{1-\cos 30^{\circ}} \right\}^{\frac{1}{2}}$$
,

- (c) $\tan^2 60^\circ 2 \tan^2 45^\circ = \cot^2 30^\circ 2 \sin^2 30^\circ \frac{2}{3} \csc^2 45^\circ$.
- 6. The sine of an angle defined as a ratio being less than unity, explain why the tabular logarithms of the sines of angles are expressed with whole numbers as characteristics. Given $\log \tan 18^\circ = 9.51178$, show what the tabular logarithm of cot 18° must be.
- 7. (a) Given $\log 2 = .30103$, $\log 3 = .47712$, find $\log \sin 60^{\circ}$ and $\log \tan 30^{\circ}$. (b) Given $\log 5 = .69897$, find the logarithmic sine of 30°, and the logarithmic cosine of 45°.
- 8. Compute the trigonometric ratios of A in a right triangle $ABC(C=90^{\circ})$, when $b=\frac{1}{2}c$.
- **9.** Construct the following right-angled triangles: (a) ABC, in which, $C = 90^{\circ}$, c = 5, $\cot A = \frac{7}{3}$; (b) when one of the legs is 3, and the sine of the adjacent acute angle is $\frac{2}{3}$; (c) hypotenuse 4, and sine of one of the acute

- angles $\frac{2}{3}$; (d) $C = 90^{\circ}$, $\sin A = \frac{2}{3}$, b = 7; (e) $C = 90^{\circ}$, $\csc A = \frac{2}{3}$, b = 10; write the values of $\sin A$, $\cos A$, $\tan A$; (f) $C = 90^{\circ}$, $\cos A = \frac{2}{3}$, a = 9.
 - 10. In the triangle ABC, $C = 90^{\circ}$, $\tan B = \frac{13}{12}$. If AB = 510 ft., find AC.
 - 11. In ABC, $C = 90^{\circ}$, BC = 10 ft., $\tan B = 1.05$; find the other sides.
- 12. The string of a kite is 250 ft. in length. How high is the kite above the ground when the string, supposed stretched quite tight, makes with the ground an angle whose tangent is ²/₄?
- 13. ABC is an isosceles triangle, right-angled at C; D is the middle point of AC. Prove that DB divides the angle B into two parts whose cotangents are as 2:3.
- 14. (a) Given L. $\cos 20^\circ = 9.97$ and L. $\cot 20^\circ = 10.44$; find each of the other logarithmic ratios of 20° . (b) Given L. $\sin 40^\circ = 9.808$, L. $\tan 40^\circ = 9.924$; find $\log \cot 40^\circ$, $\log \cos 40^\circ$, $\log \sec 40^\circ$, $\log \csc 40^\circ$.

15. If
$$\tan \theta = \frac{2\sqrt{ab}\sin\frac{C}{2}}{a-b}$$
, find θ when $a = 5$, $b = 2$, $C = 120^{\circ}$.

16. Calculate $\sin^8 23^\circ \times \sqrt{27.268} \div 2 \cos^2 48^\circ$.

:=

:=

- 17. Find x in the equations: (a) $x \sin 74^{\circ} = 235 \tan 37^{\circ} \cos 63^{\circ}$, (b) $x^2 \cos 39^{\circ} = 47.5 \sin^2 46^{\circ} \sec^2 64^{\circ}$.
- 18. Solve $(\sin 8^{\circ} + \cos 8^{\circ})^{2x} = 2 \sin 16^{\circ} (\tan 32^{\circ})^{x}$.

CHAPTER III.

- 1. State what parts of a right plane triangle must be given that it may be constructed, and show how a right triangle may be solved, in each of the four possible cases.
- 2. Derive the formulas for computing B, a, and c of a right triangle when $C=90^{\circ}$, and A and b are given. Also find a formula that shall include only the required parts.
- 3. In ABC, $C=90^{\circ}$, b=22 ft., and $\sin A=.42$. Find $a, c, \sin B$, and the area.
- 4. In ABC, $C = 90^{\circ}$, $\cos A = \frac{7}{10}$, c = 40 ft. Find the values of $\cos B$, $\cot B$, a, b, and the area.
- 5. Solve the following right-angled triangles by (1) making an off-hand estimate, (2) measuring on a drawing made to scale, (3) computing without logarithms (four-place tables), (4) computing with logarithms. Check the results by computation. If a solution is impossible, explain why it is so. (Each triangle is denoted by ABC, and $C=90^{\circ}$.) (i.) a=45, b=62; (ii.) a=685, $B=34^{\circ}47'25''$; (iii.) c=560, a=310; (iv.) c=327, b=450; (v.) c=520, $A=36^{\circ}40'20''$; (vi.) b=720, $B=61^{\circ}24'30''$; (vii.) c=425, $B=32^{\circ}45'35''$; (viii.) a=11524, b=35976; (ix.) a=67213, b=75324; (x.) c=35421, b=23462.

- 6. Two sides of a triangle are as 5:9, and the included angle is a right angle. Find the other angles.
- 7. Find the acute angles of a right-angled triangle whose hypotenuse is six times as long as the perpendicular let fall upon it from the opposite angle.

CHAPTER IV.

- 1. (a) Derive the formula for the area of a right triangle in terms of (i.) an angle and its opposite side, (ii.) an angle and its adjacent side. (b) One side of a triangle is seven times another, and the included angle is a right angle. Find the other angles.
- 2. Show how an isosceles triangle may be divided into right triangles, and how it may be solved by aid of these right triangles when the following elements are given: (a) Base and vertical angle, (b) base and side, (c) side and vertical angle, (d) base and perpendicular from vertex on the base. Discuss any other possible cases.
- 3. Solve the isosceles triangles (a) whose base is 126 ft., and vertical angle is 127° ; (b) whose base and perpendicular on it from the vertex are each 721.34 vd.
- **4.** (a) Find the area of a regular octagon the side of which is 26 yd. (b) Find the side of a regular pentagon inscribed in a circle whose radius is 43 ft. (c) If a regular pentagon and a regular decagon have the same perimeter, prove that their areas are as $2:\sqrt{5}$.
- 5. (a) At 120 ft. distance, and on a level with the foot of a steeple, the angle of elevation of the top is 62° 27'; find the height. (b) From a cliff 330 ft. high the angle of depression of a boat at sea is 40° 35' 25"; how far is the boat from the foot of the cliff?
- 6. When the altitude of the sun is 30° the length of the shadow cast by Bunker Hill monument is 381 ft. What is the height of the monument?
- 7. The angles of depression from the top of a tower 48.6 ft. high to two points, on a level with its base and in line with the tower, are 45° and 30° respectively. Find the distances of each point from the other and from the top of the tower.
- 8. A pole 40 ft. high is erected at the intersection of the diagonals of a square courtyard. When the sun's altitude is 43° 40′, the shadow just reaches a corner of the yard. Find the length of the side of the square.
- 9. (a) When the altitude of the sun was 67° 30′ 45″ the length of the shadow of a perpendicular pole was 73.4 ft. Find the length of the shadow when the sun's altitude is 35°. (b) The shadow of a tower is observed to be half the known length of the tower, and some time after to be equal to the full length. How much will the sun have gone down in the interval?

- 10. A flagstaff which leans to the east is found to cast shadows of 198 ft. and 202 ft., when the sun is due east and west respectively, and his altitude is 7°. Find the length of the flagstaff and its inclination to the vertical.
- 11. What angle will a flagstaff 24 ft. high, on the top of a tower 200 ft. high, subtend to an observer on the same level with the foot of the base, and 100 yds. distant from it?
- 12. Looking out of a window with his eye at the height of 15 ft. above the roadway, an observer finds that the angle of elevation of the top of a telegraph post is 17° 18′ 35″, and that the angle of depression of the foot of the post is 8° 32′ 15″. Calculate the height of the telegraph post and its distance from the observer.
- 13. A man in a balloon, when it is one mile high, finds the angle of depression of an object on the level ground to be 35° 20′, then after ascending vertically and uniformly for 20 min., he finds the angle of depression of the same object to be 55° 40′. Find the rate of ascent of the balloon in miles per hour.
- 14. A man observes the elevation of a mountain top to be 15°, and after walking 3 mi. directly toward it on level ground, the elevation is 18°. Find his distance from the mountain.
- 15. From a boat the angle of elevation of the highest and lowest points of a flagstaff, 30 ft. high, on the edge of a cliff are observed to be 46°12′ and 44°13′. Determine the height of the cliff and its distance.
- 16. The angles of elevation of the top of a tower, observed at two points in the horizontal plane through the base of the tower, are $\tan^{-1}\frac{3}{4}$ and $\tan^{-1}\frac{5}{13}$; the points of observation are 240 ft. apart, and lie in a direct line from the base. Find the height of the tower.
- 17. A person standing due south of a lighthouse observes that his shadow cast by the light at the top is 24 ft. long; on walking 100 yd. due east he finds his shadow to be 30 ft. Supposing him to be 6 ft. high, find the height of the light from the ground.
- 18. An observer is 384 yd. due south of a point from which a balloon ascended; he measures a horizontal base due east, and at the other extremity finds the angle of elevation to be 60° 15'. Find the height of the balloon.
- 19. A surveyor starts from A and runs 766 yd. due east to B, thence 622 yd. N. 20° 30′ E. to C, thence 850 yd. N. 41° 45′ W. to D, thence S. 42° 35′ W. to E. Find the distance and bearing of A from E, and determine the area of the field ABCDE.
- 20. A surveyor runs 253 yd. N.E. by E., thence N. by E. 212 yd., thence W.N.W. 156 yd., thence S.W. by S. 210 yd., thence to the starting-point. Find the bearing and distance of the starting-point from the last station, and determine the area of the field which the surveyor has gone around.

CHAPTER V.

- 1. Define and illustrate angle, negative angle, complement of an angle, supplement of an angle, quadrant, angle in the third quadrant.
- 2. Define and illustrate the six trigonometric ratios. Find the greatest and least values that each of them can have. Arrange in tabular form the algebraic signs of the trigonometric ratios of an angle in each quadrant.
- 3. Explain how the trigonometric ratios of an angle of any magnitude, positive or negative, can be found, (a) by means of tables which give these ratios for angles up to 90° only, (b) by means of tables which give these ratios for angles up to 45° only.
- 4. Prove that if two angles have the same sine, and also any of the other five trigonometric ratios (with one exception) the same, they will differ by a multiple of 360°.
- 5. State and prove the chief relations which exist between the trigonometric ratios of any angle A.
- 6. Express the trigonometric ratios of $90^{\circ} A$, $90^{\circ} + A$, $180^{\circ} A$, $180^{\circ} + A$, $270^{\circ} A$, $270^{\circ} + A$, $360^{\circ} A$, -A, in terms of the trigonometric ratios of A.
- 7. Name three pairs of trigonometric ratios such that the product of each pair shall equal 1; one pair, the sum of whose squares shall equal 1; two pairs, the difference of whose squares shall equal 1.
- 8. Compare the trigonometric ratios of any angle (a) with those of its complement, (b) with those of its supplement.
- 9. Prove that $\sin A = \cos A \tan A$; $\sec^2 A = 1 + \tan^2 A$; $\cot A = \csc A \cos A$; $\sin^2 A + \cos^2 A = 1$; $\sin \theta = \tan \theta : \sqrt{1 + \tan^2 \theta}$; $\cos x = \sqrt{\csc^2 x 1} : \csc x$.
- 10. (a) Express the following trigonometric ratios in terms of trigonometric ratios of positive angles not greater than 45° : $\sin 237^{\circ}$, $\cos (-410^{\circ})$, $\tan 2000^{\circ}$, $\cot (-137^{\circ})$, $\sec 445^{\circ}$, $\csc (-650^{\circ})$, $\sin 185^{\circ}$, $\tan 267^{\circ}$, $\sec 345^{\circ}$, $\cos 87^{\circ}$, $\cot (-19^{\circ})$; (b) by means of the tables give the numerical values of these ratios.
- 11. Find, without the use of trigonometric tables, the numerical values of $\cos 1410^\circ$, $\tan (-1260^\circ)$, $\csc (-1710^\circ)$, $\tan 225^\circ$, $\cot 1035^\circ$, $\csc 210^\circ$, $\cos 1500^\circ$, $\sin 1665^\circ$, $\tan (-1665^\circ)$, all the trigonometric ratios of -1125° and 930°.
- 12. Construct the angles: (a) whose secant is 3, (b) whose tangent is $\sqrt{2} + 1$, (c) whose cotangent is $\frac{4}{3}$. Find the other ratios of these angles.
- 13. (a) Find sin A, cot A, when $\cos A = -\frac{5}{15}$, and $A < 180^{\circ}$. (b) Find the other ratios of A and x when $\cot A = \frac{8}{15}$ and $\cos x = -\frac{5}{5}$. (c) Find the other ratios of A when $\cos A = -\frac{1}{2}$, and A lies between 540° and 630°.

- (d) Find the trigonometric ratios of $180^{\circ} + \theta$ and $270^{\circ} \theta$, given $\tan \theta = \frac{1}{4}$. (e) Given $\sec x = -\frac{5}{4}$, and x in the third quadrant; find the value of $\frac{\sin x + \tan x}{\sin x}$.
- $\cos x + \cot x$
- 14. Do Ex. 9, Art. 18, A being any angle. Explain the ambiguities in the algebraic signs. If A is an angle in the third quadrant, express $\cos A$, $\tan A$, $\cot A$, $\sec A$, $\csc A$ in terms of $\sin A$.
- 15. (a) If $\sec A = n \tan A$, find the other ratios of A. (b) If $2 \sec \theta = \tan \alpha + \cot \alpha$, find $\tan \theta$ and $\csc \theta$. (c) Solve $x^3 \cot 108^\circ = 128^\circ \sin 72^\circ \cos 18^\circ$.
- 16. Prove the identities: $\sin^8\theta + \cos^8\theta = (\sin\theta + \cos\theta)(1 \sin\theta\cos\theta);$ $\cos^4 A \sin^4 A = 1 2\sin^2 A;$ $\sin x(\cot x + 2)(2\cot x + 1) = 2\csc x + 5\cos x;$ $\sec^2 B \cos^2 B = \cos^2 B \tan^2 B + \sin^2 B \sec^2 B;$ $\cos^6 A + \sin^6 A = 1 3\cos^2 A \sin^2 A;$ $\cos^6 x + 2\cos^4 x \sin^2 x + \cos^2 x \sin^4 x + \sin^2 x = 1.$
- 17. (a) Find the value of x not greater than two right angles which will satisfy the equation $4\sqrt{3}\cot x=7\csc x-4\sin x$. (b) Likewise, in the case of the equation $\sin x+\cos x\cot x=2$. (c) Likewise, in $\tan^4 x-4\tan^2 x+3=0$. (d) If $1+\sin^2\theta=3\sin\theta\cos\theta$, find $\tan\theta$. (e) Find the least positive value of A that satisfies the equation $2\sqrt{3}\cos^2 A=\sin A$. (f) Find all the angles between 0° and 500° which satisfy the equation $4\sin^2\theta=3$. (g) If $2\cos A+\sec A=3$, what is the value of A? (h) Find A when $\tan^2 A+\csc^2 A=3$.

CHAPTER VI.

- 1. (a) Write the values of $\cos(A+B)$, $\cos(A-B)$, $\sin(A+B)$, $\sin(A-B)$, $\tan(A+B)$, $\tan(A-B)$ in terms of the trigonometric ratios of A and B. (b) Deduce these values. (c) Express them in words.
- 2. (a) Express in terms of the trigonometric ratios of A each of the following: $\sin 2A$, $\cos 2A$ (three different forms), $\tan 2A$, $\cot 2A$. (b) Derive these expressions.
- 3. (a) Show that $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$. (b) Show that $\cos 2A + \cos 2B = 2 \cos (A+B) \cos (A-B)$. (c) State and derive an equivalent expression for the difference of two sines; (d) for the difference of two cosines.
- 4. Show how to find $\cos \frac{1}{4}A$ when $\cos A$ is known. Explain the ambiguity in the result. Determine the sign of the result when A is an angle in the third quadrant. Find the cosine of 112° 30'. [From $\cos 225^{\circ}$.]
- 5. Prove $2\cos\frac{A}{2} = -\sqrt{1 + \sin A} \sqrt{1 \sin A}$ if A is between 270° and 360°.
- **6.** Derive an expression for each of the following: $\sin 3A$ in terms of $\sin A$, $\cos 3A$ in terms of $\cos A$, $\tan 3A$ in terms of $\tan A$. [Suggestion: 3A = 2A + A. See Art. 93.]

- 7. (a) If $\tan A = \frac{\sqrt{3}}{4 \sqrt{3}}$ and $\tan B = \frac{\sqrt{3}}{4 + \sqrt{3}}$, prove that $\tan(A B) = .375$.
- (b) If $\sin A = \frac{1}{\sqrt{10}}$ and $\cos B = \frac{3}{5}$, find the value of $\tan(A+B)$. (c) Find $\tan(A+B)$, given that $\sin A = \frac{8}{17}$, $\sin B = \frac{5}{12}$.
 - 8. (a) If $\tan \frac{A}{2} = \frac{a}{b}$, show that $\sin A = \frac{2ab}{a^2 + b^2}$, $\sin 2A = \frac{4ab(a^2 b^2)}{(a^2 + b^2)^2}$.
- (b) If $\tan A = \frac{b}{a}$, prove that $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \frac{2\cos A}{\sqrt{\cos 2A}}$.
- 9. (a) Find $\sin 45^{\circ}$, and thence deduce the ratios of $22^{\circ} 30'$. (b) Prove that $\tan 67^{\circ} 30' = 1 + \sqrt{2}$. (c) Deduce the ratios of $67^{\circ} 30'$, (i.) from ratios of 45° , $22^{\circ} 30'$, (ii.) from ratios of 135° .
- 10. (a) Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 45^\circ = \frac{1}{2}\sqrt{2}$; find $\sin 15^\circ$, $\cos 75^\circ$. (b) Given $\sin 30^\circ = \frac{1}{2}$; find the numerical values of the other ratios of 30° ; thence derive the ratios of 15° , thence derive the ratios of 75° , 105° , 165° , 195° . (c) Prove the following: $\tan 15^\circ + \tan 75^\circ = 4$, $\cos 15^\circ \cdot \cos 75^\circ = .25$, $\sin 105^\circ + \cos 105^\circ = \cos 45^\circ$, $\tan 15^\circ (\tan 60^\circ \tan 30^\circ) = \tan 60^\circ + \tan 30^\circ 2$.
- 11. (a) Express $\sin 8A + \sin 2A$ as a product. (b) Express as a sum or difference: (i.) $2\cos A\cos B$, (ii.) $2\sin 50^{\circ}\cos 20^{\circ}$. (c) Prove without using tables that (i.) $\sin 70^{\circ} \sin 10^{\circ} = \cos 40^{\circ}$, (ii.) $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$. Verify by the tables.
- 12. Show that: (1) $\cot A \cot B \cos(A+B) = \cos A \cos B(\cot A \cot B-1);$ (2) $\cos (A+B) \cos A + \sin (A+B) \sin A = \cos B;$ (3) $\cos A - \sin A = \sqrt{2} \cos(A+45^{\circ});$ (4) $2 \cos^{8} x - 2 \sin^{8} x = \cos 2 x (1 + \cos^{2} 2 x);$ (5) $\cos^{2} A + \sin^{2} A \cos 2 B = \cos^{2} B + \sin^{2} B \cos 2 A;$ (6) $\cos^{2} A - \cos A \cos(60^{\circ} + A) + \sin^{2}(30^{\circ} - A) = .75;$ (7) $\tan \frac{1}{2} \theta = \sin \theta : 1 + \cos \theta;$ (8) $\cos(135^{\circ} + A) + \sin(135^{\circ} - A) = 0;$ (9) $\csc 2 \theta + \cot 2 \theta = \cot \theta.$
 - 13. Prove that: (1) $\frac{\sin x + \sin y}{\cos x \cos y} = -\cot \frac{1}{2}(x y)$; (2) $\tan \frac{A}{2} = \frac{2\sin A \sin 2A}{2\sin A + \sin 2A}$; (3) $\tan (60^{\circ} + A) \tan (60^{\circ} A) = \frac{8 \cot A}{\cot^2 A 3}$;
- (4) $\frac{\cos(A+45^{\circ})}{\cos(A-45^{\circ})} = \sec 2 A \tan 2 A;$ (5) $\frac{\cos 2 B \cos 2 A}{\sin 2 B + \sin 2 A} = \frac{\sin 2 A \sin 2 B}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 B} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A \cos 2 A}{\cos 2 A + \cos 2 A} = \frac{\sin 2 A}{\cos 2 A$
- $\tan (A B)$; (6) $\sec 2A \frac{1}{2}\tan 2A \sin 2A = \frac{\cot^2 A + \tan^2 A}{\cot^2 A \tan^2 A}$
- 14. (a) Find values of θ not greater than 180°, which satisfy $\cot \theta = \tan \frac{\theta}{2}$.

 (b) Give all the positive angles less than 360°, which satisfy the equation $\sin 2A = \sqrt{3} \cos 2A$.
- 15. Show that the value of $\sin(n+1)B\sin(n-1)B+\cos(n+1)B\cos(n-1)B$ is independent of n.

- 16. The cosines of two angles of a triangle ABC are $\frac{3}{5}$ and $\frac{12}{15}$, respectively; find all the trigonometric ratios of the third angle without using tables. Verify the results by means of the tables.
- 17. Two towers whose heights respectively are 180 and 80 ft., stand on a horizontal plane; from the foot of each tower the angle of elevation of the other is taken, and one angle is found to be double the other; prove that the horizontal distance between the towers is 240 ft., and show that the sine of the greater angle of elevation is .6.

CHAPTER VII.

- 1. In a triangle ABC, show that $(1) \sin(A+B) = \sin C$, $(2) \cos(A+B) = -\cos C$, $(3) \sin \frac{A+B}{2} = \cos \frac{C}{2}$, $(4) \cos \frac{A+B}{2} = \sin \frac{C}{2}$.
- 2. (a) State and prove the Law of Sines for the plane triangle. (b) State and prove the Law of Cosines for the plane triangle. (c) If the sines of the angles of a triangle are in the ratios of 13:14:15, prove that the cosines are in the ratios of 39:33:25.
- 3. (a) Prove that in ABC, $b+c:b-c=\tan\frac{1}{2}(B+C):\tan\frac{1}{2}(B-C)=\cot\frac{1}{2}A:\tan\frac{1}{2}(B-C)$. (b) Write and derive the expressions for the cosine of an angle of a triangle, and the cosine and the sine of half that angle, in terms of the sides of the triangle. (c) In the triangle ABC derive the formulas expressing $\tan\frac{1}{2}A$, $\tan\frac{1}{2}B$, $\tan\frac{1}{2}C$, in terms of a, b, c. (d) Prove that in any triangle ABC, $\sin A = \frac{2}{bc}\sqrt{s(s-a)(s-b)(s-c)}$.
- 4. (a) Show how to solve a triangle when the three sides are given, (i.) without logarithms, (ii.) with logarithms. Derive all the formulas necessary. (b) Do the same when two sides and their included angle are given. (c) Do the same when two angles and a side are given.
- 5. (a) Explain carefully, and illustrate by figures, the case in which the solution of a triangle is ambiguous. (b) Write formulas for a complete solution and check, of a triangle, when two sides and an angle opposite to one of them are given. How many solutions are there? Discuss fully all cases that may arise. (c) Given the angle A, and the sides a and b of a triangle ABC, determine whether there will be one solution, two solutions, or no solution, in each of the following cases: (i.) $A < 90^{\circ}$, a > b, (ii.) $A < 90^{\circ}$, a = b.
- 6. Show by the trigonometric formulas that the angles of a triangle can be found when the ratios of the three sides are given. Give the geometrical explanation.
- 7. Show by the trigonometric formulas that the other two angles of a triangle can be found when the third angle, and the ratio of the sides containing it, are known. Give the geometrical explanation.

- 8. Assuming the law of sines for a plane triangle, prove that $a+b:c=\cos\frac{1}{2}(A-B):\sin\frac{1}{2}C$, and $a-b:c=\sin\frac{1}{2}(A-B):\cos\frac{1}{2}C$.
- 9. (a) If A:B:C=2:3:4, prove $2\cos\frac{A}{2}=\frac{a+c}{b}$. (b) If 2a=b+c, prove $\tan\frac{B}{2}\tan\frac{C}{2}=\frac{1}{3}$. (c) If a,b,c, the sides of a triangle, be in arithmetical progression, prove that $2\sin\frac{A}{2}\sin\frac{C}{2}=\sin\frac{B}{2}$. [Suggestion: Put 2b=a+c.]
- 10. [In each of the examples in Ex. 10, A, B, C, denote the angles, a, b, c, the sides of the triangle.] Solve the following triangles (1) by making an estimate, (2) by the method of construction, (3) by computation, without using the logarithms of the trigonometric ratios (four-place tables), (4) by computation, using logarithms (five-place tables), (5) by dividing some of the oblique triangles into right-angled triangles. Check the results by computation. When a solution is impossible, or ambiguous, explain why it is so. (1) a = 753, b = 621, c = 937; (2) a = 9, b = 17, c = 14; (3) a = 1236.5, b = 1674.8, c = 2532.7; (4) a = 30, b = 42, c = 36; (5) a = 621, b = 237, c = 325; (6) a = 1237, b = 1014, $A = 39^{\circ} 42'$; (7) a = 1114, b = 1345, $A = 46^{\circ} 54' 20''$; (8) c = 832, b = 694, $B = 54^{\circ} 47' 30''$; (9) a = 1020, b = 240, $B = 70^{\circ} 25'$; (10) c = 794, b = 832, $B = 65^{\circ} 30' 20''$; (11) c = 230, a = 950, $C = 63^{\circ} 47'$; (12) a = 237, c = 452, $C = 37^{\circ} 49'$; (13) a = 420, c = 337, C = 337 $42^{\circ}46'$; (14) a = 452, b = 624, $C = 37^{\circ}23'$; (15) a = 1237.4, c = 1941.6, B = 1237.4 $23^{\circ} 41' 20''$; (16) b = 237.41, c = 556.82, $A = 85^{\circ} 45' 35''$; (17) $A = 37^{\circ} 41'$, $B = 49^{\circ} 32', c = 385.9$; (18) $B = 47^{\circ} 21' 30'', C = 81^{\circ} 49' 45'', b = 374.26$.
- 11. (a) If b:c=11:15, and $A=37^{\circ}$ 40', find B and C. (b) If one side of a triangle be five times the other, and their included angle be 64°, find the remaining angles.
- 12. (a) In ABC, if a:b:c=8:7:5, find the angles. (b) The sides of a triangle are proportional to the numbers 4, 5, 6. Find the least angle.
 - 13. Given a=2 b, $C=120^\circ$, find A, B, and the ratio c:a.
- 14. (a) Two adjacent sides of a parallelogram are respectively equal to 12 and 20 in., and a diagonal is equal to 25 in. Find the angles of the parallelogram, the other diagonal, and the area. (b) The sides of a quadrilateral taken in order are 8, 10, 16, 18, and one diagonal is 18. Find its angles and area.
- 15. A ladder 52 ft. long is set 20 ft. in front of an inclined buttress, and reaches 46 ft. up its face. Find the inclination of the face of the buttress.
- 16. A privateer is lying 10 mi. W.S.W. of a harbour, when a merchantman leaves it, steering S.E. 8 mi. an hour. If the privateer overtakes the merchantman in 2 hr., find her course and rate of sailing.
- 17. A fort bore E. by N. from a beacon, and was distant from it 1500 yd. From a ship at anchor the beacon bore N.N.W. and the fort N.E. by N. How far was the ship from the beacon?

- 18. A and B are two points, 200 yd. apart, on the bank of a river, and C is a point on the opposite bank; the angles ABC, BAC are respectively 54° 30' and 65° 30'. Find the breadth of the river.
- 19. (a) Two observers on the same side of a balloon, and in the same vertical plane with it, are a mile apart, and they find the angles of elevation to be 22° 18' and 75° 30', respectively. What is the height? (b) Two observers on opposite sides of a balloon, and in the same vertical plane with it, take its altitude simultaneously; one observer finds it to be 64° 15', and the other, 48° 20'. Find the height of the balloon at the time of observation.
- 20. From a ship sailing along a coast a headland, C, was observed to bear N.E. by N. After the ship had sailed E. by N. 15 mi. the headland bore W.N.W. Find the distance of the headland at each observation.
- 21. From a certain station a fort, A, bore N., and a second fort, B, N.E. by E. Guns are fired simultaneously from the two forts, and are heard at the station in 1.5 sec. and 2 sec. respectively. Assuming that sound travels at the rate of 1142 ft. per second, find the distance of the two forts apart.
- **22.** From a point A in the same plane as the base of a tower, the tower bears N. 62° W., and the angle of elevation of the top of the tower is 53° 37'; from B, 165 ft. due north of A, the tower bears west. What is the height of the tower?
- 23. From a ship steering W. by S. a beacon bore N.N.W., and after the ship had sailed 12 mi. farther, the bearing of the beacon was N.E. by E. At what distance had the ship passed the beacon?
- 24. From the intersection of two straight paths which are inclined to each other at an angle of 37° , two pedestrians, A and B, start at the same instant to walk along the paths, A at the rate of 5 mi. an hour, and B at a uniform rate also; after 3 hr. they are $9\frac{1}{2}$ mi. apart. Show that there are two rates at which B may walk to fulfil this condition, and find both of those rates.
- 25. Two straight railroads are inclined to each other at an angle of 22° 15'. At the same instant two engines, A and B, start from a station at the point of intersection, A going on one road at the rate of 20 mi. an hour, and B going uniformly on the other. After 3 hr. A and B are 25 mi. apart. Show that there are two rates at which B may go to fulfil this condition, and find those rates.
- 26. A tower stood at the foot of an inclined plane whose inclination to the horizon was 9°; a line was measured straight up the incline from the foot of the tower of 100 ft. in length, and at the upper extremity of this line the tower subtended an angle of 54°. Find the height of the tower.
- 27. The altitude of a certain rock is observed to be 47°, and after walking toward it 1000 ft. up a slope inclined at 32° to the horizon, the observer finds that this altitude is 77°. Find the vertical height of the rock above the first point of observation.

- 28. If, from a point at which the elevation of the observatory on Ben Nevis is 60°, a man walks 800 ft. on a level plane toward the mountain, and then 800 ft. further up a slope of 30° to a point at which the elevation of the observatory is 75°, show that the height of Ben Nevis is approximately 4478 ft., the man's path being always supposed to lie in a vertical plane passing through the observatory.
- 29. A man walks 40 ft. in going straight down the slope of the embankment of a railway which runs due east and west, and then walks 20 ft. along the foot of the embankment; he finds that he is exactly N.E. of the point from which he started at the top of the bank. Show that the inclination of the bank to the horizon is 60°.
- **30.** A man in a ship at sea sailing north observes two rocks, A and B, to bear 25° east of his course; he then sails in a direction northwest for 4 mi., and observes A to bear east and B northeast of his new position. Find the distance from A to B.
- 31. To determine the distance of two forts, C, D, at the mouth of a harbour, a boat is placed at A, with its bow toward a distant object E, and the angles CAD, DAE are observed and found to be 22° 17' and 48° 1' respectively. The boat is then rowed to B, a distance of 1000 yd., directly toward E, and the angles CBD, DBE are observed to be 53° 15' and 75° 43' respectively. Find the distance CD.
- **32.** A fort stands on a horizontal plane; the angle of depression measured from the top of the fort to a point P on the plane is A° , and to a point R, a feet beyond P, is B° . Derive the formulas for computing h, the height of the fort, and d, the distance from P to the bottom of the fort.
- 33. A person standing on a level plain at the base of a hill wishes to find the height of a tower which is in full sight on the top of the hill. Describe in detail the necessary measurements and computations.
- 34. A surveyor wishes to find the distance and the height of a tower which is on the same level with him, but on the opposite side of an impassable chasm; illustrate the problem by a lettered figure, and describe in detail the necessary measurements and computations.
- 35. What measurements must be made by an observer on the shore to find the distance between two buoys? Give formulas necessary for solving.
- **36.** Explain what measurements have to be made at two stations, A and B, in order to find the distance, CD, between two inaccessible objects (A, B, C, D) being in one plane); and state clearly the steps of the calculation by which the distance is to be found therefrom.
- 37. (a) From the law of sines deduce that $b \cos C + c \cos B = a$. (b) Prove this geometrically. (c) Show that $a \cos B - b \cos A = \frac{a^2 - b^2}{a}$.

38. In any triangle ABC, prove: (a)
$$\tan B = \frac{b \sin C}{a - b \cos C}$$
;

(b)
$$\frac{a^2 + b^2 - ab \cos C}{a \sin A + b \sin B + c \sin C} = \frac{a}{2 \sin A}$$
; (c) $\frac{1 + \cos(A - B)\cos C}{1 + \cos(A - C)\cos B} = \frac{a^2 + b^2}{a^2 + c^2}$

CHAPTER VIII.

[In what follows, S denotes the area of a triangle, s its semi-perimeter, R, r, r_s, r_s, r_s, r_s, the radii of its circumscribing, inscribed, and escribed circles, respectively.]

1. Prove that any side of a triangle is equal to the second side into the cosine of the angle opposite the third sine plus the third side into the cosine of the angle opposite the second side.

2. Derive expressions, in terms of the sides of a given triangle, for the radii of its circumscribing circle, and of the four circles which touch the sides.

3. Derive expressions for the radii in Ex. 2, in terms of the sides and the area of the given triangle.

4. Prove
$$R = \frac{abc}{4S}$$
, $r = \frac{S}{s}$, $r_a = \frac{S}{s-a}$. Write similar expressions for r_b , r_c .

5. Prove: (a)
$$r_a + r_b + r_c - r = 4R$$
; (b) $\sqrt{r \cdot r_a \cdot r_b \cdot r_c} = S$.

6. Prove: (a)
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$
; (b) $Rr = \frac{abc}{4(a+b+c)}$;

(c)
$$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

7. Prove
$$r_a \cot \frac{A}{2} = r_b \cot \frac{B}{2} = r_c \cot \frac{C}{2} = r \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

$$= 4 R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}.$$

8. Prove $R = \frac{a}{2 \sin A}$, $r = (s - a) \tan \frac{A}{2}$, $r_a = s \tan \frac{A}{2}$. Write two other similar formulas for R and r. Write similar formulas for r_b , r_c .

9. (a) Prove
$$r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}$$
. Write two similar formulas involving b, c .

(b) Prove
$$r_a = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$
 Write similar formulas for r_b , r_c .

10. Show that the length of the tangents to the inscribed circle from the angle A is s - a, from the angle B is s - b, from the angle C is s - c.

11. Write and derive the formula for the area of a triangle: (a) in terms of the three sides; (b) in terms of two sides and their included angle; (c) in terms of one side and the two angles adjacent to it.

- 12. (a) Prove that S = s(s c) when $C = 90^{\circ}$; (b) if x, y, be the lengths of the two diagonals of a parallelogram, and θ the angle between them, show that area $= \frac{1}{2} xy \sin \theta$.
- 13. Find the areas of some of the triangles in Ex. 10, Chap. VII. Find the radii of their circumscribing, inscribed, and escribed circles.
- 14. (a) An isosceles triangle whose vertical angle is 78° contains 400 square yards; find the lengths of the sides. (b) Find two triangles each of which has sides 63 and 55 ft. long, and an area of 874 sq. ft. (c) The angles at the base of a triangle are 22° 30' and 112° 30' respectively; show that the area of the triangle is equal to the square of half the base.
- 15. (a) Show that the area of a regular polygon inscribed in a circle is a mean proportional between the areas of an inscribed and circumscribing polygon of half the number of sides. (b) The sides of a triangle are as 2:3:4; show that the radii of the escribed circles are as $\frac{1}{2}:\frac{1}{2}:1$.
- 16. Two roads form an angle of 27° 10′ 25″. At what distance from their intersection must a fence at right angles to one of them be placed so as to enclose an acre of land?
- 17. If the altitude of an isosceles triangle is equal to its base, the radius of the circumscribing circle is \{ \frac{1}{3}} of the base.
- 18. An equilateral triangle and a regular hexagon have the same perimeter. Show that the areas of their inscribed circles are as 4:9.
- 19. If the sides of a triangle are 51, 68, and 85 ft., show that the shortest side is divided by the point of contact of the inscribed circle into two segments, one of which is double the other.

CHAPTER IX.

- 1. Explain how angles are measured (1) by sexagesimal measure, (2) by radian measure. Show how to connect the radian measure of an angle with its measure in degrees. Find the number of degrees in the angle called the radian. How many degrees are there in an arc whose length is equal to the diameter? Show that the radian measure of an angle is the ratio of the lengths of two lines. What advantage is there in using radian measure?
- 2. (a) Give the number of degrees in each of the following angles: $\frac{1}{2}\pi$, $\frac{3}{4}\pi$, 2π , $\frac{3}{16}\pi$, $n\pi$, $\frac{\pi}{3}$, $-\frac{2}{3}\pi$, $\frac{2}{3}\pi$, $\frac{2}{5}\pi$, $\frac{5}{2}\pi$, $\frac{7}{2}\pi$, $\frac{7}{6}\pi$, $\frac{5}{6}\pi$, $-\frac{\pi}{7}$, $-\frac{4}{3}\pi$, $-\frac{11}{3}\pi$, $(\frac{5}{6})^{(r)}$, $(2\frac{1}{3})^{(r)}$, $(-\frac{4}{3})^{(r)}$. (b) Give the supplements and complements of those angles in radian measure and in degree measure. (c) Give the radian measures of 30°, 80°, 49°, 41° 30′ 15″, 120°, -210° , -175° . Give the radian measures of their supplements and complements.
- 3. (a) A central angle 1.25r is subtended by a circular arc of 16 ft.; find the radius. (b) Find the number of radians and degrees in the central angle subtended by an arc 9 in. long, in a circle whose radius is 10 ft.

- (c) Find the radius of a circle in which an arc 15 in. long subtends at the centre an angle containing 71° 36′ 3″.6. (d) If the radius be 8 in., find the central angle, in degrees and in radians, that is subtended by an arc 15 in. long. (e) An angle of 3^r is subtended by an arc of 5 in.; find the length of the radius; find also the number of radians, and of degrees, in an arc of 1.5 in. (f) Find the number of radians and seconds in the angle subtended at the centre of a circle whose radius is 2 mi., by an arc 11 in. long. (g) Find the length of the arc which subtends a central angle of (1) 2 radians, the radius being 10 in.; (2) 1.5 radians, radius 2 ft.; (3) 4.3 radians, radius 21 yd.; (4) 1.25 radians, radius 8 in.
- 4. The value of the division on the outer rim of a graduated circle is 5', and the distance between the two successive divisions is .1 of an inch. Find the radius of the circle.
- 5. Show that the distance in miles between two places on the equator, which differ in longitude by 3°9′, assuming the earth's equatorial radius to be 7925.6 mi., is 217.954 mi.
- 6. (a) The difference of two angles is 10° , the radian measure of their sum is 2. Find the radian measure of each angle. (b) One angle of a triangle is π degrees, another is π grades. Show that the radian measure of the third angle is $\pi \frac{19 \pi^2}{1800}$. (c) If the number of degrees in an angle be equal to the number of grades in the complement of the same angle, prove that the radian measure of the angle is $\frac{5\pi}{19}$. (d) The angles of a triangle are in the ratios 1:2:3. Express their magnitudes in each of the three systems of angular measurement. (e) One angle of a triangle is 45° , another is 1.5 radians. Find the third, both in degrees and in radians. (f) Express in degrees and in radian measure the vertical angle of an isosceles triangle which is half of each of the angles at the base.
- 7. Prove the following statements, in which a denotes the length of a side of a regular polygon; P, the length of its perimeter; n, the number of its sides; r, the radius of the inscribed circle; R, the radius of the circumscribing circle:

$$a=2\,R\sin\frac{\pi}{n}=2\,r\tan\frac{\pi}{n}\,;\ \ P=2\,nR\sin\frac{\pi}{n}=2\,nr\tan\frac{\pi}{n}\,;\ \ R+r=\frac{a}{2}\cot\frac{\pi}{2\,n}\,;$$
 area of polygon
$$=\frac{n}{2}\,R^2\sin\frac{2\,\pi}{n}=nr^2\tan\frac{\pi}{n}=\frac{na^2}{4}\cot\frac{\pi}{n}.$$

CHAPTER X.

- 1. Define and illustrate the trigonometric functions. Show in tabular form the signs of these functions in each of the four quadrants.
- 2. (a) Construct a table showing the values, with proper signs, of the trigonometric functions of 0°, 30°, 45°, 60°, 120°, 180°, 225°, 270°, 315°, 380°,

- (b) Compare the trigonometric functions of $90^{\circ} A$, $90^{\circ} + A$, $180^{\circ} + A$, $180^{\circ} A$, -A, with those of A.
- 3. Show, from both the ratio and the line definitions of the trigonometric functions, that (1) the sine and cosine are never greater than unity, (2) the cosecant and secant are never less than unity, (3) the tangent and cotangent may have any values whatever from negative infinity to positive infinity, (4) the trigonometric functions change signs in passing through zero or infinity, and through no other values.
- 4. Given $\tan A = -\frac{8}{15}$, find the values of the other trigonometric functions of A.
- 5. Find geometrically an expression for the cosine of the difference of two angles in terms of the trigonometric functions of those angles.
 - 6. Prove that:
 - (a) $\sin^2 B + \sin^2 (A B) + 2 \sin B \sin (A B) \cos A = \sin^2 A$;
 - (b) $\frac{\cos nA \cos (n+2)A}{\sin (n+2)A \sin nA} = \tan (n+1)A$.
- 7. Give the ratio definitions of the trigonometric functions, sine, cosine, tangent, and secant. These functions have also been defined as straight lines. Give these definitions, and show from them that tan 90°, sec 90° would each be infinite. Show that the two systems are consistent.
- 8. (a) Trace the changes, in magnitude and sign, in the values of the trigonometric functions as the angle increases from 0° to 360°. (b) Trace the changes of sign of $\sin\theta$ as θ increases through 360°, and show that its equivalent $2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$ has always the same sign as $\sin\theta$.
- 9. Trace the changes, as A increases from 0° to 180°, in the sign and value of (a) $\cos (\pi \sin A)$, (b) $\sin A + \cos A$, (c) $\sin A \cos A$. Draw the graphs of these functions.
- 10. Show that the radian measure of an acute angle is intermediate in value between the sine and the tangent of the angle.
- 11. (a) Show that the limit of $\frac{\sin \theta}{\theta}$ when θ is indefinitely diminished is 1, *i.e.* $\sin \theta = \theta$, very nearly. (b) Show that the limit of $\frac{\tan \theta}{\theta}$ when θ is indefinitely diminished is 1, *i.e.* $\tan \theta = \theta$, very nearly.
- 12. Find the area of a regular polygon of n sides inscribed in a circle, and show, by increasing the number of sides of the polygon without limit, how the expression for the area of the circle may be obtained.
- 13. (a) Find the distance at which a building 50 ft. wide will subtend an angle of 3'. (b) A church spire 45 ft. high subtends an angle of 9' at the eye. Find its distance approximately. (c) Find approximately the distance of a tower 51 ft. high which subtends at the eye an angle of 5_{11}^{-1} '. (d) How large a mark on a target 1000 yd. off will subtend an angle of 1" at the eye?

- 14. Show how the functions may be represented by lines connected with a circle.
- 15. Explain, with illustrations, how functions may be graphically represented by means of a curve. Draw the graphs of the trigonometric functions.

Note.—"If a function of a variable has its magnitude unaltered when the sign of the variable is changed, that function is called an even function, but if the function has the same numerical value as before, but with opposite sign, then that function is called an odd function; for instance, x^2 is an even function of x, x^3 is an odd function of x, but $x^2 + x^3$ is neither even nor odd, since its numerical value changes when the sign of x is changed."

16. Show that the cosine, secant, and versine of an angle are even functions, and the sine, tangent, cotangent, and cosecant are odd functions, and the coversine is neither even nor odd. (See Art. 78.)

CHAPTER XI.

- N.B. The problems which are purely numerical are to be solved independently of tables. The results can be verified by means of the tables.
- 1. (a) Deduce a general expression for all angles which have the same sine; (b) for all which have the same cosine; (c) for all which have the same tangent. (d) What are the general expressions for all angles which have the same secant, cosecant, cotangent, respectively.
- 2. Define inverse trigonometric functions; give illustrations. Define $\tan^{-1} x$, $\cos^{-1} x$.
- 3. (a) Explain fully the equations $\sin(\sin^{-1}\frac{1}{3})=\frac{1}{3}$, $\sin^{-1}(\sin\theta)=\theta$. (b) Construct $\sin^{-1}(\frac{2}{3})$, $\cos^{-1}0$, $\tan^{-1}\infty$, $\sec^{-1}\left(\sec\frac{2\pi}{3}\right)$. (c) Find $\tan(\cos^{-1}\frac{2}{3})$.

[Carefully state the limitations under which the following equations are true.]

- 4. Show that: (a) $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$; (b) $\tan^{-1}x \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$; (c) $\sin^{-1}x \sin^{-1}y = \cos^{-1}\sqrt{1-x^2-y^2+x^2y^2} + xy$.
- 5. (a) From $\sin 2A = 2 \sin A \cos A$, show that $2 \sin^{-1} x = \sin^{-1}(2 x \sqrt{1-x^2})$. (b) Show that for certain values of the angles, $2 \cos^{-1} x = \cos^{-1}(2 x^2 - 1)$; $2 \tan^{-1} x = \tan^{-1} \frac{2 x}{1-x^2}$; $2 \cot^{-1} x = \csc^{-1} \frac{1+x^2}{2 x}$.
- 6. Show that for certain values of the angles: (a) $\cos^{-1}x = \sin^{-1}\sqrt{\frac{1-x}{2}} + \cos^{-1}\sqrt{\frac{1+x}{2}}$; (b) $\sin^{-1}\sqrt{\frac{x}{a+x}} = \tan^{-1}\sqrt{\frac{x}{a}} = \frac{1}{2}\cos^{-1}\frac{a-x}{a+x}$. (c) $\tan^{-1}m + \cot^{-1}m = \frac{\pi}{2}$, or $\frac{3\pi}{2}$.

7. Prove that for certain values: (1)
$$\sec^{-1}3 = 2\cot^{-1}\sqrt{2}$$
; (2) $\sec^{2}(\tan^{-1}2) + \csc^{2}(\cot^{-1}3) = 15$; (3) $\sin^{-1}\frac{\pi}{5} + \sin^{-1}\frac{4}{5} = 90^{\circ}$; (4) $\cos^{-1}\sqrt{\frac{2}{3}} - \cos^{-1}\frac{\sqrt{6} + 1}{2\sqrt{3}} = \frac{\pi}{6}$; (5) $\cos^{-1}\frac{43}{5} + 2\tan^{-1}\frac{1}{5} = \sin^{-1}\frac{\pi}{5}$; (6) $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2} = 120^{\circ}$; (7) $\tan^{-1}\frac{1}{2} + \cot^{-1}\frac{1}{3} + \sin^{-1}\frac{7\sqrt{2}}{10} = 0$; (8) $\tan^{-1}\frac{\sqrt{3}}{\sqrt{3} - \sqrt{2}} + \tan^{-1}\sqrt{\frac{3}{2}} = \frac{3\pi}{4}$.

8. Prove that: (1)
$$\sin^{-1}\frac{2\ mn}{m^2+n^2} + \sin^{-1}\frac{m^2-n^2}{m^2+n^2} = \frac{\pi}{2}$$
; (2) $\tan^{-1}(\cot A) - \tan^{-1}(\tan A) = n\pi + \frac{\pi}{2} - 2A$; (3) $\tan^{-1}t + \tan^{-1}\frac{2\ t}{1-t^2} = \tan^{-1}\frac{3\ t-t^3}{1-3\ t^2}$; (4) $\tan^{-1}\frac{m-1}{m} + \tan^{-1}\frac{1}{2\ m-1} = n\pi + \frac{\pi}{4}$; (5) $\tan^{-1}\frac{2\ a-b}{b\sqrt{3}} + \tan^{-1}\frac{2\ b-a}{a\sqrt{3}} = \frac{1}{2}$

$$\frac{\pi}{3}$$
; (6) $\tan^{-1} m + \tan^{-1} n = \cos^{-1} \frac{1 - mn}{\sqrt{(1 + m^2)(1 + n^2)}}$.

9. Prove that: (1)
$$\tan^{-1}\frac{1}{1+a} + \tan^{-1}\frac{1}{1-a} + \tan^{-1}\frac{2}{a^2} = n\pi$$
; (2) $\tan^{-1}1 = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{4} +$

- 10. Find all the angles (i.e. find the general values of the angles) which satisfy the following equations: (1) $\sec^2 A = \frac{4}{3}$; (2) $2 \tan^2 \theta = \sec^2 \theta$; (3) $\tan^2 \theta \sec \theta = 1$; (4) $\sqrt{3} \tan^2 \theta + 1 = (1 + \sqrt{3}) \tan \theta$; (5) $\cos \theta \sin \theta = \frac{1}{\sqrt{2}}$;
- (6) $2 \sin x + 2 \csc x = 5$; (7) $2 \sin 2y = 3 \tan y$; (8) $\cos B + \tan B = \sec B$; (9) $3 \cos^2 x + 2\sqrt{3} \cos x = 5.25$; (10) $\tan z 2 \sin z = 0$; (11) $4 \cot 2\theta = \cot^2 \theta \tan^2 \theta$; (12) $\csc C + \cot C = \sqrt{3}$; (13) $\cot A \tan A = 2$; (14) $\csc x = \cot x + \sqrt{3}$.
 - 11. Solve $\cos 2x = \sin x$.

[Solution:
$$\cos 2x = \cos\left(\frac{\pi}{2} - x\right)$$
; or, $\sin\left(\frac{\pi}{2} - 2x\right) = \sin x$. $\therefore \frac{\pi}{2} - x = 2n\pi \pm 2x$, or $\frac{\pi}{2} - 2x = n\pi + (-1)^n x$.]

12. Solve $\sin 5 A = \sin 11 A$.

Solution:
$$11 A = n\pi + (-1)^n 5 A$$
. $\therefore A = 0, \frac{\pi}{16}, \frac{\pi}{3}, \cdots$

13. Find the general solutions of: (1) $\sin \theta + \cos \theta = \sqrt{2}$; (2) $\sin 4 \theta = \sin \theta$; (3) $2 \cos 2 \theta - 2 \sin \theta - 1 = 0$; (4) $\tan^2 \theta + 3 \cot^2 \theta = 4$; (5) $\sin^4 x - 1 = 0$

 $\cos^4 x = 1$; (6) $\sin^2 2 x - \sin^2 x = .25$; (7) $\tan B + \cot B = 2$, $\cos y + \cos 2 y + \cos 3 y = 0$ (Suggestion: $\cos y + \cos 3 y = 2 \cos y \cos 2 y$); (8) $\sin \frac{1}{2} x = \csc x - \cot x$; (9) $\cos x + \cos 7 x = \cos 4 x$; (10) $\cos A + \cos \frac{1}{2} A = \cos \frac{3}{4} A$; (11) $\csc z = 2 \sin z$; (12) $2 \tan^{-1} \cos A = \tan^{-1} 2 \csc A$; (13) $\tan (A - 15^\circ) = \frac{1}{8} \tan (A + 15^\circ)$; (14) $\tan (45^\circ + B) = 1 + \tan B$.

- 14. Find x in the following equations: (1) $\cos^{-1}x + \cos^{-1}(1-x) = \cos^{-1}(-x)$; (2) $\tan^{-1}x + \tan^{-1}2x = \tan^{-1}\frac{3\sqrt{3}}{5}$; (3) $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$; (4) $\tan^{-1}\frac{x+1}{x-1} + \tan^{-1}\frac{x-1}{x} = \tan^{-1}(-7)$; (5) $\tan^{-1}\frac{x-1}{x+1} + \tan^{-1}\frac{2x-1}{2x+1} = \tan^{-1}\frac{23}{36}$.
- 15. A flagstaff a feet high is on a tower 3 a feet high; prove that, if the observer's eye is on a level with the top of the staff, and the staff and tower subtend equal angles, the observer is at a distance $a\sqrt{2}$ from the top of the flagstaff.
- 16. In any triangle ABC, if $\tan \frac{A}{2} = \frac{5}{6}$, and $\tan \frac{B}{2} = \frac{20}{37}$, find $\tan C$ without tables. Verify the result by means of the tables. Show that in such a triangle, a + c = 2b.

CHAPTER XII.

- 1. Explain the advantages of measuring angles by the sexagesimal, centesimal, and radian methods, respectively.
- 2. Show that, if x be the radian measure of a positive angle less than $\frac{\pi}{2}$, then (a) $\cos x$ is less than 1 but greater than $1 \frac{1}{2}x^2$; (b) $\sin x$ is less than x but greater than $x \frac{1}{4}x^3$. By means of (b) show how the sine of 10" may be calculated approximately.
- 3. (a) Express in terms of functions of A, each of the following: $\sin 2A$, $\cos 2A$ (three different forms), $\tan 2A$. (b) Find $\cos 3A$ in terms of $\cos A$. (c) Find $\sin 3A$ in terms of $\sin A$. (d) Find $\tan 3A$ in terms of $\tan A$, and from the formula determine the numerical value of $\tan A$ if $3A = 90^{\circ}$. (e) Investigate a formula for expressing the cosine of half an angle in terms of the sine of the whole angle; and if the angle lies between 270° and 360° , show which signs of the roots must be taken.
- 4. Show that $\sin(A + B C) + \sin(A + C B) + \sin(B + C A) \sin(A + B + C) = 4 \sin A \sin B \sin C$.
- 5. If $A+B+C=180^\circ$ (i.e. if A, B, C be the three angles of a triangle), show that: (a) $\sin A + \sin B + \sin C = 4\cos\frac{1}{2}A\cos\frac{1}{2}B\cos\frac{1}{2}C$; (b) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$; (c) $\frac{\cos A + \cos B + \cos C 1}{\sin A + \sin B + \sin C} = \tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}$.

- 6. If $\sin A = \frac{1}{5}$, $\sin B = \frac{1}{15}$, and $\sin C = \frac{7}{15}$, where A, B, C are positive angles and less than 90°, find $\sin (A + B + C)$.
 - 7. Assuming the equation $\cos 3x = 4\cos^3 x 3\cos x$, find $\sin 18^\circ$.

[Solution: $54^{\circ} + 36^{\circ} = 90^{\circ}$. $\therefore \cos 54^{\circ} = \sin 36^{\circ}$; i.e. $\cos 3 \cdot 18^{\circ} = \sin 2 \cdot 18^{\circ}$. Hence, $4 \cos^2 18^{\circ} - 3 \cos 18^{\circ} = 2 \sin 18^{\circ} \cos 18^{\circ}$. $\therefore 4 \cos^2 18^{\circ} - 3 = 2 \sin 18^{\circ}$. On putting $1 - \sin^2 18^{\circ}$ for $\cos^2 18^{\circ}$, and solving for $\sin 18^{\circ}$, there is obtained the result, $\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}$.]

- 8. Assuming the result in Ex. 7, find the other trigonometric functions of 18° and the functions of 72°.
- 9. Assuming the result in Ex. 7, show that $\cos 36^\circ = \frac{\sqrt{5}+1}{4} = \sin 54^\circ$. Hence, deduce the other trigonometric functions of 36° and 54° . Also, deduce the trigonometric functions of 9° and 81° . (The results in Exs. 8, 9, can be verified by means of the tables.)
 - 10. Prove the formulas:

$$\sin (36^{\circ} + A) - \sin (36^{\circ} - A) - \sin (72^{\circ} + A) + \sin (72^{\circ} - A) = \sin A$$
, $\cos (36^{\circ} + A) + \cos (36^{\circ} - A) - \cos (72^{\circ} + A) - \cos (72^{\circ} - A) = \cos A$, and explain their use. (See Art. 97.)

11. (a) Show that $\sin^2 30^\circ = \sin 18^\circ \sin 54^\circ$. (b) Solve $x^3 \cot 108^\circ = 128 \sin 72^\circ \cos 18^\circ$, without tables. (c) Find the trigonometric functions of 48°.

[Hint:
$$48^{\circ} = 30^{\circ} + 18^{\circ}$$
.]

- 12. Two parallel chords of a circle lying on the same side of the centre of a circle subtend angles of 72° and 144° at the centre. Show that the distance between the chords is equal to half the radius of the circle, (a) using tables, (b) not using tables.
 - 13. (a) Solve: (i.) $\cos \theta = 0$; (ii.) $\sin x + \cos x = 1$; (iii.) $\tan y + \tan 4y + \tan 7y = \tan y \tan 4y \tan 7y$.
 - (b) If $\tan \theta \tan 3\theta = -.4$, find $\tan \theta$, $\tan 3\theta$.
- 14. (a) If in triangle ABC, A=3B, show that $\sin B=\frac{1}{2}\sqrt{\frac{3b-a}{b}}$. (b) Given $\cos A=.28$, find $\tan \frac{A}{2}$. Explain the reason of the ambiguity that presents itself in the result. (c) If $\sin A=\frac{2ab}{a^2+b^2}$, find $\tan \frac{A}{2}$. (d) Given $\tan \frac{1}{2}x=2-\sqrt{3}$, find $\sin x$.
 - 15. Prove the following:
 - (i.) $\tan A \tan \frac{1}{4}A = \tan \frac{1}{4}A \sec A$.
 - (ii.) $1 + \tan^6 A = \sec^4 A (\sec^2 A 3\sin^2 A)$.
 - (iii.) $\sin A + \sin 3A + \sin 5A + \sin 7A = 16 \sin A \cos^2 A \cos^2 2A$.
 - (iv.) $\cos 6 A = 16 (\cos^6 A \sin^6 A) 15 \cos 2 A$.
 - (v.) $\sin 8x + \sin 5x = 8\sin x \cos^2 x \cos 2x$.

(vi.)
$$4\cos^8 A \sin 3A + 4\sin^8 A \cos 3A = 3\sin 4A$$
.

(vii.) $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{3}$.

(viii.)
$$\sin^8 A + \sin^8 (120^\circ + A) + \sin^8 (240^\circ + A) = -\frac{3}{4} \sin 3 A$$
.

(ix.)
$$1 + \cos 2(A - B)\cos 2B = \cos^2 A + \cos^2 (A - 2B)$$
.

(x.) $2 \csc 4A + 2 \cot 4A = \cot A - \tan A$.

16. Show that

$$\cos (36^{\circ} + A) \cos (36^{\circ} - A) + \cos (54^{\circ} + A) \cos (54^{\circ} - A) = \cos 2 A$$
; $\sin 3 A = 4 \sin A \sin (60^{\circ} + A) \sin (60^{\circ} - A)$.

17. Show that

$$2\cos\frac{A}{2} = \pm\sqrt{1 + \sin A} \pm\sqrt{1 - \sin A}, \ 2\sin\frac{A}{2} = \pm\sqrt{1 + \sin A} \mp\sqrt{1 - \sin A}.$$
Suggestion: $\cos^2\frac{A}{2} + \sin^2\frac{A}{2} = 1$; $2\sin\frac{A}{2}\cos\frac{A}{2} = \sin A.$

18. Prove that the following equations are true for certain values of the angles:

(i.)
$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$$
.

(ii.)
$$3\cos^{-1}x = \cos^{-1}(4x^8 - 3x)$$
.

(iii.)
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x+y+z-xyz}{1-xy-yz-zx}$$

(iv.)
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}\frac{1-x-y-xy}{1+x+y-xy} = \frac{\pi}{4}$$

(v.) Given
$$\tan \alpha = \frac{1}{2}$$
, $\tan \beta = \frac{1}{2}$, $\tan \gamma = \frac{1}{2}$, find $\tan (\alpha + \beta + \gamma)$.

(vi.)
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{6} = \frac{1}{2}\cos^{-1}\frac{2}{6}$$
.

(vii.)
$$\tan^{-1}\frac{4}{3} = \frac{1}{2}\tan^{-1}\left(\frac{-24}{7}\right) = \frac{1}{3}\tan^{-1}\left(\frac{-44}{117}\right)$$

(viii.)
$$\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$$

(ix.)
$$\sin^{-1} \frac{28}{47} = 3 \sin^{-1} \frac{1}{4}$$
.

(x.)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4} = \sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1}3$$
.

(xi.)
$$\sin^{-1}\frac{3}{\sqrt{73}} + \cos^{-1}\frac{11}{\sqrt{146}} + \sin^{-1}\frac{1}{2} = \frac{5\pi}{12}$$

(xii.)
$$\tan^{-1}\frac{2}{3} = \frac{1}{3}\tan^{-1}\frac{12}{3}$$

19. The hypotenuse and shortest side of a right-angled triangle are 5 ft. and 3 ft., respectively. Find the length of the perpendicular from the right angle upon the hypotenuse, and show that it is inclined at $\sin^{-1}\frac{7}{15}$ to the straight line drawn from the right angle to the middle point of the hypotenuse.

20. If a triangle ABC is to be solved from given parts A, a, b, show that the solution is sometimes ambiguous; and that in such a case the difference of the two values of C is $2\cos^{-1}\frac{b\sin A}{a}$.

- 21. The tangent of an angle is 2.4. Find the cosecant of the angle, the cosecant of half the angle, and the cosecant of the supplement of double the angle.
- 22. The angle of elevation of a tower at a distance of 20 yd. from its foot is three times as great as the angle of elevation 100 yd. from the same point; show that the height of the tower is $300 : \sqrt{7}$ ft.
- 23. DE is a tower on a horizontal plane. ABCD is a straight line in the plane. The tower subtends an angle θ at A, 2θ at B, and 3θ at C. If AB = 50 ft., and BC = 20 ft., find the height of the tower and the distance CD.
- 24. A ship sailing at a uniform rate was observed to bear N. 30° 57' 30'' E. After 20 minutes she bore N. 35° 32' 15'' E., and after 10 minutes more, N. 37° 52' 30'' E. Find the direction in which she was sailing.

[Ans. S. 44° 38' E.]

25. A spectator observes the explosion of a meteor, due south of him, at an elevation of 28° 45′. To another spectator, 11 mi. S.S.W. of the former, it appears at the same instant to have an altitude of 42° 15′ 30″. Show that there are two possible heights above the earth's surface at which it may have exploded, and find these heights.

[Ans. 4.33 mi. or 13.21 mi.]

ANSWERS TO THE EXAMPLES.

-0000C0-

N.B. Not all of the answers to the exercises are given. In various ways, the student should test, or check, every result that he obtains in working the problems.

CHAPTER I.

Art 2. 1. $\log_8 27 = 3$, $\log_4 256 = 4$, $\log_{11} 121 = 2$, ..., $\log_m p = b$. 2. $2^8 = 8$, $5^4 = 625$, ..., $n^a = P$. 3. 0, 1, 2, 3, 4, 5, 6, 7, 8. 6. 1, 4, 16, 64, 256, 1024. 7. 0, 1; 1, 2; 2, 3; 3, 4; 3, 4; 0, -1; -1, -2; -2, -3.

Art. 6. 6(a). **1.4007**. **6**(d). .09856. **7**(b). **7.2767**. **8**(a). **7.937**. **10**. **9.214**. **12**. .6443. **13**(a). **3.236**. **13**(c). **1.5563**.

CHAPTER II.

Art. 8. 1. 8, 24, 42, 54, 720, 36 a, 12 b, c. 2. ..., a, $\frac{b}{3}$, $\frac{c}{36}$. 3. ..., 3 a, b, $\frac{c}{12}$. 4. 12 a, 4 b, $\frac{c}{3}$. 5. 440, $\frac{1}{34}$.

Art. 10. 5. 1:1200, 1:253440, 1:1920, 7. 2.446 mi.

Art. 11. (In these answers, h, p, b represent hypotenuse, perpendicular, and base, respectively.)

2. 35° , h=34.86, p=28.56, $\frac{b}{h}=.574$, $\frac{h}{b}=1.743$, $\frac{p}{h}=.819$, $\frac{h}{p}=1.22$, $\frac{p}{b}=1.428$, $\frac{b}{p}=.7$.

3. 65° , b=27.19, p=12.68, $\frac{b}{h}=.906$, $\frac{h}{p}=2.37$, $\frac{p}{h}=.423$, $\frac{h}{b}=1.1$, $\frac{p}{b}=.466$, $\frac{b}{p}=2.14$.

4. 56° 19', 33° 41' (nearly), h=54.08, $\frac{b}{p}=.67$, $\frac{p}{b}=1.5$, $\frac{h}{b}=1.8$, $\frac{b}{h}=.555$, $\frac{h}{p}=1.2$, $\frac{p}{h}=.833$.

5. 41° 25', 48° 35' (nearly), p=39.7, $\frac{b}{h}=.75$, $\frac{h}{b}=1.33$, $\frac{p}{h}=.66$, $\frac{h}{p}=1.51$, $\frac{p}{b}=.88$, $\frac{b}{p}=1.13$.

6. 50° , p=59.6, h=77.8, $\frac{b}{h}=.643$, $\frac{h}{b}=1.56$, $\frac{p}{h}=.766$, $\frac{h}{p}=1.31$, $\frac{p}{b}=1.19$, $\frac{b}{p}=.839$.

Art. 14. 11. (1) tangent is $a:\sqrt{b^2-a^2}$; (2) tangent is $\sqrt{b^2-a^2}:a$; (3) sine is $a:\sqrt{a^2+b^2}$; (4) sine is $b:\sqrt{a^2+b^2}$; sine is $\sqrt{a^2-b^2}:a$; tangent is $b:\sqrt{a^2-b^2}$. 12. 41° 24′ 35″. 13. 19° 28 16″.

Art. 15. 1. 2.28025. 2. 2.3333. 3. 5.846. 9. 2.75. 10. -.708.

Art. 18. 15. 90°, 36° 52′ 12″. 16. 45°. 17. 45°, 71° 34′. 18. 53° 7′ 48″. 19. 30°, 48° 35′ 25″. 20. 36° 52′ 12″, 16° 15′ 36″.

CHAPTER III.

Art. 27. 5. $A=65^{\circ}$ 14', b=7.834. 6. $B=50^{\circ}$ 12' 24". 9. $A=30^{\circ}$ 12' 12". 11. b=215.6. 12. a=312.23.

CHAPTER IV.

Art. 28. 1. 24.948, 12.71. 2. 58.78.

Art. 29. 4. 398.19 ft. **5.** 228.4, 258 ft. **6.** 63.88 ft. **7.** 276.95 ft. **10.** 86.6, 50. **12.** 219.45 ft.

Art. 30. 1. 26.172, 52.345 mi., second ship bears E. 19° 42'.1 N. from first. 2. LB = 14.197 mi.

Art. 31. 2, 3. 2392.18 sq. ft. 5. 22.5 sq. ft. 6. 435.7 sq. ft.

Art. 32. 2. Base = 187.9 ft.; height = 350.63 ft.; area = 32,943 sq. ft. 3. Base = 358.21 ft.; height = 161.26 ft.; area = 28,881 sq. ft.

Art. 33. 1. 14.54 ft., 16.13 ft., 48.45 sq. ft., 105.2 sq. ft. 2. 16.516 ft., 20.415 ft., 133.94 sq. ft., 318.4 sq. ft.

Art. 34 b. 2. 10.954 mi. **3.** 96 ft. **4.** 14.454 mi. **5.** 67.08 mi., Dip. = 57' 39". **6.** 140.7 mi., Dip. = 2° 1' 53".

Art. 34 c. 4. 2.852 acres. 5. 12 acres 3 roods 6.45 poles.

CHAPTER V.

Art. 44. **18**. **45°**, 135°, -225°, -315°; **45°**, 135°, 405°, 495°. **19**. **60°**, 240°, -120°, -300°; **60°**, 240°, 420°, 600°. **20**. 135°, 225°, -135°, -225°; 135°, 225°, 495°, 585°. **21**. 150°, 330°, -30°, -210°; 150°, 330°, 510°, 690°.

CHAPTER VI.

Art. 46. 8. $\cos(x+y) = .7874$, $\sin(x+y) = .6164$. (Verify by tables.)

Art. 47. 3. $\sin(x-y) = -.1582$, $\cos(x-y) = .9874$. (Verify by tables.)

Art. 50. 7. $\cos 6x = \cos^2 3x - \sin^2 3x = 1 - 2\sin^2 3x = 2\cos^2 3x - 1$, $\sin 6x = 2\sin 3x \cos 3x$. 9. $\sin \frac{x}{4}x = 2\sin \frac{x}{4}x = \cos^2 \frac{x}{4}x = \cos^2 \frac{x}{4}x - \sin^2 \frac{x}{4}x = 1 - 2\sin^2 \frac{x}{4}x = 2\cos^2 \frac{x}{4}x - \sin^2 \frac{x}{4}x = 1 - 2\sin^2 \frac{x}{4}x = 2\cos^2 \frac{x}{4}x - 1$. 10. $\cos 6x = \frac{1}{2}\sqrt{1 + \cos 12x}$, $\sin 6x = \frac{1}{2}\sqrt{1 - \cos 12x}$. 12. $\sin \frac{x}{4}x = \frac{1}{2}\sqrt{1 - \cos \frac{x}{4}x} = \sqrt{1 + \cos \frac{x}{4}x}$.

CHAPTER VII.

Art. 55. 2. b = 70.8, a = 56.1. 4. b = 185, c = 192. 5. b = 8.237, c = 5.464.

Art. 56. 2. $B = 36^{\circ} 18.4'$ or $143^{\circ} 41.6'$, c = 52.71 or 5.98. 5. $A = 48^{\circ} 25'$ or $131^{\circ} 35'$.

Art. 57. 3. $A = 80^{\circ} 46.44'$, $C = 63^{\circ} 48.56'$. 4. $R = 33^{\circ} 3.33'$, $S = 100^{\circ} 56.67'$, b = 39.56.

Art. 58. 2. 16° 47.3′, 58° 45.07′. 3. 48° 11.4′, 58° 24.7′, 73° 23.9′.

Art. 60. 2. b = 698.3, c = 845. **3.** 600, 240. **6.** b = 749.1. **7.** $B = 46^{\circ} 52' 10''$, $C = 111^{\circ} 53' 25''$, c = 1767.3, or $B = 133^{\circ} 7' 50''$, $C = 25^{\circ} 37' 45''$, c = 823.8.

Art. 61. 2. c = 374.04. 4. $A = 109^{\circ} 15' 30''$, c = 440.46.

Art. 62. 3. $A = 53^{\circ} 7.8'$, $B = 59^{\circ} 29.4'$. **4.** $P = 44^{\circ} 48.25'$, $R = 82^{\circ} 15.8'$.

Art. 63. 3. 444.72 yd. **4.** 1112.8 yd. **6.** 179.28 ft. **7.** 87.88 ft. **8.** 104.08 ft. **9.** 479.8 ft.

CHAPTER VIII.

Art. 67. 1. 11977.8 sq. ft.; $46^{\circ}13.8'$, $133^{\circ}46.2'$; 111.3 ft., 149.1 ft. 4. $73^{\circ}30.7'$, $106^{\circ}29.3'$; area = 587637.5 sq. metres (approximately).

CHAPTER IX.

Art. 73. 2. (a) $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{3\pi}{4}$, $\frac{7\pi}{6}$, $\frac{5}{3}\pi$, $\frac{11}{6}\pi$, $\frac{3}{2}\pi$, $\frac{5}{4}\pi$, $-\frac{5}{12}\pi$, $\frac{7}{20}\pi$, $\frac{3}{20}\pi$, $-\frac{11}{60}\pi$, $-\frac{5}{6}\pi$; (b) .786, 1.048, 2.357, 3.667, etc. 4. 90°, 60°, 45°, 30°, 36°, etc. 5. -135° , -900° , -240° , -165° , -4500° . 7. 28° 38′ 52.4′, 229° 10′ 59.2″, 171° 53′ 14.4″, 19° 5′ 54.9″, etc. 9. Sine, cosine, tangent, cotangent, secant, cosecant, respectively, are: $\frac{\pi}{6}$, $\frac{1}{2}$, $\frac{\sqrt{3}}{2}$, $\frac{1}{\sqrt{3}}$, $\sqrt{3}$, $\frac{2}{\sqrt{3}}$, 2; $\frac{\pi}{4}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, 1, 1, $\sqrt{2}$, $\sqrt{2}$; π , 0, -1, 0, $-\infty$, -1, ∞ ; $-\frac{5}{3}\pi$, $\frac{\sqrt{3}}{2}$, $\frac{1}{2}$, $\sqrt{3}$, $\frac{1}{\sqrt{3}}$, 2, $\frac{2}{\sqrt{3}}$. 10 a. 3.75. 11. The interior angles of the polygons are respectively, $\frac{\pi}{8}\pi$, $\frac{$

CHAPTER X.

Art. 83. 4. 238,890 mi. (approximately), 347.5. 5. About 57' 2"; about 1:13.5. 6. About 93,757,000 mi. 7. 206,265 times the distance of the earth from the sun, 3.26 yr. 8. 9 ft. 2.6 in. 9. 76 ft. 9.5 in. 10. 4' 35". 11. 15.708 yd. 12. 13' 1.3".

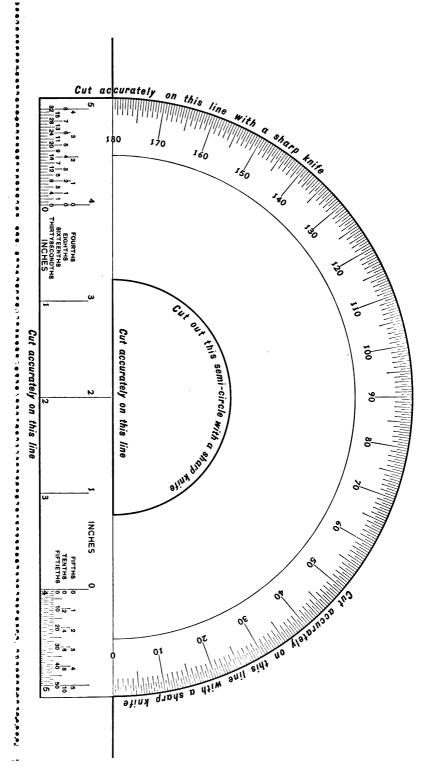
CHAPTER XI.

Art. 85. 3. $\theta = n\pi + (-1)^n \frac{\pi}{3}$, 60°, 120°, 420°, 480°. 4. $n\pi + (-1)^{n+1} \frac{\pi}{6}$, 210°, 330°, 570°, 690°. 5. $n \cdot 180^\circ + (-1)^n 72^\circ$ 30′, 107° 30′, 432° 30′, 467° 30′.

Art. 86. 2. $2 n\pi \pm \frac{\pi}{6}$, $n \cdot 360 \pm 30^{\circ}$, 30° , 390° , 690° . 3. $n \cdot 360 \pm 7^{\circ}$ 40', 7° 40', 352° 20', 367° 40', 712° 20'. 5. $n \cdot 360^{\circ} \pm 136^{\circ}$ 35', 136° 35', 223° 25', 496° 35', 583° 25'.

Art. 87. 2. $n\pi + \frac{\pi}{3}$, $n \cdot 180^{\circ} + 60^{\circ}$, 60° , 240° , 420° , 600° . 3. $n \cdot 180^{\circ} + 20^{\circ} 10'$, $20^{\circ} 10'$, $200^{\circ} 10'$, $380^{\circ} 10'$, $560^{\circ} 10'$. 6. $n \cdot 180^{\circ} + 138^{\circ}$, 138° , 318° , 498° , 678° .

Art. 89. 11 (first part). (a) .97302; (b) \pm .97302, \pm .12117. 12. 43° 5.5′. 13. 45°.


Art. 90. 5. $n\pi \pm \frac{\pi}{6}$, $n\pi \pm \frac{\pi}{3}$. 6. $n\pi + \frac{\pi}{8}$, $n\pi + \frac{5}{8}\pi$ (i.e. $\frac{n\pi}{2} + \frac{\pi}{8}$).

7. $n \cdot 180^{\circ} + 36^{\circ} \cdot 52.2'$. 8. $n \cdot 180^{\circ} + 63^{\circ} \cdot 26'$, $n \cdot 180^{\circ} - 71^{\circ} \cdot 33.9'$. 9. $n \cdot 180^{\circ} + 63^{\circ} \cdot 26'$, $(4 n - 1) \cdot 45^{\circ}$. 10. $\frac{n\pi}{4}$, $\frac{n\pi}{3} + (-1)^{n}\frac{\pi}{18}$. 11. $n\pi + (-1)^{n}\frac{\pi}{2}$, $n \cdot 360^{\circ} - 46^{\circ} \cdot 23.85'$. 12. $(2 n + 1)90^{\circ}$, $\{4 n + (-1)^{n}\}15^{\circ}$. 13. $\{6 n + (-1)^{n}\}30^{\circ}$, $\{10 n + (-1)^{n}\}18^{\circ}$, $\{10 n - 3 (-1)^{n}\}18^{\circ}$. 14. $n\pi \pm \frac{\pi}{4}$, $n\pi \pm \frac{\pi}{3}$. 15. $n\pi \pm \frac{\pi}{6}$, $n\pi \pm \frac{\pi}{3}$. 16. $0, \pm \frac{1}{2}$.

CHAPTER XII.

Art. 94. 9. $\frac{4 \tan A - 4 \tan^3 A}{1 - 6 \tan^2 A + \tan^4 A}$, $\frac{5 \tan A - 10 \tan^3 A + \tan^5 A}{1 - 10 \tan^2 A + 5 \tan^4 A}$,

 $\frac{6 \tan A - 20 \tan^3 A + 6 \tan^5 A}{1 - 15 \tan^2 A + 15 \tan^4 A - \tan^6 A}, \frac{7 \tan A - 35 \tan^3 A + 21 \tan^5 A - \tan^7 A}{1 - 21 \tan^2 A + 35 \tan^4 A - 7 \tan^6 A}$

LOGARITHMIC AND TRIGONOMETRIC TABLES

FIVE-PLACE AND FOUR-PLACE

• • . · . .

LOGARITHMIC AND TRIGONOMETRIC

TABLES

FIVE-PLACE AND FOUR-PLACE

EDITED BY

D. A. MURRAY
CORNELL UNIVERSITY

LONGMANS, GREEN, AND CO.
91 AND 93 FIFTH AVENUE, NEW YORK
LONDON AND BOMBAY
1899

COPYRIGHT, 1899, By LONGMANS, GREEN, AND CO.

ALL RIGHTS RESERVED.

ELECTROTYPED BY J. S. CUSHING & CO., NORWOOD, MASS.

CONTENTS.

TABLES	8 P.A	GES
	EXPLANATION OF THE TABLES	-11
I.	Five-place Logarithms of Numbers 12	-36
II.	FIVE-PLACE LOGARITHMS OF THE SINE, COSINE, TANGENT, AND	
	COTANGENT FOR EACH MINUTE FROM 0° TO 90° 37-	-82
III.	FOUR-PLACE TABLES	-95
	(1) Logarithms of Numbers 84	-8 5
	(2) LOGARITHMS OF THE SINE, COSINE, TANGENT, AND CO-	
	TANGENT AT INTERVALS OF TEN MINUTES FROM 0°	
	то 90°	-90
	(3) VALUES OF THE SINE, COSINE, TANGENT, AND COTAN-	
	GENT AT INTERVALS OF TEN MINUTES FROM 0° TO 90° 91.	-95

Note. These tables have been arranged primarily for students in elementary trigonometry, and the explanations are intended for beginners in that branch of mathematics. Tabular differences and proportional parts should be calculated, and not copied from tables, by those who use logarithmic and trigonometric tables for the first time. The editor may be allowed to take this opportunity of expressing his belief that the principles and use of common logarithms can be easily explained in the school course in arithmetic, and practical applications given which will be interesting and advantageous to young pupils.

•

EXPLANATION OF THE TABLES.

TABLE I.

COMMON LOGARITHMS.

- N.B. The meaning and properties of logarithms are explained in works on algebra.
- 1. The first page of the table gives the characteristics and mantissas of numbers from 1 up to 100. The remainder of the table gives only mantissas. The characteristics are obtained by the following rule, which is deduced in algebra:*

When the number is greater than 1, the characteristic is positive, and is one less than the number of figures to the left of the decimal point; when the number is less than 1, the characteristic is negative, and is one more than the number of zeros between the decimal point and the first significant figure.

The first three figures of a number of four figures are found in the left-hand column marked N; the fourth figure of the number is found in the lines at the top and the foot of the page. The last three figures of the mantissa are found in the same line as the first three figures of the number, and in the same column as the fourth figure of the number. The first two figures of the mantissa are in the column headed $\mathbf{0}$, and are printed only once. They are found either in the same line as the last three figures, or in the first line above which contains a whole mantissa. If, however, a * precedes the last three figures of the mantissa, the first two figures are found in the following line.

^{*}This rule may be easily deduced in arithmetic.

2. To find the logarithm of a number.

Rule: Write the characteristic, and then annex the mantissa found by means of the table.

(a) A number of four figures.

$$\log 3552 = 3.55047$$
; $\log 355.7 = 2.55108$; $\log 35.74 = 1.55315$; $\log 36.34 = 1.56038$; $\log 536.2 = 2.72933$; $\log 5.371 = 0.73006$.

- (b) A number of less than four figures. In this case, annex ciphers, or suppose them to be annexed, and proceed as in case (a). $\log .213 = \overline{1}.32838$; $\log 47.6 = 1.67761$; $\log .0375 = \overline{2}.57403$.
 - (c) A number of more than four figures.

To find log 47653. The characteristic is 4. The maritissa, as shown in algebra, is the same as the mantissa of log 4765.3. Log 4765.3 lies between log 4765 and log 4766. Hence the mantissa of log 4765.3 is between the mantissas of log 4765 and log 4766. It is assumed that the change in the mantissa is proportional to the change in the number, as the latter increases from 4765 to 4766; that is,

mantissa of $\log 4765.3 = \text{mantissa}$ of $\log 4765 + .3 \times (\text{mantissa} \text{ of } \log 4766 - \text{mantissa} \text{ of } \log 4765).*$

mantissa of log 4766=.67815 mantissa of log 4765=.67806 difference for 1= 9 ... mantissa of log 4765=.678087 or, =.67809 ... log 47653=4.67809

Note 1. By general agreement, a number with six or more decimal places is reduced to a number with five in the following way:

If a number less than 5 is in the sixth decimal place, then the number in the fifth place is left unchanged; if a number greater than 5 is in the sixth place, or if there is a 5 in the sixth place and it is followed by figures other

^{*} It is assumed that when a number varies from one value to another, the change in the mantissa is proportional to the change in the number if the latter change is small in comparison with the number. This is not strictly correct, but is accurate enough for practical purposes.

than zeros only, then the number in the fifth place is increased by unity; if the number in the sixth place is 5 and it is followed by zeros only, then an even number in the fifth place is left unchanged, and an odd number in the fifth place is increased by unity.

Note 2. The difference between the mantissas for two consecutive numbers of four figures is called their tabular difference, and is printed in the column marked **D**. At the lower parts of the first three pages of the table the tabular differences for the mantissas on these pages are multiplied by the nine digits expressed as tenths. The results, which are called proportional parts, are the amounts to be added in obtaining the logarithms of five-figure numbers. It is better for the beginner in logarithmic computation to find the tabular differences by subtraction, and make the calculations for himself. The process described above for finding the logarithms of numbers of five or more figures, is called interpolation.

To find log 476.532.

NOTE 3. A five-place table of logarithms is not used, in general, with numbers of more than five figures. In numbers having more than five figures the digits beyond the fifth have little effect on logarithms that are calculated no farther than to five places of decimals.

```
To find log 83.946.
                                       To find log 83.9468.
               \log 83.94 = 1.92397
                                                        \log 83.94 = 1.92397
     difference = .6 \times 5 =
                                            difference = .68 \times 5 =
           \log 83.946 = 1.92400
                                                  \log 83.9468 = 1.92400
                                       To find log 1236.24.
To find log 1236.2.
                \log 1236 = 3.09202
                                                        \log 1236 = 3.09202
    difference = .2 \times 35 =
                                          difference = .24 \times 35 =
           \log 1236.2 = 3.09209
                                                  \log 1236.24 = 3.09210
```

Rule: Find the mantissa corresponding to the first four figures of the number; multiply the tabular difference at that place in the table by the fifth and following figures treated as a decimal; and add the product to the mantissa just found.

Note 4. The logarithm of the reciprocal of a number is called the cologarithm of the number, or the arithmetical complement of the logarithm of the number. For instance, $\log_{\frac{3}{2}5} = \operatorname{colog} 325$. Now

$$\log_{\frac{1}{25}} = \log 1 - \log 325 = 0 - 2.51188 = (10 - 2.51188) - 10 = 7.48812 - 10.$$

Thus the cologarithm of a number is equal to the negative logarithm of the number. The cologarithm can be written directly from the logarithm in the table. The use of cologarithms sometimes helps in computation. For example, $\log \frac{23.41 \times 375}{92.83} = \log 23.41 + \log 375 + \operatorname{colog} 92.83.$

3. To find the number corresponding to a given logarithm. This operation is the reverse of the preceding. The position of the decimal point in the required number is shown by the characteristic. The number of figures before the decimal point is one more than the characteristic when the latter is positive; when the characteristic is negative the number is a decimal, and the number of ciphers between the decimal point and the first significant digit is one less than the figure in the characteristic. (See the rule for finding the characteristic.)

The sequence of figures in the number is found from the mantissa.

(a) When the given mantissa is in the tables. The first two figures of the mantissa will be found in the column headed 0; the last three figures will be found in the same line as the first two, or in the line above (where it will be preceded by *), or in one of the lines following. The first three figures of the number are in the column headed N, and are in the same line as the last three figures of the mantissa; the fourth figure of the number is at the top of the page in the same column as the last three figures of the mantissa.

To find the number whose logarithm is 2.55047. On turning in the table to the mantissa 55047 it is found that the corresponding sequence of figures is 3552. The characteristic 2 shows that the required number is 355.2. The number having $\bar{2}.55047$ for its logarithm is .03552.

Given $\log N = 5.67815$, find N. The sequence of figures in the required number, as found on turning in the table to the mantissa 67815, is 4766. The characteristic δ shows that the required number is 476600. The number having $\overline{1}.67815$ for its logarithm is .4766.

(b) When the given mantissa is not in the tables. In this case the process of interpolation is employed.

To find the number whose logarithm is 2.57072. Inspection of the table shows that the given mantissa lies between the tabulated mantissas, 57066 and 57078. Hence the required number lies between 372.1 and 372.2.

mantissa of	3722 = .5	7078	given mantissa	=.570	072
mantissa of	3721 = .5	7066	mantissa of	3721 = .570	066
difference for	1=	12	difference	=	6

If 12 is the difference for 1, for what is 6 the difference? Obviously for $\frac{6}{12}$ of 1, *i.e.* .5. Hence the required number is 372.15.

Rule: Find the number corresponding to the mantissa in the table next less than the given mantissa; find the difference between these mantissas; divide this difference by the tabular difference; and annex the quotient to the four figures already found.

TABLE II.

LOGARITHMS OF CERTAIN TRIGONOMETRIC RATIOS.

4. The numbers given in this table are sometimes called log-arithmic sines, logarithmic cosines, etc., or the tabular logarithms of the sines, cosines, etc. These terms are considered necessary because these numbers, with the exception of those in one column on each page, are not the logarithms of the sines, cosines, etc., but are these logarithms increased by 10. Hence, in working examples these numbers should be diminished by 10. In the column headed L. Cot., however, the logarithms are given correctly.

The degrees from 0° to 44° are given at the top of the page, and the minutes to be taken with any of these degrees are given from 0 down to 60 in the column on the left. The degrees from 45° to 89° are given at the foot of the page, and the minutes to be taken with any of these degrees are given from 0 up to 60 in the column on the right. For the degrees printed at the top of the page the contents of the columns are indicated at the top of the page; for the degrees printed at the foot of the page the contents of the columns are indicated at the foot of the page. A ratio is printed at the top of each column (excepting the columns for minutes), and the corresponding co-ratio is at the foot. This convenient arrangement of the table is possible, because, as shown

in trigonometry, a trigonometric ratio of an angle is equal to the corresponding co-ratio of the complement of the angle. For instance, L. Sin. 33° 26' = 9.74113 = L. Cos. 56° 34'. The column headed L. Cot. gives *correctly* the logarithms of the cotangents of angles from 0° to 45° , and the logarithms of the tangents of angles from 45° to 90° .

5. To find the logarithm of a trigonometric ratio of an acute angle.

(a) When the angle is given in degrees and minutes. If the angle is less than 45°, turn to where the number of degrees is given at the top of the page; find the number of minutes in the column on the left marked'; write the number which is in line with the number of minutes, and in the column under the ratio named; subtract 10 when the number found is not in the column headed L. Cot. If the angle is 45° or greater than 45°, turn to where the number of degrees is given at the foot of the page; find the number of minutes in the column on the right marked'; write the number which is in line with the number of minutes, and in the column over the ratio named; subtract 10 when the number found is not in the column headed L. Cot., or, what is the same thing, in the column that has L. Tan. at its foot.

```
\begin{array}{ll} \log\sin 23^{\circ}\,20' = 9.59778 - 10\,; & \log\tan 37^{\circ}\,50' = 9.89020 - 10\,; \\ \log\cos 55^{\circ}\,40' = 9.75128 - 10\,; & \log\cot 78^{\circ}\,10' = 9.32122 - 10\,; \\ \log\cot 33^{\circ}\,26' = 0.18032\,; & \log\tan 47^{\circ}\,50' = 0.04302. \end{array}
```

(b) When the angle is given in degrees, minutes, and seconds. In this case the logarithms required are obtained by the process of interpolation.

To find log sin 36° 42′ 20″. The required number lies between log sin 36° 42′ and log sin 36° 43′. It is assumed that the difference between the logarithms of the sines of two angles is proportional to the difference between the angles when the latter difference is small compared with either of the angles. (This is not strictly correct, but is accurate enough for practical purposes.)

$$\begin{array}{ll} \log \sin 36^{\circ} 43' = 9.77660 - 10 & \log \sin 36^{\circ} 42' = 9.77643 - 10 \\ \log \sin 36^{\circ} 42' = 9.77643 - 10 & \text{diff. for } 20'' = 17 \times \frac{20}{60} = 56 \cdots \\ \text{diff. for } 1' = 17 & \therefore \log \sin 36^{\circ} 42' 20'' = 9.77649 - 10 \end{array}$$

As the sine increases when the angle changes from 0° to 90°, log sin 36° 42′ 20″ is greater than log sin 36° 42′; and hence the difference for 20″ is added. The work indicated on the left may be omitted, since the difference for 1′ can be taken directly from the tables.

To find log cos 23° 36′ 40″.

log cos 23° 36' = 9.96207 - 10
difference for
$$40'' = 6 \times \frac{40}{60} = \frac{4}{500}$$

 \therefore log cos 23° 26' $40'' = 9.96203 - 10$

Since the cosine decreases as the angle changes from 0° to 90°, log cos 23° 36′ 40″ is less than log cos 23° 36′; and hence, the difference for 40″ is subtracted. The differences for seconds are added in the case of the logarithm of the tangent, and subtracted in the case of the logarithm of the cotangent.

Note 1. Since
$$\sec A = \frac{1}{\cos A}, \log \sec A = -\log \cos A = \operatorname{colog} \cos A;$$
 since
$$\operatorname{cosec} A = \frac{1}{\sin A}, \log \operatorname{cosec} A = -\log \sin A = \operatorname{colog} \sin A.$$

Note 2. It is shown in trigonometry that the trigonometric ratio of any angle can be expressed in terms of some trigonometric ratio of an angle less than 90°. Hence the logarithm of any trigonometric ratio of any angle can be found.

6. To find the acute angle that has a given logarithm of a trigonometric ratio.

This operation is the reverse of the preceding.

(a) When the given logarithmic ratio is in the table.

To find A, given that $\log \sin A = 9.77558 - 10$, and B, given that $\log \sin B = 9.88647 - 10$. Here L. Sin. A = 9.77558, and L. Sin. B = 9.88647. Look through the columns having L. Sin. at the top or at the foot, until the given L. Sin. is found. If this number is in the column headed L. Sin., write the number of degrees printed at the top of the page, and the number of minutes which is in the column on the left and in line with the given L. Sin. If the given L. Sin. is in the column having L. Sin. at its foot, write the number of degrees printed at the foot of the page, and the number of minutes which is in the column on

the *right* and in line with the given L. Sin. The logarithms of other ratios are treated in a similar manner. In the examples given above, the acute angles that satisfy the given conditions are, $A = 36^{\circ} 37'$, $B = 50^{\circ} 21'$.

(b) When the given logarithmic ratio is not in the table.

To find A when $\log \sin A = 9.80218 - 10$. Examination of the columns for L. Sin. in the table shows that L. Sin. 39° 21' = 9.80213, and L. Sin. 39° 22' = 9.80228. Hence the angle required lies between 39° 21' and 39° 22'.

$$\begin{array}{ll} \log \sin 39^{\circ} \ 22' = 9.80228 - 10 & \log \sin A = 9.80218 - 10 \\ \log \sin 39^{\circ} \ 21' = 9.80213 - 10 & \log \sin 39^{\circ} \ 21' = 9.80213 - 10 \\ \text{difference for 1'} = & 15 & \text{difference} = & 5 \end{array}$$

If 15 is the difference for 1', for what is 5 the difference? Obviously for $\frac{5}{15}$ of 1', i.e. 20". Hence the acute angle that has the given logarithm of a sine is 39° 21' 20".

To find A when $\log \cos A = 9.58824 - 10$. Examination of the columns for L. Cos. in the table shows that L. Cos. 67° 12' = 9.58829, and L. Cos. 67° 13' = 9.58799. Hence the acute angle required lies between 67° 12' and 67° 13'.

$$\begin{array}{ll} \log \cos 66^{\circ} 12' = 9.58829 - 10 & \log \cos 67^{\circ} 12' = 9.58829 - 10 \\ \log \cos 67^{\circ} 13' = 9.58799 - 10 & \log \cos A = 9.58824 - 10 \\ \text{difference for 1'} = & 30 & \text{difference} = & 5 \end{array}$$

If 30 is the difference for 1', for what is 5 the difference? Obviously for $\frac{5}{80}$ of 1', i.e. 10". Hence the acute angle that has the given logarithm of a cosine is 67° 12' 10". The work on the left in these examples need not be written, for it can be performed mentally on inspection of the tables. The successive differences for 1' are called tabular differences for one minute.

Rule: In order to obtain the acute angle corresponding to a given logarithm of a sine or tangent, find the degrees and minutes corresponding to the logarithm next less than the given logarithm; divide the difference between these logarithms by the tabular difference for 1' at that place in the table; this gives the

fraction of a minute to be added to the degrees and minutes already found. In order to obtain the acute angle corresponding to a given logarithm of a cosine or cotangent, find the degrees and minutes corresponding to the logarithm next greater than the given logarithm; divide the difference between these logarithms by the tabular difference for 1' at that place in the table; this gives the fraction of a minute to be added to the degrees and minutes already found.

- Note 1. The logarithm next less is taken in the case of the sine and tangent, since these ratios increase as the angle increases from 0° to 90° ; the logarithm next greater is taken in the case of the cosine and cotangent, since these ratios decrease as the angle increases from 0° to 90° .
- Note 2. It is shown in trigonometry that there are many angles in addition to an acute angle, which have the same trigonometric ratio, and accordingly the same logarithm of the ratio.

TABLES III.

FOUR-PLACE TABLES.

7. Four-place tables are accurate enough for many purposes. The first two pages of Tables III. give four-place logarithms of numbers from 1 to 999. These logarithms should not be used, in general, with numbers that contain more than four figures. The rules for using this table are similar to the rules given in connection with Table I.

log 723 = 2.8591; log 9.36 = .9713. To find log 3642. $\log 3640 = 3.5611$ difference for $2 = .2 \times 12 = 24$ $\therefore \log 3642 = 3.5613$

To find the number whose logarithm is 2.6860.

given $\log = 2.6860$ $\log 485 = 2.6857$ tabular difference for 1 = 9; difference = 3 \therefore addition $= \frac{3}{3}$ of $1 = .3 \cdots$ \therefore number $= 485.3 \cdots$

8. The second of Tables III. gives the augmented logarithms of angles at intervals of ten minutes from 0° to 90°. The angles from 0° to 45° are printed on the left, and the angles from 45° to 90° are printed on the right. This table is used in the same manner as Table II. It is necessary, however, to pay attention to the fact that the difference between the successive angles tabulated is 10′, instead of 1′ as in Table II.

To find log tan 29° 15'.

log tan 29° 10′ = 9.7467 - 10
difference for
$$5' = \frac{5}{10}$$
 of $30 = \frac{15}{10}$
 \therefore log tan 29° 15′ = 9.7482 - 10.

To find A when log cot A = .4531.

$$\log \cot 19^{\circ} 20' = .4549$$

$$\log \cot A = .4531$$
 tabular diff. for 10' = 40; diff. = 18

.. addition= $\frac{18}{10}$ of 10'=4'.5. .. $A=19^{\circ} 24'.5$.

9. The last of Tables III. gives the actual numerical values to four places of decimals, of the sines, cosines, tangents, and cotangents of angles, at intervals of ten minutes from 0° to 90°. These values are usually called natural sines, natural cosines, etc., and are denoted by N. Sin., N. Cos., etc., in order to distinguish them from the so-called logarithmic sines, cosines, etc., given in the immediately preceding table and in Table II. (Logarithms were sometimes called artificial numbers, and ordinary numbers were regarded as natural numbers.) The explanations concerning this four-place table, and the rules for finding the trigonometric ratios corresponding to given angles, and for finding the angles corresponding to given ratios, are the same as the explanations and rules in the preceding table and in Table II., if all references to logarithms in the latter rules be omitted. Those who are using trigonometric tables for the first time, should test the statements made concerning the relations between the numbers in Table II. and the second of Tables III. on the one hand, and the numbers in the third of Tables III. on the other.

To find A when $\cot A = .4336$.

$$\cot 66^{\circ} 30' = .4348$$
 $\cot A = .4336$
 $\cot A = .4336$
tabular diff. for $10' = 34$; diff. = 12
 \therefore addition = $\frac{12}{34}$ of $10' = 3'.5$. $\therefore A = 66^{\circ} 33'.5$.

To find sin 36° 23'.

$$\sin 36^{\circ} 20' = .5925$$

difference for $3' = \frac{3}{10}$ of $23 = 69$
 $\therefore \sin 36^{\circ} 23' = .5932$

- Ex. 1. Compare the four-place mantissas of the logarithms of several numbers with the corresponding five-place mantissas. Make a similar comparison between the four-place and five-place tables in the case of the trigonometric ratios of several angles.
- Ex. 2. In the four-place table of natural sines, etc., find sin 37° 25′, tan 40° 30′, cot 27° 30′, cos 31° 15′, sin 50° 20′, tan 63° 25′, cot 74° 25′, cos 51° 35′. Find the logarithms of these numbers by means of Table I. Compare the results with the values given for the logarithmic sines, etc., in Table II. and the second of Tables III.

I.

COMMON LOGARITHMS OF NUMBERS

GIVING CHARACTERISTICS AND MANTISSAS OF LOGARITHMS OF NUMBERS FROM 1 TO 100, AND MANTISSAS ONLY OF NUMBERS FROM 100 TO 10000.

LOGARITHMS OF NUMBERS.

N	Log.	И	Log.	И	Log.	N	Log.
1 2 3 4 5 6 7 8 9	0.00000 0.30103 0.47712 0.60206 0.69897 0.77815 0.84510 0.90309 0.95424 1.00000	26 27 28 29 30 31 32 33 34 35	1.41497 1.43136 1.44716 1.46240 1.47712 1.49136 1.50515 1.51851 1.53148 1.54407	51 52 53 54 55 56 57 58 59 60	1.70757 1.71600 1.72428 1.73239 1.74036 1.74819 1.75587 1.76343 1.77085 1.77815	76 77 78 79 80 81 82 83 84 85	1.88081 1.88649 1.89209 1.89763 1.90309 1.90849 1.91381 1.91908 1.92428 1.92942
11	1.04139	36	1.55630	61	1.78533	86	1.93450
12	1.07918	37	1.56820	62	1.79239	87	1.93952
18	1.11394	38	1.57978	63	1.79934	88	1.94448
14	1.14613	39	1.59106	64	1.80618	89	1.94939
15	1.17609	40	1.60206	65	1.81291	90	1.95424
16	1.20412	41	1.61278	66	1.81954	91	1.95904
17	1.23045	42	1.62325	67	1.82607	92	1.96379
18	1.25527	43	1.63347	68	1.83251	93	1.96848
19	1.27875	44	1.64345	69	1.83885	94	1.97313
20	1.30103	45	1.65321	70	1.84510	95	1.97772
21	1.32222	46	1.66276	71	1.85126	96	1.98227
22	1.34242	47	1.67210	72	1.85783	97	1.98677
28	1.36173	48	1.68124	73	1.86332	98	1.99123
24	1.38021	49	1.69020	74	1.86923	99	1.99564
25	1.39794	50	1.69897	75	1.87506	100	2.00000

N	0	1	2	3	4	5	6	7	8	9	ם
100	00 000	048	087	130	173	217	260	303	346	389	43
101	432	475	518	561	604	647	689	732	775	817	43
102	860	903	945	988	*030	*072	*115	*157	*199	#242	42
103	01 284	826	368	410	452	494	536	578	620	662	42
104	703	745	787	828	870	912	953	995	*036	*078	423
105	02 119	160	202	243	284	325	366	407	449	490	41
106	531	572	612	653	694	735	776	816	857	898	41
107	938	979	*019	*060	*100	*141	*181	*222	*262	*302	40
108	03 342	383	423	463	503	543	583	623	663	703	40
109	743	782	822	862	902	941	981	*021	*060	*100	40
110	04 139	179	218	258	297	336	376	415	454	493	39
111	532	571	610	650	689	727	766	805	844	883	39
112	922	961	999	*038	*077	*115	*154	*192	*231	*269	39
113	05 308	346	385	423	461	500	538	576	614	652	38
114	690	729	767	805	843	881	918	956	994	*032	38
115	06 070	108	145	183	221	258	296	333	371	408	38
116	446	483	521	558	595	633	670	707	744	781	37
117	819	856	893	930	967	*004	*041	*078	*115	*151	37
118	07 188	225	262	298	335	372	408	445	482	518	37
119	555	591	628	664	700	737	773	809	846	882	36
120	918	954	990	*027	*063	*099	* 135	*171	*207	*243	86
121	08 279	314	350	386	422	458	493	529	565	600	36
122	636	672	707	743	778	814	849	884	920	955	35
123	991	*026	*061	*096	*132	*167	*202	*237	*27 2	*307	35
124	09 342	377	412	447	482	517	552	587	621	656	35
125	691	726	760	795	830	864	899	934	968	*003	35
126	10 037	072	106	140	175	209	243	278	312	346	34
127	380	415	449	483	517	551	585	619	653	687	34
128	721	755	789	823	857	890	924	958	992	*025	34
129	11 059	093	126	160	193	227	261	294	327	361	34
N	0	1	2	3	4	5	6	7	8	9	Д
PP	44	43	42	41		4 0	39	38	8	37	36
1 2 3	4.4 8.8 13.2	4.3 8.6 12.9	4.2 8.4 12.6	4.1 8.2 12.3	3	4.0 8.0 2.0	3.9 7.8 11.7	3.8 7.6 11.4	3 7	.7 '.4 .1	3.6 7.2 10.8
4 5 6	22.0	17.2 21.5 25.8	16.8 21.0 25.2	16.4 20.5 24.0	5 2	6.0 0.0 4.0	15.6 19.5 23.4	15.2 19.0 22.8	18	.5	14.4 18.0 21.6
7 8 9	35.2	30.1 34.4 38.7	29.4 33.6 37.8	28.7 32.8 36.9	3 3	8.0 2.0 6.0	27.3 31.2 35.1	26.6 30.4 34.2	29	.6	25.2 28.8 32.4

N	0	1	2	3	4	6	6	7	8	9	D
130	11 894	428	461	494	528	561	594	628	661	694	33
181	727	760	793	826	860	893	926	959	992	*024	33
182	12 057	090	123	156	189	222	254	287	320	352	33
183	385	418	450	483	516	548	581	613	646	678	33
134	710	743	775	808	840	872	905	937	969	*001	82
185	18 033	066	098	130	162	194	226	258	290	322	32
136	354	386	418	450	481	513	545	577	609	640	82
137	672	704	735	767	799	830	862	893	925	956	32
138	988	*019	*051	*082	*114	*145	*176	#208	*239	#270	31
139	14 301	333	864	395	426	457	489	520	551	582	31
140	618	644	675	706	737	768	799	829	860	891	31
141	922	953	983	*014	*045	*076	*106	*137	*168	*198	31
142	15 229	259	290	320	351	381	412	442	473	503	31
143	534	564	594	625	655	685	715	746	776	806	30
144	886	866	897	927	957	987	*017	*047	*077	*107	30
145	16 137	167	197	227	256	286	316	346	376	406	30
146	435	465	495	524	554	584	613	643	673	702	30
147	782	761	791	820	850	879	909	938	967	997	29
148	17 026	056	085	114	143	173	202	231	260	289	29
149	819	348	377	406	435	464	493	522	551	580	29
150	609	638	667	696	725	754	782	811	840	869	29
151	898	926	955	984	*013	*041	*070	*099	*127	*156	29
152	18 184	213	241	270	298	327	355	384	412	441	29
153	469	498	526	554	583	611	639	667	696	724	28
154	752	780	808	837	865	893	921	949	977	*005	28
155	19 033	061	089	117	145	178	201	229	257	285	28
156	812	340	368	396	424	451	479	507	535	562	28
157	590	618	645	673	700	728	756	783	811	838	28
158	866	893	921	948	976	*003	*030	#058	*085	*112	27
159	20 140	167	194	222	249	276	303	330	358	385	27
N	0	1	2	3	4	5	6	7	8	9	D
PP	35	84	33	32		B1.	30	29	2	8	27
1 2 3	3.5 7.0 10.5	8.4 6.8 10.2	3.3 6.6 9.9	3.5 6.6 9.6	4	8.1 6.2 9.3	3.0 6.0 9.0	2.9 5.8 8.7	5	.8 .6 .4	2.7 5.4 8.1
5	17.5	13.6 17.0 20.4	13.2 16.5 19.8	12.8 16.6 19.5) 1	2.4 5.5 8.6	12.0 15.0 18.0	11.6 14.5 17.4	11 14 16	.0	10.8 13.5 16.2
7 8 9	28.0	23.8 27.2 30.6	23.1 26.4 29.7	22.6 25.0 28.0	8 2	1.7 4.8 7.9	21.0 24.0 27.0	20.3 23.2 26.1	19 22 25	.4	18.9 21.6 24.3

N	0	1	2	3	4	5	6	. 7	8	9	Œ
160	20 412	439	466	493	520	548	575	602	629	656	27
161	683	710	737	763	790	817	844	871	898	925	27
162	952	978	#005	*032	*059	*085	*112	*139	*165	*192	27
163	21 219	245	272	299	325	352	378	405	431	458	27
164	484	511	537	564	590	617	643	669	696	722	26
165	748	775	801	827	854	880	906	932	958	985	26
166	22 011	037	063	089	115	141	167	194	220	246	26
167	272	298	324	350	876	401	427	453	479	505	26
168	531	557	583	608	634	660	686	712	737	763	26
169	789	814	840	866	891	917	943	968	994	*019	26
170	23 045	070	096	121	147	172	198	223	249	274	25
171	300	325	350	376	401	426	452	477	502	528	25
172	553	578	603	629	654	679	704	729	754	779	25
173	805	830	855	880	905	930	955	980	#005	*03 0	25
174	24 055	080	105	130	155	180	204	229	254	279	25
175	304	329	353	378	403	428	452	477	502	527	25
176	551	576	601	625	650	674	699	724	748	773	25
177	797	822	846	871	895	920	944	969	993	*018	25
178	25 042	066	091	115	139	164	188	212	237	261	24
179	285	310	334	358	382	406	431	455	479	503	24
180	527	551	575	600	624	648	672	696	720	744	24
181	768	792	816	840	864	888	912	935	959	983	24
182	26 007	031	055	079	102	126	150	174	198	221	24
183	245	269	293	816	340	364	387	411	435	458	24
184	482	505	529	553	576	600	623	647	670	694	24
185	717	741	764	788	811	834	858	881	905	928	23
186	951	975	998	#021	#045	*068	#091	*114	*138	*161	23
187	27 184	207	231	254	277	300	323	346	370	393	23
188	416	439	462	485	508	581	554	577	600	623	23
189	646	669	692	715	738	761	784	807	830	852	23
N	0	1	2	3	4	5	6	7	8	9	D
PP	27		26		25		24		23	2	2
1 2 3	2.7 5.4 8.1	.	2.6 5.2 7.8	1	2.5 5.0 7.5		2.4 4.8 7.2		2.3 4.6 6.9	1 4	2.2 1.4 3.6
4 5 6	10.8 13.5 16.2	5	10.4 13.0 15.6	1	10.0 12.5 15.0		9.6 12.0 14.4		9.2 11.5 13.8	11	3.8 1.0 3.2
7 8 9	18.9 21.6 24.8	3	18,2 20,8 23,4	.	17.5 20.0 22.5		16.8 19.2 21.6		16.1 18.4 20.7	11	5.4 7.6 9.8

N	0	1	2	3	4	5	6	7	8	9	D
190	875	898	921	944	967	989	*012	*035	*058	# 081	23
191	28 103	126	149	171	194	217	240	262	285	307	23
192	330	353	375	398	421	443	466	488	511	533	28
193	556	578	601	62 3	646	668	691	713	735	758	22
194	780	803	825	847	870	892	914	937	959	981	22
195	29 003	026	048	070	092	115	137	159	181	203	22
196	226	248	270	292	314	336	358	380	403	425	22
197	447	469	491	513	535	557	579	601	623	645	22
198	667	688	710	732	754	776	798	820	842	863	22
199	885	907	929	951	973	994	*016	#038	*060	*081	22
200	30 103	125	146	168	190	211	233	255	276	298	22
201	320	341	363	384	406	428	449	471	492	514	22
202	535	557	578	600	621	643	664	685	707	728	21
203	750	771	792	814	835	856	878	899	920	942	21
204	963	984	*006	*027	*048	*069	*091	*112	*133	*154	21
205	31 175	197	218	239	260	281	302	323	345	366	21
206	387	408	429	450	471	492	513	534	555	576	21
207	597	618	639	660	681	702	723	744	765	785	21
208	806	827	848	869	890	911	931	952	973	994	21
209	32 015	035	056	077	098	118	139	160	181	201	21
210	232	243	263	284	305	325	346	366	387	408	21
211	425	449	469	490	510	531	552	572	593	613	20
212	634	654	675	695	715	736	756	777	797	818	20
213	838	858	879	899	919	940	960	980	*001	*021	20
214	33 041	062	082	102	122	143	163	183	203	224	20
215	244	264	284	304	325	345	365	385	405	425	20
216	445	465	486	506	526	546	566	586	606	626	20
217	646	666	686	706	726	746	766	786	806	826	20
218	846	866	885	905	925	945	965	985	*005	*025	20
219	34 044	064	084	104	124	143	163	183	203	223	20
220	242	262	282	301	321	341	361	380	400	420	20
221	439	459	479	498	518	537	557	577	596	616	20
222	635	655	674	694	713	733	753	772	792	811	19
223	830	850	869	889	908	928	947	967	986	*005	19
224	35 025	044	064	083	102	122	141	160	180	199	19
225	218	238	257	276	295	315	334	353	372	392	19
226	411	430	449	468	488	507	526	545	564	583	19
227	603	622	641	660	679	698	717	736	755	774	19
228	798	813	832	851	870	889	908	927	946	965	19
229	984	*003	*021	*040	*059	*078	*097	*116	*185	*154	19
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
230	36 173	192	211	229	248	267	286	305	324	342	19
231 232 233	361 549 736	380 568 754	399 586 773	418 605 791	436 624 810	455 642 829	474 661 847	493 680 866	511 698 884	530 717 903	19 19 19
234 235 236	922 37 107 291	940 125 310	959 144 328	977 162 346	996 181 365	*014 199 383	*033 218 401	*051 236 420	*070 254 438	*088 273 457	18 18 18
237 238 239	475 658 840	493 676 858	511 694 876	530 712 894	548 731 912	566 749 931	585 767 949	603 785 967	621 803 985	639 822 #003	18 18 18
240	38 021	039	057	075	093	112	130	148	166	184	18
241 242 243	202 382 561	220 399 578	238 417 596	256 435 614	274 453 632	292 471 650	310 489 668	328 507 686	346 525 708	364 543 721	18 18 18
244 245 246	739 917 39 094	757 934 111	775 952 129	792 970 146	810 987 164	828 #005 182	846 #023 199	863 *041 217	881 *058 235	899 *076 252	18 18 18
247 248	270 445 620	287 463 637	305 480 655	322 498 672	340 515 690	358 533 707	375 550 724	393 568 742	410 585 759	428 602 777	18 18 17
249 250	794	811	829	846	863	881	898	915	933	950	17
251 252 253	967 40 140 312	985 157 329	*002 175 346	*019 192 364	*037 209 381	*054 226 398	*071 243 415	*088 261 432	*106 278 449	*123 295 466	17 17 17
254 255 256	483 654 824	500 671 841	518 688	535 705 875	552 722 892	569 739 909	586 756 926	603 773 943	620 790 960	637 807 976	17 17 17
257 258	993 41 162	*010 179	858 *027 196	*044 212	*061 229	*078 246	*095 263	*111 280	*128 296	*145 313	17 17
259	330	347	363	380	397	414	430	447	464	481	17
260 261	497 664	681	697	714	731	581 747	597 764	780	797	814	17
262 263	830 996	847 *012	863 *029	880 *045	896 *062	913 *078	929 *095	946 *111	963 *127	979 *144	16 16
264 265 266	42 160 325 488	177 341 504	193 357 521	210 374 537	226 390 553	243 406 570	259 423 586	275 439 602	292 455 619	308 472 635	16 16 16
267 268 269	651 813 975	667 830 991	684 846 *008	700 862 #024	716 878 *040	732 894 *056	749 911 *072	765 927 *088	781 943 *104	797 959 *12 0	16 16 16
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	و	Ď
270	43 136	152	169	185	201	217	233	249	265	281	16
271	297	313	329	345	361	377	393	409	425	441	16
272	457	473	489	505	521	537	553	569	584	600	16
273	616	632	648	664	680	696	712	727	743	759	16
274	775	791	807	823	838	854	870	886	902	917	16
275	933	949	965	981	996	*012	*028	*044	*059	*075	16
276	44 091	107	122	138	154	170	185	201	217	232	16
277	248	264	279	295	311	326	342	358	373	389	16
278	404	420	436	451	467	483	498	514	529	545	16
279	560	576	592	607	623	638	654	669	685	700	16
280	716	731	747	762	778	793	809	824	840	855	15
281	871	886	902	917	932	948	963	979	994	*010	15
282	45 025	040	056	071	086	102	117	133	148	163	15
283	179	194	209	225	240	255	271	286	301	317	15
284	332	347	362	378	393	408	423	439	454	469	15
285	484	500	515	530	545	561	576	591	606	621	15
286	637	652	667	683	697	712	728	743	758	773	15
287	788	803	818	834	849	864	879	894	909	924	15
288	939	954	969	984	*000	*015	*030	*045	*060	*075	15
289	46 090	105	120	135	150	165	180	195	210	225	15
290	240	255	270	285	300	315	330	345	359	374	15
291	389	404	419	434	449	464	479	494	509	523	15
292	538	553	568	583	598	613	627	642	657	672	15
293	687	702	716	731	746	761	776	790	805	820	15
294	835	850	864	879	894	909	923	938	953	967	15
295	982	997	*012	*026	*041	*056	*070	*085	*100	*114	15
296	47 129	144	159	173	188	202	217	232	246	261	15
297	276	290	305	319	334	349	363	378	392	407	15
298	422	436	451	465	480	494	509	524	538	553	15
299	567	582	596	611	625	640	654	669	683	698	15
300	712	727	741	756	770	784	799	813	828	842	14
301	857	871	885	900	914	929	943	958	972	986	14
302	48 001	015	029	044	058	073	087	101	116	130	14
303	144	159	173	187	202	216	230	244	259	273	14
304	287	302	316	330	344	359	373	387	401	416	14
305	430	444	458	473	487	501	515	530	544	558	14
306	572	586	601	615	629	643	657	671	686	700	14
307	714	728	742	756	770	785	799	813	827	841	14
308	855	869	883	897	911	926	940	954	968	982	14
309	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	14
N	o	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
310	49 136	150	164	178	192	206	220	234	248	262	14
311	276	290	304	318	332	346	360	374	388	402	14
312	415	429	443	457	471	485	499	513	527	541	14
313	554	568	582	596	610	624	638	651	665	679	14
314	693	707	721	734	748	762	776	790	803	817	14
315	831	845	859	872	886	900	914	927	941	955	14
316	969	982	996	*010	*024	*037	*051	*065	*079	#092	14
317	50 106	120	133	147	161	174	188	202	215	229	14
318	243	256	270	284	297	311	325	338	352	365	14
319	379	398	406	420	433	447	461	474	488	501	14
320	515	529	542	556	569	583	596	610	623	637	14
321	651	664	678	691	705	718	732	745	759	772	14
322	786	799	813	826	840	853	866	880	893	907	18
323	920	934	947	961	974	987	*001	#014	#028	*041	13
324	51 055	068	081	095	108	121	135	148	162	175	13
325	188	202	215	228	242	255	268	282	295	308	13
326	322	335	348	362	375	388	402	415	428	441	13
327	455	468	481	495	508	521	534	548	561	574	18
328	587	601	614	627	640	654	667	680	693	706	13
329	720	733	746	759	772	786	799	812	825	838	13
330	851	865	878	891	904	917	930	943	957	970	13
331	983	996	*009	*022	*035	*048	*061	*075	*088	*101	13
332	52 114	127	140	153	166	179	192	205	218	231	13
333	244	257	270	284	297	310	323	336	349	362	18
334	375	388	401	414	427	440	453	466	479	492	18
335	504	517	530	543	556	569	582	595	608	621	13
336	634	647	660	673	686	699	711	724	737	750	18
337	763	776	789	802	815	827	840	853	866	879	13
338	892	905	917	930	943	956	969	982	994	*007	13
339	53 020	033	046	058	071	084	097	110	122	135	18
340	148	161	173	186	199	212	224	237	250	263	13
341	275	288	301	314	326	339	352	364	377	390	13
342	403	415	428	441	453	466	479	491	504	517	13
343	529	542	555	567	580	593	605	618	631	643	13
844	656	668	681	694	706	719	732	744	757	769	13
845	782	794	807	820	832	845	857	870	882	895	13
846	908	920	933	945	958	970	983	995	*008	*020	13
847	54 033	045	058	070	083	095	108	120	133	145	13
848	158	170	183	195	208	220	233	245	258	270	12
849	283	295	307	320	332	345	357	370	382	394	12
И	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	Œ
350	407	419	432	444	456	469	481	494	506	518	12
351 352 353	531 654 777	543 667 790	555 679 802	568 691 814	580 704 827	593 716 839	605 728 851	617 741 864	630 753 876	642 765 888	12 12 12
354 355 356	900 55 023 145	913 035 157	925 047 169	937 060 182	949 072 194	962 084 206	974 096 218	986 108 230	998 121 242	*011 133 255	12 12 12
357 358	267 388	279 400	291 413	303 425	315 437	328 449	340 461 582	352 473	364 485	376 497	12 12
359 360	630	522 642	654	666	558 678	570 691	703	594 715	727	739	12
361	751	763	775	787	799	811	823	835	847	859	12
362 363	871 991	883 *003	895 *015	907 *027	919 *038	931 *050	943 *062	955 *074	967 *086	979 *098	12 12
364 365 366	56 110 229 348	122 241 360	134 253 372	146 265 384	158 277 396	170 289 407	182 301 419	194 312 431	205 324 443	217 336 455	12 12 12
367 • 368 369	467 585 703	478 597 714	490 608 726	502 620 738	514 632 750	526 644 761	538 656 773	549 667 785	561 679 797	573 691 808	12 12 12
370	820	832	844	855	867	879	891	902	914	926	12
371 372 373	937 57 054 171	949 066 183	961 078 194	972 089 206	984 101 217	996 113 229	*008 124 241	*019 136 252	*031 148 264	*043 159 276	12 12 12
374 375	287 403	299 415	310 426	322 438	334 449	345 461	357 473	368 484	380 496	392 507	12 12
376 377	519 634	530 646	542 657	553 669	565 680	576 692	703	715	611 726	623 738	12 11
378 379	749 864	761 875	772 887	784 898	795 910	807 921	818 933	830 944	841 955	852 967	11 11
380	978	990	*001	*013	*024	*035	*047	*058	*070	*081	11
381 382 383	58 092 206 320	104 218 331	115 229 343	127 240 354	138 252 365	149 263 377	161 274 388	172 286 399	184 297 410	195 309 422	11 11 11
384 385 386	433 546 659	444 557 670	456 569 681	467 580 692	478 591 704	490 602 715	501 614 726	512 625 737	524 636 749	535 647 760	11 11 11
387 388	771 883	782 894	794 906	805 917	816 928	827 939	838 950 *062	850 961 *073	861 973	872 984	11 11
389	995	*006	*017	*028	*040	*051	~062	*0/8	*084	*095	11
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	.7	8	9	Œ
390	59 106	118	129	140	151	162	173	184	195	207	11
391	218	229	240	251	262	273	284	295	306	318	11
392	329	340	351	362	373	384	395	406	417	428	11
393	439	450	461	472	483	494	506	517	528	539	11
394	550	561	572	583	594	605	616	627	638	649	11
395	660	671	682	693	704	715	726	737	748	759	11
396	770	780	791	802	813	824	835	846	857	868	11
397 398 399	879 988 60 097	890 999 108	901 *010 119	912 *021 130	923 *032 141	934 *043 152	945 *054 163	956 *065	966 *076 184	977 *086 195	11 11 11
400	206	217	228	239	249	260	271	282	293	304	11
401	314	325	336	347	358	369	379	390	401	412	11
402	423	433	444	455	466	477	487	498	509	520	11
403	531	541	552	563	574	584	595	606	617	627	11
404	638	649	660	670	681	692	703	713	724	735	11
405	746	756	767	778	788	799	810	821	831	842	11
406	853	863	874	885	895	906	917	927	938	949	11
407	959	970	981	991	*002	*013	*023	*034	*045	*055	11
408	61 066	077	087	098	109	119	130	140	151	162	11
409	172	183	194	204	215	225	236	247	257	268	11
410	278	289	300	310	321	331	342	352	363	374	11
411	384	395	405	416	426	437	448	458	469	479	11
412	490	500	511	521	532	542	553	563	574	584	11
413	595	606	616	627	637	648	658	669	679	690	11
414	700	711	721	731	742	752	763	773	784	794	10
415	805	815	826	836	847	857	868	878	888	899	10
416	909	920	930	941	951	962	972	982	993	*003	10
417	62 014	024	034	045	055	066	076	086	097	107	10
418	118	128	138	149	159	170	180	190	201	211	10
419	221	232	242	252	263	273	284	294	304	315	10
420	325	335	346	356	866	377	387	397	408	418	10
421	428	439	449	459	469	480	490	500	511	521	10
422	531	542	552	562	572	583	593	603	613	624	10
423	634	644	655	665	675	685	696	706	716	726	10
424	737	747	757	767	778	788	798	808	818	829	10
425	839	849	859	870	880	890	900	910	921	931	10
426	941	951	961	972	982	992	*002	*01 2	*022	#033	10
427	63 043	053	063	073	083	094	104	114	124	134	10
428	144	155	165	175	185	195	205	215	225	236	10
429	246	256	266	276	286	296	306	317	327	337	10
N	0	1	2	3	4	5	6	7	8	9	Ð

И	o	1	2	3	4	6	6	7	8	9	ם
430	847	357	367	377	387	897	407	417	428	438	10
431 432 433	448 548 649	458 558 659	468 568 669	478 579 679	488 589 689	498 599 699	508 609 709	518 619 719	528 629 729	538 639 739	10 10 10
434 435 436	749 849 949	759 859 959	769 869 969	779 879 979	789 889 988	799 899 998	809 909 #008	819 919 #018	829 929 #028	839 939 #038	10 10 10
437 438	64 048 147	058 157	068 167	078 177	088 187	098 197	108 207	118 217	128 227 326	137 237 335	10 10 10
439 440	246 345	256 355	266 365	276 375	286 385	296 395	306 404	316 414	424	434	10
441 442	444 542 640	454 552	464 562 660	473 572 670	483 582 680	493 591 689	503 601 699	513 611 709	523 621 719	532 631 729	10 10 10
443 444 445 446	788 836 933	748 846 943	758 856 953	768 865 963	777 875 972	787 885 982	797 895 992	807 904 *002	816 914 *011	826 924 *021	10 10 10
447 448	65 031 128 225	040 137 234	050 147	060 157 254	070 167 263	079 176 273	089 186 283	099 196 292	108 205 302	118 215 312	10 10 10
449 450	821	881	244 341	350	360	369	379	389	398	408	10
451 452 453	418 514 610	427 523 619	437 533 629	447 543 639	456 552 648	466 562 658	475 571 667	485 581 677	495 591 686	504 600 696	10 10 10
454 455 456	706 801 896	715 811 906	725 820 916	734 830 925	744 839 935	753 849 944	763 858 954	772 868 963	782 877 973	792 887 962	9 9
457 458	992 66 087	*001 096	*011 106	*020 115	*030 124	*039 184	*049 143	*058 153	*068 162	*077 172	9
459 460	181 276	191	200	210	219 314	229 323	332	342	257 351	266 361	9
461 462 463	370 464 558	380 474 567	389 483 577	398 492 586	408 502 596	417 511 605	427 521 614	436 530 624	445 539 633	455 549 642	9
464 465	652 745	661 755	671 764	680 773	689 783	699 792	708 801 894	717 811 904	727 820 913	736 829 922	9
466 467 468	932 67 025	941 084	950 043	960 052	969 062	978 971	987 080	997 089	*006 099	*015 108	9
.469	117	127	186	145	154	164	178	182	191	201	9
N	0	1	2	3	4	5	6.	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
470	210	219	228	237	247	256	265	274	284	293	9
471	302	311	321	830	339	348	357	367	376	385	9
472 473	394 486	403 495	413 504	422 514	431 523	440 532	449 541	459 550	468 560	477 569	9
i	ľ		-								_
474 475	578 669	587 679	596 688	605 697	614 706	624 715	633 724	642 733	651 742	660 752	9
476	761	770	779	788	797	806	815	825	834	843	9
477	852	861	870	879	888	897	906	916	925	934	9
478	943	952	961	970	979	988	997	*006	*015	*024	9
479	68 034	043	052	061	070	079	088	097	106	115	9
480	124	133	142	151	160	169	178	187	196	205	9
481	215	224	233	242	251	260	269	278	287	296	9
482 483	305 395	314 404	323 413	332 422	341 431	350 440	359 449	368 458	377 467	386 476	9
										i i	
484 485	485 574	494 583	502 592	511 601	520 610	529 619	538 628	547 637	556 646	565 655	9
486 486	664	673	681	690	699	708	717	726	735	744	9
	753	762	771	780	789	797	806	815	824	833	9
487 488	755 842	851	860	869	878	886	895	904	913	922	9
489	931	940	949	958	966	975	984	993	*002	*011	9
490	69 020	028	037	046	055	064	073	082	090	099	9
491	108	117	126	135	144	152	161	170	179	188	9
492	197	205	214	223	232	241	249	258	267	276	9
493	285	294	302	811	320	329	338	346	355	364	9
494	378	381	390	399	408	417	425	434	443	452	9
495 496	461 548	469 557	478 566	487 574	496 583	504 592	513 601	522 609	531 618	539 627	9
	1								l		
497 498	636 723	644 732	653 740	662 749	671 758	679 767	688 775	097 784	705 793	714 801	9
499	810	819	827	836	845	854	862	871	880	888	9
500	897	906	914	923	932	940	949	958	966	975	9
501	984	992	*001	*010	*018	*027	*036	*044	*053	*062	9
502	70 070	079	088	096	105	114	122	131	140	148	9
503	157	165	174	183	191	200	209	217	226	234	9
504	243	252	260	269	278	286	295	303	312	321	9
505 506	329 415	338 424	346 432	355 441	364 449	372 458	381 467	389 475	398 484	406 492	9
1											- 1
507 508	501 586	509 595	518 603	526 612	535 621	544 629	552 638	561 646	569 655	578 663	9
509	672	680	689	697	708	714	723	731	740	749	8
И	0	1	2	3	4	5	6	7	8	9	Д

N	0	1	2	3	4	5	6	7	8	9	D
510	757	766	774	783	791	800	808	817	825	834	9
511 512 518	842 927 71 012	851 935 020	859 944 029	868 952 037	876 961 046	885 969 054	893 978 063	902 986 071	910 995 079	919 #003 088	9 9 8
514 515 516	096 181 265	105 189 273	118 198 282	122 206 290	130 214 299	139 223 307	147 231 315	155 240 324	164 248 332	172 257 341	8 8 8
517 518 519	349 433 517	357 441 525	366 450 533	374 458 542	383 466 550	391 475 559	399 483 567	408 499 575	416 500 584	425 508 592	8 8 8
520	600	609	617	625	634	642	650	659	667	675	8
521	684 767	692 775	700	709 792	717 800	725 809	734 817	742 825	750 834	759 842	8
522 523	850	858	784 867	875	883	892	900	908	917	925	8
524 525 526	933 72 016 099	941 024 107	950 032 115	958 041 123	966 049 132	975 057 140	983 066 148	991 074 156	999 082 165	*008 090 173	8 8 8
527 528 529	181 263 346	189 272 354	198 280 362	206 288 370	214 296 378	222 304 387	230 313 395	239 321 403	247 329 411	255 337 419	8 8 8
530	428	436	444	452	460	469	477	485	493	501	8
531 532	509 591	518 599	526 607	534 616	542 624	550 632	558 640	567 648	575 656	583 665	8
533	673	681	689	697	705	713	722	730	738	746	8
584 585	754 835	762 843	770 852	779 860	787 868	795 876	803 884	811 892	819 900	827 908	8 8
536	916	925	933	941	949	957	965	973	981	989	8
587	997	*006 086	*014	*022	*030	*038 119	*046	*054 135	*062 143	*070	8
538 539	73 078 159	167	094 175	102 183	111 191	199	127 207	215	223	151 231	8
540	239	247	255	263	272	280	288	296	304	312	8
54 1	320	828	336	344	352	360	368	376	384	392	8
542 543	400 480	408 488	416 496	424 504	432 512	440 520	448 528	456 536	464 544	472 552	8
544	560	568	576	584	592	600	608	616	624	632	8
545 546	640 719	648 727	656 735	664 743	672 751	679 759	687 767	695 775	703 783	711 791	8 8
547	799	807	815	823	830	838	846	854	862	870	8
548 549	878 957	886 965	894 973	902 981	910 989	918 997	926 *005	933 *013	941 *020	949 *028	8 8
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
550	74 036	044	052	060	068	076	084	092	099	107	8
551	115	123	131	139	147	155	162	170	178	186	8
552	194	202	210	218	225	233	241	249	257	265	8
553	273	280	288	296	304	312	320	327	335	343	8
554	351	359	367	374	382	390	398	406	414	421	8
555	429	437	445	453	461	468	476	484	492	500	8
556	507	515	523	531	539	547	554	562	570	578	8
557	586	593	601	609	617	624	632	640	648	656	8
558	663	671	679	687	695	702	710	718	726	733	8
559	741	749	757	764	772	780	788	796	803	811	8
560	819	827	834	842	850	858	865	873	881	889	8
561	896	904	912	920	927	935	943	950	958	966	8
562	974	981	989	997	*005	*012	*020	*028	#035	*043	8
563	75 051	059	066	074	082	089	097	105	113	120	8
564	128	136	143	151	159	166	174	182	189	197	8
565	205	213	220	228	236	243	251	259	266	274	8
566	282	289	297	305	312	320	328	335	343	351	8
567	358	366	374	3 81	389	397	404	412	420	427	8
568	435	442	450	458	465	473	481	488	496	504	8
569	511	519	526	534	542	549	557	565	572	580	8
570	587	595	603	610	618	626	633	641	648	656	8
571 572 573	664 740 815	671 747 823	679 755 831	686 762 838	694 770 846	702 778 853	709 785 861	717 793 868	724 800 876	732 808 884	8 8
574	891	899	906	914	921	929	937	944	952	959	8
575	967	974	982	989	997	*005	*012	*020	*027	*035	8
576	76 043	050	057	065	072	080	087	095	103	110	8
577	118	125	133	140	148	155	163	170	178	185	8
578	193	200	208	215	223	230	238	245	253	260	8
579	268	275	283	290	298	305	313	320	328	335	8
580	343	350	358	365	373	380	388	395	403	410	8
581	418	425	433	440	448	455	462	470	477	485	7 7 7
582	492	500	507	515	522	530	537	545	552	559	
583	567	574	582	589	597	604	612	619	626	634	
584	641	649	656	664	671	678	686	693	701	708	7
585	716	723	730	738	745	753	760	768	775	782	7
586	790	797	805	812	819	827	834	842	849	856	7
587	864	871	879	886	893	901	908	916	923	930	777
588	938	945	953	960	967	975	982	989	997	*004	
589	77 012	019	026	034	041	048	056	063	070	078	
N	0	1	2	3	4	5	6	.4	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
590	085	093	100	107	115	122	129	137	144	151	7
591	159	166	173	181	188	195	203	210	217	225	7
592	232	240	247	254	262	269	276	283	291	298	7
593	305	313	320	327	335	342	349	357	364	371	7
594	379	386	393	401	408	415	422	430	437	444	7
595	452	459	466	474	481	488	495	508	510	517	7
596	525	532	539	546	554	561	568	576	583	590	7
597	597	605	612	619	627	634	641	648	656	663	7
598	670	677	685	692	699	706	714	721	728	735	
599 600	743 815	750 822	757 830	764 837	772 844	779 851	786 859	793 866	801	880	7
601	887	895	902	909	916	924	931	938	945	952	7 7 7
602	960	967	974	981	988	996	*003	#010	*017	*025	
603	78 032	039	046	053	061	068	075	082	089	097	
604 605 606	104 176 247	111 183 254	118 190 262	125 197 269	132 204 276	140 211	147 219 290	154 226 297	161 233 305	168 240 312	7 7 7
607 608	319 390	326 398	333 405	340 412	347 419	283 355 426	362 433	369 440	376 447	383 455	7 7
609 610	462 533	469 540	476 547	483 554	490 561	497 569	576	512 583	519 590	526 597	7
611	604	611	618	625	633	640	647	654	661	668	7 7 7
612	675	682	689	696	704	711	718	725	732	739	
613	746	753	760	767	774	781	789	796	803	810	
614	817	824	831	838	845	852	859	866	878	880	7 7
615	888	895	902	909	916	923	930	937	944	951	
616	958	965	972	979	986	993	*000	*007	*014	*021	7 7 7
617	79 029	036	043	050	057	064	071	078	085	092	
618	099	106	113	120	127	134	141	148	155	162	
619	169	176	183	190	197	204	211	218	225	232	7
620 621	309	246 316	253 323	260 330	337	274 344	281 351	288 358	365	302 372	7
622	379	386	393	400	407	414	421	428	435	442	77
623	449	456	463	470	477	484	491	498	505	511	
624	518	525	532	539	546	553	560	567	574	581	7
625	588	595	602	609	616	623	630	637	644	650	7
626	657	664	671	678	685	692	699	706	713	720	7
627	727	734	741	748	754	761	768	775	782	789	7
628	796	803	810	817	824	831	837	844	851	858	7
629	865	872	879	886	893	900	906	913	920	927	7
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
630	934	941	948	955	962	969	975	982	989	996	7
631	80 003	010	017	024	030	037	044	051	058	065	7
632	072	079	085	092	099	106	113	120	127	134	7
633	140	147	154	161	168	175	182	188	195	202	7
634	209	216	223	229	236	243	250	257	264	271	7
635	277	284	291	298	305	312	318	325	332	339	7
636	346	353	359	366	373	\$80	387	393	400	407	7
637	414	421	428	434	441	448	455	462	468	475	7
638	482	489	496	502	509	516	523	530	536	543	7
639	550	557	564	570	577	584	591	598	604	611	7
640	618	625	632	638	645	652	659	665	672	679	7
641	686	693	699	706	713	720	726	733	740	747	7 7 7
642	754	760	767	774	781	787	794	801	808	814	
643	821	828	835	841	848	855	862	868	875	882	
644	889	895	902	909	916	922	929	986	943	949	7
645	956	963	969	976	983	990	996	*003	*010	*017	7
646	81 023	030	037	043	050	057	064	070	077	084	7
647	090	097	104	111	117	124	131	137	144	151	7
648	158	164	171	178	184	191	198	204	211	218	7
649	224	231	238	245	251	258	265	271	278	285	7
650	291	298	305	311	318	325	331	338	345	351	7
651	358	365	371	378	385	391	398	405	411	418	7
652	425	431	438	445	451	458	465	471	478	485	7
653	491	498	505	511	518	525	531	538	544	551	7
654	558	564	571	578	584	591	598	604	611	617	7
655	624	631	637	644	651	657	664	671	677	684	7
656	690	697	704	710	717	723	730	737	743	750	7
657	757	763	770	776	783	790	796	803	809	816	7
658	823	829	836	842	849	856	862	869	875	882	7
659	889	895	902	908	915	921	928	935	941	948	7
660	954	961	968	974	981	987	994	*000	*007	*014	7
661	82 020	027	033	040	046	053	060	066	073	079	7
662	086	092	099	105	112	119	125	132	138	145	7
663	151	158	164	171	178	184	191	197	204	210	7
664	217	223	230	236	243	249	256	263	269	276	7
665	282	289	295	302	308	315	321	328	334	341	7
666	347	354	360	367	373	380	387	393	400	406	7
667	413	419	426	432	439	445	452	458	465	471	7
668	478	484	491	497	504	510	517	523	530	536	7
669	543	549	556	562	569	575	582	588	595	601	7
N	0	1	2	3	4	5	6	7	8	9	D

D :

N	0	1	2	3	4	5	6	7	8	9	D
670	607	614	620	627	633	640	646	658	659	666	7
671 672 673	672 737 802	679 743 808	685 750 814	692 756 821	698 763 827	705 769 834	711 776 840	718 782 847	724 789 853	780 795 860	6 6 6
674 675 676	866 930 995	872 937 *001	879 943 *008	885 950 *014	892 956 *020	898 963 *027	905 969 #033	911 975 *040	918 982 #046	924 988 #052	6 6 6
677 678	83 059 123	065 129 193	072 136 200	078 142	085 149	091 155 219	097 161 225	104 168 232	110 174 238	117 181 245	6
679 680	187 251	257	264	206	213	283	289	296	302	308	6
681 682	315 378	321 385	327 391	334 398	340 404	347 410	353 417	359 423	366 429	372 436	6
683	442	418	455	461	467	474	480	487	493	499	6
684 685 686	506 569 632	512 575 639	518 582 645	525 588 651	531 594 658	537 601 664	544 607 670	550 613 677	556 620 683	563 626 689	6 6
687 688 689	696 759 822	702 765 828	708 771 835	715 778 841	721 784 847	727 790 853	734 797 860	740 803 866	746 809 872	753 816 879	6 6 6
690	885	891	897	904	910	916	923	929	935	942	6
691 692 693	948 84 011 073	954 017 080	960 023 086	967 029 092	973 036 098	979 042 105	985 048 111	992 055 117	998 061 123	*004 067 130	6 6 6
694 695 696	136 198 261	142 205 267	148 211 273	155 217 280	161 223 286	167 230 292	173 236 298	180 242 305	186 248 311	192 255 317	6 6
697	323	330	336	342 404	348	354 417	361	367 429	373 435	379 442	6
698 699	386 448	392 454	398 460	466	410 473	479	423 485	491	497	504	6
700	510	516	522	528	535	541	547	553	559	566	6
701 702 703	572 634 696	578 640 702	584 646 708	590 652 714	597 658 720	603 665 726	609 671 733	615 677 739	621 683 745	628 689 751	6 6 6
704 705	757 819	763 825	770 831	776 837	782 844	788 850	794 856	800 862	807 868	818 874	6
706 707	880 942	948	893 954	899 960	905 967	911 973	917 979	924 985	930 991	986 997	6
708 709	85 003 065	009 071	016 077	022 083	028 069	034 095	040 101	046 107	052 114	058 120	6 6
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	Ð
710	126	132	138	144	150	156	163	169	175	181	6
711	187	193	199	205	211	217	224	230	236	242	6
712 713	248 309	254 315	260 321	266 327	272 333	278 339	285 345	291 352	297 358	303 364	6
							ı		1	1	
714 715	870 431	376 437	382 443	388 449	394 455	400 461	406 467	412	418	425 485	6
716	491	497	503	509	516	532	528	534	540	546	6
717	552	558	564	570	576	582	588	594	600	606	6
718	612	618	625	631	637	643	649	655	661	667	6
719	678	679	685	691	697	703	709	715	721	727	6
720	733	739	745	751	757	763	769	775	781	788	6
721	794	800 860	806	812	818	824	830 890	836 896	842 902	848 908	6
722 723	854 914	920	866 926	872 932	878 938	884 944	950	956	962	968	6
	974	980	986	992	998	₹004	* 010	*016	*022	#028	6
724 725	86 034	040	046	052	058	064	070	076	082	088	6
726	094	100	106	112	118	124	130	136	141	147	6
727	153	159	165	171	177	183	189	195	201	207	6
728	213	219	225	231	237	243	249	255	261	267	6
729	273	279	285	291	297	303	308	314	320	326	6
730	332	338	344	350	356	362	368	874	380	386	6
781	392	398	404	410	415	421	427	433	439	445	6
732 733	451 510	457 516	463 522	469 528	475 534	481 540	487 546	493 552	499 558	504 564	6
									1		
73 <u>4</u> 785	570 629	576 635	581 641	587 646	598 652	599 658	605 664	611 670	617 676	623 682	6
736	688	694	700	705	711	717	723	729	735	741	6
737	747	753	759	764	770	776	782	788	794	800	6
738	806	812	817	823	829	835	841	847	853	859	6
739	864	870	876	882	888	894	900	906	911	917	6
740	923	929	935	941	947	953	958	964	970	976	6
741	983	988	994	999	*005	*011	*017	*023	*029	* 035	6
742	87 040 099	046 105	052 111	058 116	064 122	070 128	075 134	081 140	087 146	093 151	6
743											6
744 745	157 216	163 221	169 227	175 233	181 239	186 245	192 251	198 256	204 262	210 268	6
746	274	280	286	291	297	303	309	315	320	326	6
747	332	338	344	349	355	361	867	878	379	384	6
748	890	396	402	408	413	419	425	431	437	442	6
749	448	454	460	466	471	477	483	489	495	500	6
N	0	1	2	3	4	- 5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D	
750	506	512	518	523	529	535	541	547	552	558	6	١
751 752 753	564 622 679	570 628 685	576 633 691	581 639 697	587 645 703	593 651 708	599 656 714	604 662 720	610 668 726	616 674 731	6 6 6	
754 755 756	737 795 852	743 800 858	749 806 864	754 812 869	760 818 875	766 823 881	772 829 887	777 835 892	783 841 898	789 846 904	6 6 6	
757 758	910 967	915 973	921 978	927 984	933 990	938 996	944 *001	950 *007	955 *013	961 *018	6	
759 76 0	88 024 081	030	036	041	104	053 110	116	121	127	133	6	
761 762	138 195	144 201	150 207	156 218	161 218	167 224	173 230	178 235	184 241	190 247	6	١
763 764	252 309	258 315	264 321	270 326	275 332	281 338	287 343	292 349	298 355	360 360	6	
765 766	366 423	372 429	377 434	383 440	389 446	395 451	400 457	406 463	412 468	417	6	
767 768 769	480 536 593	485 542 598	491 547 604	497 553 610	502 559 615	508 564 621	513 570 627	519 576 632	525 581 638	530 587 643	6 6	
770	649	655	660	666	672	677	683	689	694	700	6	١
771 772 773	705 762 818	711 767 824	717 773 829	722 779 835	728 784 840	734 790 846	739 795 852	745 801 857	750 807 863	756 812 868	6 6	
774 775 776	874 930 986	880 936 992	885 941 997	891 947 *003	897 953 *009	902 958 *014	908 964 *020	913 969 *025	919 975 *031	925 981 *037	6 6	I
777 778	89 042 098	048 104	053 109	059 115	064 120	070 126	076 131	081 137	087 143	092	6	
779	154	159	165	170	176	182	187	193	198	204	6	١
780 781	265	215	221 276	282	232	293	243	304	254 310	315	6	۱
782 783	321 376	326 382	332 387	337 393	343 398	348 404	354 409	360 415	365 421	371 426	6	
784 785 786	432 487 542	437 492 548	443 498 553	448 504 559	454 509 564	459 515 570	465 520 575	470 526 581	476 531 586	481 537 592	6 6 6	
787 788 789	597 653 708	603 658 713	609 664 719	614 669 724	620 675 730	625 680 735	631 686 741	636 691 746	642 697 752	647 702 757	6 6 6	
N	0	1	2	3	4	5	6	7	8	9	D	

N	0	1	2	3	4	5	6	7	8	9	D
790	763	768	774	779	785	790	796	801	807	812	5
791 792 793	818 873 927	823 878 933	829 883 938	834 889 944	840 894 949	845 900 955	851 905 960	856 911 966	862 916 971	867 922 977	5 5 5
794 795	982 90 037	988 042	993 048	998 053	#004 059	*009 064	*015 069	*020 075	*026 080	*031 086	5 5 5
796 797 798	091 146 200	097 151 206	102 157 211	108 162 217	113 168 222	119 173 227	124 179 233	129 184 238	135 189 244	140 195 249	5 5
799	255	260	266	271	276	282	287	293	298	304	5
800	309	314	320	325	831	836	342	347	352	358	
801 802 803	363 417 472	369 423 477	374 428 482	380 434 488	385 439 493	390 445 499	396 450 504	401 455 509	407 461 515	412 466 520	5 5 5
804 805 806	526 580 634	531 585 639	536 590 644	542 596 650	547 601 655	553 607 660	558 612 666	563 617 671	569 623 677	574 628 682	5 5 5
807 808 809	687 741 795	693 747 800	698 752 806	708 757 811	709 763 816	714 768 822	720 773 827	725 779 832	730 784 838	736 789 843	5 ₁ 5
810	849	854	859	865	870	875	881	886	891	897	5
811	902	907	918	918	924	929	934	940	945	950	5
812 813	956 91 009	961 014	966 020	972 025	977 030	982 036	988 041	993 046	998 052	#004 057	5
814 815	062 116	068 121	073 126	078 132	084 137	089 142	094 148	100 153	105 158	110 164	5 5
816	169	174	180	185	190	196	201	206	212	217	5
817 818 819	222 275 328	228 281 334	233 286 339	238 291 344	243 297 350	249 302 355	254 307 360	259 312 365	265 318 371	270 323 376	5 5 5
820	881	387	392	397	403	408	413	418	494	429	5
821	434	440	445	450	455	461	466	471	477	482	5
822 828	487 540	492 545	498 551	503 556	508 561	514 566	519 572	524 577	529 582	535 587	5 5
824 825 826	593 645 698	598 651 703	603 656 709	609 661 714	614 666 719	619 672 724	624 677 730	630 682 735	635 687 740	640 693 745	5 5 5
827 828 829	751 803 855	756 808 861	761 814 866	766 819 871	772 824 876	777 829 882	782 834 887	787 840 892	793 845 897	798 850 903	5 5 5
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	Ω
830	908	918	918	924	929	934	939	944	950	955	5
8 31	960	965	971	976	981	986	991	997	*002	*007	5
832	92 012 065	018 070	023 075	028	033 085	088 091	044 096	049 101	054 106	059 111	5
833	000	010	010	000		OST	080		100	111	_
834	117	122	127	132	137	148	148	158	158	168	5
835 836	169 221	174 226	479 231	184 286	189 241	196 247	200	205 257	210 262	215 267	5 5
				1						""	_
837 838	278 324	278 330	283 335	288 340	293 345	298 350	304 355	809 861	314 366	319 371	5 5
839	376	381	387	392	397	402	407	412	418	428	5
840	428	433	438	443	449	454	459	464	469	474	5
041	480	485	490	495	500	505	511	516	521	526	5
841 842	531	536	542	547	552	557	562	567	572	578	5
843	583	588	593	598	603	609	614	619	624	620	5
844	634	639	645	650	655	660	665	670	675	681	5
845	686	691	696	701	706	711	716	722	727	732	5
846	737	742	747	752	758	76 8	768	773	778	788	5
847	78 8	793	799	804	809	814	819	824	829	834	5
848	840	845	850	855	860	865	870	875	881	886	5
849	891	896	901	906	911	916	921	927	982	987	5
850	942	947	952	957	962	967	973	978	983	968	5
851	998	998	*003	*008	*013	*018	#024	*029	*084	*039 090	5
852 853	98 044 095	049 100	054 105	059 110	064 115	069 120	075 125	080 131	085 136	141	5
								l			
854 855	146 197	151 202	156 207	161 212	166 217	171 222	176 227	181 282	186 287	192 243	5
856	247	252	258	263	268	273	278	283	288	298	5
857	298	303	308	313	318	323	328	834	839	844	5
858	349	354	359	364	369	374	379	884	389	394	5
859	399	404	409	414	420	425	430	435	440	445	5
860	450	455	460	465	470	475	480	485	490	495	5
861	500	505	510	515	520	526	531	536	541	546	5
862	551	556	561	566	571	576	581	586	591	596	5
863	601	606	611	616	621	626	631	636	641	646	5
864	651	656	661	666	671	676	682	687	692	697	5 (
865 866	702 752	707 757	712	717 767	722	727	782 782	787	742	747	5 5
			1			• • •	1				_
867	802	807	812	817	822	827	832 882	837 887	842 892	847	5 5
868 869	852 902	857 907	862 912	867 917	872 922	877 927	932	937	942	947	5
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
870	952	957	962	967	972	977	982	987	992	997	5
871	94 002	007	012	017	022	027	032	037	042	047	5
872	052	057 106	062	067	072	077	082	086	091	096	5
873	101		111	116	121	126	131	136	141	146	5
874	151 201	156 206	161 211	166 216	171 221	176 226	181 231	186 236	191	196	5
875 876	250	255	260	265	270	275	280	285	240 290	245 295	5 5
	300	305	810	315	320	325	330	335	l		_
877 878	349	354	359	364	369	374	379	384	340 389	345 394	5 5
879	399	404	409	414	419	424	429	433	438	443	5
880	448	453	458	463	468	473	478	483	488	493	5
881	498	503	507	512	517	522	527	532	537	542	5
882	547	552	557	562	567	571	576	581	586	591	5
883	596	601	606	611	616	621	626	630	635	640	5
884	645	650	655	660	665	670	675	680	685	689	5
885 886	694 743	699 748	704 753	709 758	714	719 768	724	729 778	734 783	738 787	5 5
								1			-
887 888	792 841	797 846	802 851	807 856	812 861	817 866	822 871	827	832 880	836 885	5 5
889	890	895	900	905	910	915	919	924	929	934	5
890	939	944	949	954	959	963	968	973	978	983	5
891	988	993	998	*002	*007	*012	*017	*022	*027	*032	5
892 893	95 036 085	041 090	046 095	051 100	056 105	061 109	066	071	075	080	5
				100		109	114	119	124	129	5
894 895	134 182	139 187	143 192	148	153 202	158 207	163 211	168	173 221	177	5
896	231	236	240	245	250	255	260	216 265	270	226 274	5 5
897	279	284	289								_
898	328	332	337	294 342	299 347	303 352	308 357	313 361	318 366	323 371	5 5
899	376	381	386	390	395	400	405	410	415	419	5
900	424	429	434	439	444	448	453	458	463	468	5
901	472	477	482	487	492	497	501	506	511	516	5
902	521	525	530	535	540	545	550	554	559	564	5
903	569	574	578	583	588	593	598	602	607	612	5
904	617 665	622 670	626	631	636	641	646	650	655	660	5
905 906	713	718	674 722	679 727	684 732	689 737	694 742	698 746	703 751	708 756	5 5
•••							1	1	'		
907 908	761 809	766 813	770 818	775 823	780 828	785 832	789 837	794 842	799 847	804 852	5 5
909	856	861	866	871	875	880	885	890	895	899	5
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
910	904	909	914	918	923	928	983	988	942	947	5
911 912 913	952 999 96 047	957 #004 052	961 *009 057	966 #014 061	971 *019 066	976 #023 071	980 #028 076	985 *033 080	990 #038 085	995 *042 090	5 5 5
914 915 916	095 142 190	099 147 194	104 152 199	109 156 204	114 161 209	118 166 213	123 171 218	128 175 223	133 180 227	187 185 282	5 5 5
917 918	237 284	242 289	246 294	251 298	256 303	261 308	265 313	270 317	275 322	280 327	5
919 92 0	832 379	336	341	346	350	355 402	360	365 412	369	874 421	5
	426	431	435	440	445	450	454	459	464	468	5
921 922 923	473 520	478 525	483 530	487 534	492 539	497 544	501 548	506 553	511 558	515 562	5
924 925 926	567 614 661	572 619 666	577 624 670	581 628 675	586 633 680	591 638 685	595 642 689	600 647 694	605 652 699	609 656 708	5 5 5
927 628	708 755	713 759	717 764	722 769	727 774	731 778	736 783	741 788	745 792	750 797	5
929 930	802	806	811	816	820	825	830	834	839	844	5
	895	900	904	909	914	918	923	928	932	937	5
931 932 933	942 988	946 993	951 997	956 *002	960 *007	965 *011	970 *016	974 *021	979 *025	984 *030	5
934 935 936	97 035 081 128	039 086 132	044 090 137	049 095 142	053 100 146	058 104 151	063 109 155	067 114 160	072 118 165	077 123 169	5 5 5
937	174	179	183	188	192	197	202 248	206	211 257	216 262	5
938 939	220 267	225 271	230 276	234 280	239 285	243 290	294	253 299	304	308	5
940	313	317	322	327	331	336	340	345	350	354	5
941 942 943	359 405 451	364 410 456	368 414 460	373 419 465	377 424 470	382 428 474	387 433 479	391 437 483	396 442 488	400 447 493	5 5
944 945 946	497 543 589	502 548 594	506 552 598	511 557 603	516 562 607	520 566 612	525 571 617	529 575 621	534 580 626	539 585 630	5 5 5
947 948	635 681 727	640 685 731	644 690 736	649 695 740	653 699 745	658 704 749	663 708 754	667 718 759	672 717 763	676 722 768	5 5 5
949	121	101	130	7.20	(20	(20	102	108	00	100	
N	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
950	772	777	783	786	·791	795	800	804	809	813	. 5]
951 952 953	818 864 909	823 868 914	827 873 918	832 877 923	886 882 928	841 886 932	845 891 937	850 896 941	855 900 946	859 905 950	5 5 5
954 955 956	955 98 000	959 005 050	964 009 055	968 014 059	978 019	978 023 068	982 028 073	987 032 078	991 037 082	996 041 087	5 5
957 958	046 091 187	096 141	100 146	105 150	064 109 155	114 159	118 164	123 168	127 173	182 177	5
959 960	182	282	191 236	195 241	245	250	209	259	218	268	5:
961	272	277	281	286	290	295	299	804	308	813	5
962 963	318 363	322 367	327 372	331 376	336 381	340 385	345 390	349 394	354 399	358 403	5
964 965 966	408 453 498	412 457 502	417 462 507	421 466 511	426 471 516	430 475 520	435 480 525	439 484 529	444 489 534	448 498 538	5 4 · 4
967 968 969	543 588 632	547 592 637	552 597 641	556 601 646	561 605 650	565 610 655	570 614 659	57 <u>4</u> 619 664	579 623 668	583 628 673	4 4 4
970	677	682	686	691	695	700	704	709	713	717	4
971 972 973	722 767 811	726 771 816	731 776 820	735 780 825	740 784 829	744 789 834	749 793 838	753 798 843	758 802 847	762 807 851	4 4 4
974 975 976	856 900 945	860 905 949	865 909 954	869 914 958	874 918 963	878 923 967	883 927 972	887 982 976	892 936 981	896 941 985	4 4
977 978	989 99 034	99 <u>4</u> 038	998 043	#003 047	*007 052	*012 056	*016 061	#021 065	*025 069	*029 074	4
979 980	123	127	131	136	140	145	105	109	114	118	4
961 982	167 211	171 216	176 220	180 224	185 229	189 233	193 238	198 242	202 247	207 251	4 4
988 984	255 300	260 804	264 308	269 313	273 317	277 322	282 326	286	291 335	295 339	4
985 986	344 388	348 392	352 396	357 401	361 405	366 410	370 414	374 419	379 423	383 427	4
987 988 989	432 476 520	436 480 524	441 484 528	445 489 533	449 493 537	454 498 542	458 502 546	463 506 550	467 511 555	471 515 559	4 :4
И	0	1	2	3	4	5	6	7	8	9	D

N	0	1	2	3	4	5	6	7	8	9	D
990	564	568	572	577	581	585	590	594	599	603	4
991	607	612	616	621	626	629	684	638	642	647	4 4
992	651	656	660	664	669	673	677	682	686	691	
993	695	699	704	708	712	717	721	726	780	784	
994	739	743	747	752	756	760	765	769	774	778	444
995	782	787	791	795	800	804	808	813	817	822	
996	826	830	835	839	843	848	852	856	861	865	
997	870	874	878	883	887	891	896	900	904	909	4 4
998	918	917	922	926	930	985	939	944	948	952	
999	957	961	965	970	974	978	963	987	991	996	
N	0	1	2	3	4	5	6	7	8	9	Ð

II.

FIVE-PLACE LOGARITHMS

OF THE

SINE, COSINE, TANGENT, AND COTANGENT

FOR

EACH MINUTE FROM 0° TO 90°.

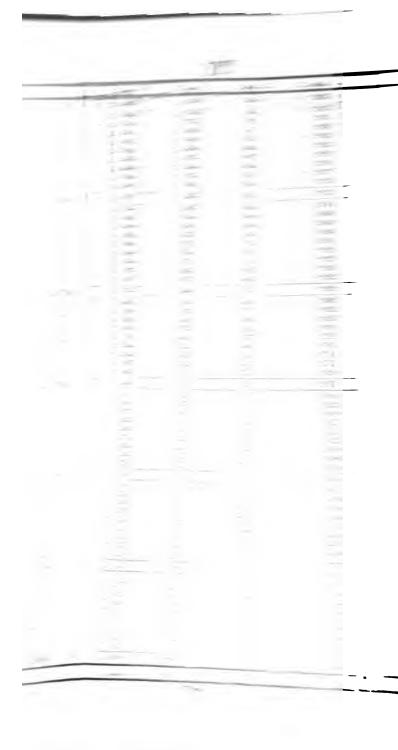
			·		
•	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	8	8	8	0.00 000	60
1	6.46 373	6.46 373	3.53 627	0.00 000	59
2	6.76 476	6.76 476	3.23 524	0.00 000	58
3 4	6.94 085 7.06 579	6.94 085 7.06 579	3.05 915 2.93 421	0.00 000	57 56
5	7.16 270	7.16 270	2.83 730	0.00 000	55
6	7.24 188	7.24 188	2.75 812	0.00 000	54
7	7.30 882	7.30 882	2.69 118	0.00 000	53
8 9	7.36 682 7.41 797	7.36 682 7.41 797	2.63 318 2.58 203	0.00 000	52 51
10	7.46 373	7.46 373	2.53 627	0.00 000	50
11	7.50 512	7.50 512	2.49 488	0.00 000	49
12	7.54 291	7.54 291	2.45 709	0.00 000	48
13	7.57 767	7.57 767	2.42 233	0.00 000	47
14	7.60 985	7.60 986	2.39 014	0.00 000	46
15 16	7.63 982 7.66 784	7.63 982 7.66 785	2.36 018 2.33 215	0.00 000	45 44
17	7.69 417	7.69 418	2.30 582	9.99 999	43
18	7.71 900	7.71 900	2.28 100	9.99 999	42
19	7.74 248	7.74 248	2.25 752	9.99 999	41
20	7.76 475	7.76 476 .	2.23 524	9.99 999	40
21	7.78 594	7.78 595	2.21 405	9.99 999	39
22 23	7.80 615 7.82 545	7.80 615 7.82 546	2.19 385 2.17 454	9.99 999 9.99 999	38 37
24	7.84 393	7.84 394	2.15 606	9.99 999	36
25	7.86 166	7.86 167	2.13 833	9.99 999	35
26	7.87 870	7.87 871	2.12 129	9.99 999	34
27 28	7.89 509 7.91 088	7.89 510 7.91 089	2.10 490 2.08 911	9.99 999 9.99 999	33 32
29	7.92 612	7.92 613	2.07 387	9.99 998	31
80	7.94 084	7.94 086	2.05 914	9.99 998	80
31	7.95 508	7.95 510	2.04 490	9.99 998	29
32	7.96 887	7.96 889	2.03 111	9.99 998	28
33	7.98 223	7.98 225	2.01 775	9.99 998	27
34 35	7.99 520 8.00 779	7.99 522 8.00 781	2.00 478 1.99 219	9.99 998 9.99 998	26 25
36	8.02 002	8.02 004	1.97 996	9.99 998	24
37	8.03 192	8.03 194	1.96 806	9.99 997	23
38	8.04 350	8.04 353	1.95 647	9.99 997	$\begin{array}{c c} 22 \\ 21 \end{array}$
39	· 8.05 478	8.05 481	1.94 519	9.99 997	20
40	8.06 578	8.06 581	1.93 419	9.99 997	~ -
41 42	8.07 650 8.08 696	8.07 653 8.08 700	1.92 347 1.91 300	9.99 997 9.99 997	19 18
43	8.09 718	8.09 722	1.90 278	9.99 997	17
44	8.10 717	8.10 720	1.89 280	9.99 996	16
45 46	8.11 693 8.12 647	8.11 696 8.12 651	1.88 304 1.87 349	9.99 996 9.99 996	15 14
40 47	8.13 581	8.13 585	1.86 415	9.99 996	13
48	8.14 495	8.14 500	1.85 500	9.99 996	12
49	8.15 391	8.15 395	1.84 605	9.99 996	11
50	8.16 268	8.16 273	1.83 727	9.99 995	10
51	8.17 128	8.17 133	1.82 867	9.99 995	9
52 53	8.17 971 8.18 798	8.17 976 8.18 804	1.82 024 1.81 196	9.99 995 9.99 995	8 7
54	8.19 610	8.19 616	1.80 384	9.99 995	6
55	8.20 407	8.20 413	1.79 587	9.99 994	5
56	8.21 189	8.21 195	1.78 805	9.99 994	4 3
57 58	8.21 958 8.22 713	8.21 964 8.22 720	1.78 036 1.77 280	9.99 994 9.99 994	2
59	8.23 456	8.23 462	1.76 538	9.99 994	ĩ
60	8.24 186	8.24 192	1.75 808	9.99 993	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	•

—	L. Sin.	L. Tan.	L. Cot.	L. Cos.	_
0	8.24 186	8.24 192	1.75 808	9.99 993	60
1	8.24 903	8.24 910	1.75 090	9.99 993	59
2	8.25 609	8.25 616	1.74 384	9.99 993	58
. 3	8.26 304	8.26 312	1.73 688	9.99 993	57
4	8.26 988	8.26 996	1.73 004	9.99 992	56
5 6	8.27 661 8.28 324	8.27 669 8.28 332	1.72 331 1.71 668	9.99 992 9.99 992	55 54
7	8.28 977	8.28 986	1.71 014	9.99 992	53
8	8.29 621	8.29 629	1.70 371	9.99 992	52
. 9	8.30 255	8.30 263	1.69 737	9.99 991	51
10	8.30 879	8.30 888	1.69 112	9.99 991	50
11 12	8.31 495 8.32 103	8.31 505 8.32 112	1.68 495 1.67 888	9.99 991 9.99 990	49 48
13	8.32 702	8.32 711	1.67 289	9.99 990	47
14	8.33 292	8.33 302	1.66 698	9.99 990	46
15	8.33 875	8.33 886	1.66 114	9.99 990	45
16 17	8.34 450 8.35 018	8.34 461 8.35 029	1.65 539 1.64 971	9.99 989 9.99 989	44 43
18	8.35 578	8.35 590	1.64 410	9.99 989	42
19	8.36 131	8.36 143	1.63 857	9.99 989	41
20	8.36 678	8.36 689	1.63 311	9.99 988	40
21	8.37 217	8.37 229	1.62 771	9.99 988	39
$\frac{22}{23}$	8 37 750 8.38 276	8.37 762 8.38 289	1.62 238	9.99 988 9.99 987	38 37
23 24	8.38 796	8.38 809	1.61 711 1.61 191	9.99 987	36
25	8.39 310	8.39 323	1.60 677	9.99 987	35
26	8.39 818	8.39 832	1.60 168	9.99 986	34
27 28	8.40 320 8.40 816	8.40 334 8.40 830	1.59 666 1.59 170	9.99 986 9.99 986	33 32
29	8.41 307	8.41 321	1.58 679	9.99 985	31
30	8.41 792	8.41 807	1.58 193	9.99 985	80
31	8.42 272	8.42 287	1.57 713	9.99 985	29
32	8.42 746	8.42 762	1.57 238	9.99 984	28
33 34	8.43 216 8.43 680	8.43 232 8.43 696	1.56 768 1.56 304	9.99 984 9.99 984	27
35	8.44 139	8.44 156	1.55 844	9.99 983	26 25
36	8.44 594	8.44 611	1.55 389	9.99 983	-24
37	8.45 044	8.45 061	1.54 939	9.99 983	23
38 39	8.45 489 8.45 930	8.45 507 8.45 948	1.54 493 1.54 052	9.99 982 9.99 982	22 21
40	8.46 366	8.46 385	1.53 615	9.99 982	20
41	8.46 799	8.46 817	1.53 183	9.99 981	19
.42	8.47 226	8.47 245 8.47 669	1.52 755	9.99.981	18
43	8.47 650	8.47 669	1.52 331	9.99 981	17
144	8.48 069 8.48 485	8.48 089 8.48 505	1.51 911 1.51 495	9.99 980 9.99 980	.16 15
46	8.48 896	8.48 917	1.51 083	9.99 979	14
47	8.49 304	8.49 325	1.50 675	9.99 979	:13
48 49	8.49 708 8.50 108	8.49 729 8.50 130	1.50 271 1.49 870	9.99 979 9.99 978	12 11
50	8.50 504	8.50 527	1.49 473	9.99 978	10
51	8.50 897	8.50 920	1.49 080	9.99 977	9
52	8.51 287	8.51 310	1.48 690	9.99 977	8
53	8.51 673	8.51 696	1.48 304	9.99 977	7
54 55	8.52 055 8.52 434	8.52 079 8.52 459	1.47 921 1.47 541	9.99 976 9.99 976	6 5
56	8.52 454 8.52 810	8.52 835	1.47 165	9.99 975	4
57	8.53 183	8.53 208	1.46 792	9.99 975	3
58 59	8.53 552	8.53 578	1.46 422	9.99 974	2
60	8.53 919 8.54 282	8.53 945 8.54 308	1.46 055 1.45 692	9.99 974 9.99 974	1 0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	8.54 282	8.54 308	1.45 692	9.99 974	60
i	8.54 642	8.54 669	1.45 331	9.99 973	59
2	8.54 999	8.55 027	1.44 973	9.99 973	58
8	8.55 354	8.55 382	1.44 618	9.99 972	57
4 5	8.55 705 8.56 054	8.55 734 8.56 083	1.44 266 1.43 917	9.99 972 9.99 971	56 55
. 6	8.56 400	8.56 429	1.43 571	9.99 971	54
7	8.56 743	8.56 773	1.43 227	9.99 970	53
8 9	8.57 084 8.57 421	8.57 114 8.57 452	1.42 886 1.42 548	9.99 970 9.99 969	52 51
10	8.57 757	8.57 788	1.42 212	9.99 969	50
11	8.58 089	8.58 121	1.41 879	9.99 968	49
12	8.58 419	8.58 451	1.41 549	9.99 968	48
18 14	8.58 747 8.59 072	8.58 779 8.59 105	1.41 221 1.40 895	9.99 967 9.99 967	47 46
15	8.59 395	8.59 428	1.40 572	9.99 967	45
16	8.59 715	8.59 749	1.40 251	9.99 966	44
17 18	8.60 033 8.60 349	8.60 068	1.39 932	9.99 966	43
19	8.60 662	8.60 384 8.60 698	1.39 616 1.39 302	9.99 965 9.99 964	42 41
20	8.60 973	8.61 009	1.38 991	9.99 964	40
21	8.61 282	8.61 319	1.38 681	9.99 963	39
22	8.61 589	8.61 626	1.38 374	9.99 963	38
23 24	8.61 894 8.62 196	8.61 931 8.62 234	1.38 069 1.37 766	9.99 962 9.99 962	37 36
25	8.62 497	8.62 535	1.37 465	9.99 961	35
26	8.62 795	8.62 834	1.37 166	9.99 961	34
27 28	8.63 091 8.63 385	8.63 131 8.63 426	1.36 869 1.36 574	9.99 960 9.99 960	33 32
29	8.63 678	8.63 718	1.36 282	9.99 959	31
80	8.63 968	8.64 009	1.35 991	9.99 959	80
31	8.64 256	8.64 298	1.35 702	9.99 958	29
32	8.64 543	8.64 585	1.35 415	9.99 958	28
33 34	8.64 827 8.65 110	8.64 870 8.65 154	1.35 130 1.34 846	9.99 957 9.99 956	27 26
35	8.65 391	8.65 435	1.34 565	9.99 956	25
36	8.65 670	8.65 715	1.34 285	9.99 955	24
37 38	8.65 947 8.66 223	8.65 993 8.66 269	1.34 007 1.33 731	9.99 955 9.99 954	23 22
39	8.66 497	8.66 543	1.33 457	9.99 954	21
40	8.66 769	8.66 816	1.33 184	9.99 953	20
41	8.67 039	8.67 087	1.32 913	9.99 952	19
42 43	8.67 308	8.67 356	1.32 644	9.99 952	18
44	8.67 575 8.67 841	8.67 624 8.67 890	1.32 376 1.32 110	9.99 951 9.99 951	17 16
45	8.68 104	8.68 154	1.31 846	9.99 950	15
46	8.68 367	8.68 417	1.31 583	9.99 949	14
47 48	8.68 627 8.68 886	8.68 678 8.68 938	1.31 322 1.31 062	9.99 949 9.99 948	13 12
49	8.69 144	8.69 196	1.30 804	9.99 948	11
50	8.69 400	8.69 453	1.30 547	9.99 947	10
51	8.69 654	8.69 708	1.30 292	9.99 946	9
52 53	8.69 907 8.70 159	8.69 962 8.70 214	1.30 038 1.29 786	9.99 946 9.99 945	8
54 54	8.70 409	8.70 214 8.70 465	1.29 786	9.99 944	7 6
55	8.70 658	8.70 714	1.29 286	9.99 944	5
56 87	8.70 905 8.71 151	8.70 962 8.71 208	1.29 038 1.28 792	9.99 943 9.99 942	4 8
57 58	8.71 395	8.71 453	1.28 792	9.99 942	2
59	8.71 638	8.71 697	1.28 303	9.99 941	2
60	8.71 880	8.71 940	1.28 060	9.99 940	•
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
-	8.71 880	8.71 940	1.28 060	9.99 940	60
ľi	8.72 120	8.72 181	1.27 819	9.99 940	89
2	8.72 359	8.72 420	1.27 580	9.99 939	58
8	8.72 597	8.72 659	1.27 341	9.99 938	57
4 5	8.72 834 8.73 069	8.72 896 8.73 132	1.27 104 1.26 868	9.99 938 9.99 937	56 55
6	8.73 303	8.73 366	1.26 634	9.99 936	54
7	8.73 535	8.73 600	1.26 400	9.99 936	53
8 9	8.73 767 8.73 997	8.73 832 8.74 063	1.26 168 1.25 937	9.99 935 9.99 934	52 51
10	8.74 226	8.74 292	1.25 708	9.99 934	50
11	8.74 454	8.74 521	1.25 479	9.99 933	49
12	8.74 680	8.74 748	1.25 252	9.99 932	48
13 14	8.74 906 8.75 130	8.74 974 8.75 199	1.25 026 1.24 801	9.99 932 9.99 931	47 46
13	8.75 353	8.75 423	1.24 577	9.99 930	45
16	8.75 575	8.75 645	1.24 355	9.99 929	44
17 18	8.75 795 8.76 015	8.75 867 8.76 087	1.24 133 1.23 913	9.99 929 9.99 928	43 42
19	8.76 234	8.76 306	1.23 694	9.99 927	41
20	8.76 451	8.76 525	1.23 475	9.99 926	40
21	8.76 667	8.76 742	1.23 258	9.99 926	39
22 23	8.76 883 8.77 097	8.76 958 8.77 173	1.23 042 1.22 827	9.99 925 9.99 924	38 37
23 24	8.77 310	8.77 387	1.22 613	9.99 923	36
25	8.77 522	8.77 600	1.22 400	9.99 923	35
26 27	8.77 733 8.77 943	8.77 811 8.78 022	1.22 189 1.21 978	9.99 922 9.99 921	34 33
28	8.78 152	8.78 232	1.21 768	9.99 920	82
29	8.78 360	8.78 441	1.21 559	9.99 920	31
80	8.78 568	8.78 649	1.21 351	9.99 919	80
31	8.78 774	8.78 855	1.21 145	9.99 918	29 28
32 33	8.78 979 8.79 183	8.79 061 8.79 266	1.20 939 1.20 734	9.99 917 9.99 917	27
34	8.79 386	8.79 470	1.20 530	9.99 916	26
35 36	8.79 588 8.79 789	8.79 673 8.79 875	1.20 327 1.20 125	9.99 915 9.99 914	25 24
37	8.79 990	8.80 076	1.19 924	9.99 913	23
38	8.80 189	8.80 277	1.19 723	9.99 913	22
39	8.80 388	8.80 476	1.19 524	9.99 912	21 20
40	8.80 585 8.80 782	8.80 674 8.80 872	1.19 326 1.19 128	9.99 911 9.99 910	19
41 42	8.80 782 8.80 978	8.80 872 8.81 068	1.19 128	9.99 910	18
43	8.81 173	8.81 264	1.18 736	9.99 909	17
44	8.81 367	8.81 459	1.18 541 1.18 347	9.99 908	16 15
45 46	8.81 560 8.81 752	8.81 653 8.81 846	1.18 154	9.99 907 9.99 906	14
47	8.81 944	8.82 038	1.17 962	9.99 905	13
48 49	8.82 134 8.82 324	8.82 230	1.17 770 1.17 580	9.99 904 9.99 904	12 11
50	8.82 513	8.82 420 8.82 610	1.17 390	9.99 903	10
51	8.82 701	8.82 799	1.17 201	9.99 902	9
52	8.82 888	8.82 987	1.17 013	9.99 901	8
53	8.83 075	8.83 175	1.16 825	9.99 900	7
54 55	8.83 261 8.83 446	8.83 361 8.83 547	1.16 639 1.16 453	9.99 899 9.99 898	6 5 4
56	8.83 630	8.83 732	1.16 268	9.99 898	4
57	8.83 813	8.83 916	1.16 084	9.99 897	3 2
58 59	8.83 996 8.84 177	8.84 100 8.84 282	1.15 900 1.15 718	9.99 896 9.99 895	1
60	8.84 358	8.84 464	1.15 536	9.99 894	Ō
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	•
			: 4.111		حنب

•	L. Sin.	L. Tan.	L. Cot.	L. Cos.	Γ
0	8.84 358	8.84 464	1.15 536	9.99 894	·60
1	8.84 539	8.84 646	1.15 354	9.99 893	59
2	8.84 718	8.84 826	1.15 174	9.99 892	-58
3 4	8.84 897 8.85 075	8.85 006 8.85 185	1.14 994 1.14 815	9.99 891 9.99 891	57 56
5	8.85 252	8.85 363	1.14 637	9.99 890	.55
6	8.85 429	8.85 540	1.14 460	9.99 889	54
.7	8.85 605	8.85 717	1.14 283	9.99 888	53
8 9	8.85 780 8.85 955	8.85 893 8.86 069	1.14 107 1.13 931	9.99 887 9.99 886	52 51
10	8.86 128	8.86 243	1.13 757	9.99 885	50
11	8.86 301	8.86 417	1.13 583	9.99 884	49
12	8.86 474	8.86 591	1.13 409	9.99 883	48
13	8.86 645	8.86 763	1.13 237	9.99 882	,47
14 15	8.86 816 8.86 987	8.86 935 8.87 106	1.13 065 1.12 894	9.99 881 9.99 880	46 '45
16	8.87 156	8.87 277	1.12 723	9.99 879	44
17	8.87 325	8.87 447	1.12 553	9.99 879	43
18 19	8.87 494 8.87 661	8.87 616 8.87 785	1.12 384 1.12 215	9.99 878 9.99 877	42
20	8.87 829	8.87 953	1.12 215	9.99 876	41 40
21	8.87 995	8.88 120	1.12 047	9.99 875	39
22	8.88 161	8.88 287	1.11 713	9.99 874	-38
23	8.88 326	8.88 453	1.11 547	9.99 873	37
24	8.88 490	8.88 618	1.11 382	9.99 872	36
25 26	8.88 654 8.88 817	8.88 783 8.88 948	1.11 217 1.11 052	9.99 871 9.99 870	35 34
27	8.88 980	8.89 111	1.10 889	9.99 869	33
28	8.89 142	8.89 274	1.10 726	9.99 868	32
-29	8.89 304	8.89 437	1.10 563	9.99 867	31
80	8.89 464	8.89 598	1.10 402	9.99 866	·80
31 32	8.89 625 8.89 784	8.89 760 8.89 920	1.10 240 1.10 080	9.99 865 9.99 864	29 28
33	8.89 943	8.90 080	1.09 920	9.99 863	27
34	8.90 102	8.90 240	1.09 760	9.99 862	•26
35	8.90 260	8.90 399 8.90 557	1.09 601	9.99 861	25 24
36 37	8.90 417 8.90 574	8.90 715	1.09 443 1.09 285	9.99 860 9.99 859	24 23
38	8.90 730	8.90 872	1.09 128	9.99 858	.22
39	8.90 885	8.91 029	1.08 971	9.99 857	21
40	8.91 040	8.91 185	1.08 815	9.99 856	20
41	8.91 195	8.91 340 8.91 495	1.08 660 1.08 505	9.99 855 9.99 854	19
42 43	8.91 349 8.91 502	8.91 495 8.91 650	1.08 350	9.99 853	18 17
44	8.91 655	8.91 803	1.08 197	9.99 852	16
45	8.91 807	8.91 957	1.08 043	9.99 851	15
46 47	8.91 959 8.92 110	8.92 110 8.92 262	1.07 890 1.07 738	9.99 850 9.99 848	14 13
48	8.92 261	8.92 414	1.07 586	9.99 847	12
49	8.92 411	8.92 565	1.07 435	9.99 846	11
50	8.92 561	8.92 716	1.07 284	9.99 845	10
51	8.92 710	8.92 866	1.07 134	9.99 844	9
52 53	8.92 859 8.93 007	8.93 016 8.93 165	1.06 984 1.06 835	9.99 843 9.99 842	8
54	8.93 154	8.93 313	1.06 687	9.99 841	6
55	8.93 301	8.93 462	1.06 538	9.99 840	: 6 5
56 57	8.93 448 8.93 594	8.93 609 8.93 756	1.06 391 1.06 244	9.99 839 9.99 838	4 3
58	8,93 740	8.93 903	1.06 097	9.99 837	2
59	8.93 885	8.94 049	1.05 951	9.99 836	1
60	8.94 030	8.94 195	1.05 805	9.99 834	•
L	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,


,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	8.94 030	8.94 195	1.05 805	9.99 834	60
1	8.94 174	8.94 340	1.05 660	9.99 833	59
2	8.94 317	8.94 485	1.05 515	9.99 832	58
3 4	8.94 461 8.94 603	8.94 630 8.94 773	1.05 370 1.05 227	9.99 831 9.99 830	57 56
5	8.94 746	8.94 917	1.05 083	9.99 829	55
6	8.94 887	8.95 060	1.04 940	9.99 828	54
7	8.95 029	8.95 202 8.95 344	1.04 798	9.99 827	53
8 9	8.95 170 8.95 310	8.95 486	1.04 656 1.04 514	9.99 825 9.99 824	52 51
10	8.95 450	8.95 627	1.04 373	9.99 823	50
11	8.95 589	8.95 767	1.04 233	9.99 822	49
12	8.95 728	8.95 908	1.04 092	9.99 821	48
13	8.95 867	8.96 047	1.03 953	9.99 820	47
14 15	8.96 005 8.96 143	8.96 187 8.96 325	1.03 813 1.03 675	9.99 819 9.99 817	46 45
16	8.96 280	8.96 464	1.03 536	9.99 816	44
17	8.96 417	8.96 602	1.03 398	9.99 815	43
18	8.96 553	8.96 739	1.03 261	9.99 814	42
19	8.96 689	8.96 877	1.03 123	9.99 813	41
20	8.96 825	8.97 013	1.02 987	9.99 812	40
$\begin{array}{c} 21 \\ 22 \end{array}$	8.96 960 8.97 095	8.97 150 8.97 285	1.02 850 1.02 715	9.99 810 9.99 809	39 38
23	8.97 229	8.97 421	1.02 579	9.99 808	37
24	8.97 363	8.97 556	1.02 444	9.99 807	36
25	8.97 496	8.97 691	1.02 309	9.99 806	35
26 27	8.97 629 8.97 762	8.97 825 8.97 959	1.02 175 1.02 041	9.99 804 9.99 803	34 33
28	8.97 894	8.98 092	1.01 908	9.99 802	32
29	8.98 026	8.98 225	1.01 775	9.99 801	31
30	8.98 157	8.98 358	1.01 642	9.99 800	30
31	8.98 288	8.98 490	1.01 510	9.99 798	29
32	8.98 419	8.98 622	1.01 378	9.99 797	28
33 34	8.98 549 8.98 679	8.98 753 8.98 884	1.01 247 1.01 116	9.99 796 9.99 795	27 26
35	8.98 808	8.99 015	1.00 985	9.99 793	25
36	8.98 937	8.99 145	1.00 855	9.99 792	24
37	8.99 066 8.99 194	8.99 275 8.99 405	1.00 725 1.00 595	9.99 791 9.99 790	23 22
38 39	8.99 322	8.99 534	1.00 383	9.99 788	21
40	8.99 450	8,99 662	1.00 338	9.99 787	20
41	8.99 577	8.99 791	1.00 209	9.99 786	19
42	8.99 704	8.99 919	1.00 081	9.99 785	18
43	8.99 830	9.00 046	0.99 954	9.99 783 9.99 782	17
44 45	8.99 956 9.00 082	9.00 174 9.00 301	0.99 826 0.99 699	9.99 782 9.99 781	16 15
46	9.00 207	9.00 427	0.99 573	9.99 780	14
47	9.00 332	9.00 553	0.99 447	9.99 778	13
48	9.00 456	9.00 679 9.00 805	0.99 321 0.99 195	9.99 777 9.99 776	12 11
49 50	9.00 581	9.00 930	0.99 195	9.99 775	10
50 51	9.00 104	9.00 950	0.98 945	9.99 773	9
52	9.00 928	9.01 179	0.98 821	9.99 772	8
53	9.01 074	9.01 303	0.98 697	9.99 771	7
54	9.01 196	9.01 427	0.98 573	9.99 769	6
55 56	9.01 318 9.01 440	9.01 550 9.01 673	0.98 450 0.98 327	9.99 768 9.99 767	5 4
57	9.01 561	9.01 796	0.98 204	9.99 765	4 3
58	9.01 682	9.01 918	0.98 082	9.99 764	2
59	9.01 803	9.02 040	0.97 960	9.99 763	1
60	9.01 923	9.02 162	0.97 838	9.99 761	•
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

,	L, Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.01 923	9.02 162	0.97 838	9.99 761	60
1	9.02 043	9.02 283	0.97 717	9.99 760	59
2 3	9.02 163 9.02 283	9.02 404 9.02 525	0.97 59 <u>6</u> 0.97 47 <u>5</u>	9.99 759 9.99 757	58 57
4	9.02 402	9.02 645	0.97 355	9.99 756	56
5	9.02 520	9.02 766	0.97 234	9.99 755	55
6	9.02 639	9.02 885	0.97 115	9.99 753	54
7 8	9.02 757 9.02 874	9.03 00 5 9.03 124	0.96 995 0.96 876	9.99 752 9.99 751	53 52
9	9.02 992	9.03 242	0.96 758	9.99 749	51
10	9.03 109	9.03 361	0.96 639	9.99 748	50
11	9.03 226	9.03 479	0.96 521	9.99 747	49
12	9.03 342	9.03 597	0.96 403	9.99 745	48
13	9.03 458	9.03 714	0.96 286	9.99 744	47
14 15	9.03 574 9.03 690	9.03 832 9.03 948	0.96 168 0.96 052	9.99 742 9.99 741	46 45
16	9.03 805	9.04 065	0.95 935	9.99 740	44
17	9.03 920	9.04 181	0.95 819	9.99 738	43
18	9.04 034	9.04 297	0.95 703	9.99 737	42
19	9.04 149	9.04 413	0.95 587	9.99 736	41
20	9.04 262	9.04 528	0.95 472	9.99 734	40
21	9.04 376	9.04 643	0.95 357	9.99 733	39
22 23	9.04 490 9.04 603	9.04 758 9.04 873	0.95 242 0.95 127	9.99 731 9.99 730	38 37
24	9.04 715	9.04 987	0.95 013	9.99 728	36
25	9.04 828	9.05 101	0.94 899	9.99 727	35
26	9.04 940	9.05 214	0.94 786	9.99 726	34
27 28	9.05 052 9.05 164	9.05 328 9.05 441	0.94 672 0.94 559	9.99 724 9.99 723	33 32
29	9.05 275	9.05 553	0.94 447	9.99 721	31
80	9.05 386	9.05 666	0.94 334	9.99 720	80
31	9.05 497	9.05 778	0.94 222	9.99 718	29
32	9.05 607	9.05 890	0.94 110	9.99 717	28
33	9.05 717	9.06 002	0.93 998	9.99 716	27
34 35	9.05 827 9.05 937	9.06 113 9.06 224	0.93 887 0.93 776	9.99 714 9.99 713	26 25
36	9.06 046	9.06 335	0.93 665	9.99 711	24
37	9.06 155	9.06 445	0.93 555	9.99 710	23
38	9.06 264	9.06 556	0.93 444	9.99 708	22
39	9.06 372	9.06 666	0.93 334	9.99 707	21
40	9.06 481	9.06 775	0.93 225	9.99 705	20
41	9.06 589	9.06 885	0.93 115 0.93 006	9.99 704 9.99 702	19
42 43	9.06 696 9.06 804	9.06 994 9.07 103	0.93 006	9.99 702	18 17
44	9.06 911	9.07 211	0.92 789	9.99 699	16
45	9.07 018	9.07 320	0.92 680	9.99 698	15
46	9.07 124	9.07 428	0.92 572 0.92 464	9.99 696 9.99 695	14
47 48	9.07 231 9.07 337	9.07 536 9.07 643	0.92 464 0.92 357	9.99 693	13 12
49	9.07 442	9.07 751	0.92 249	9.99 692	11
50	9.07 548	9.07 858	0.92 142	9.99 690	10
51	9.07 653	9.07 964	0.92 036	9.99 689	9
52	9.07 758	9.08 071	0.91 929	9.99 687	8 7
53	9.07 863	9.08 177	0.91 823	9.99 686 9.99 684	7 6
54 55	9.07 968 9.08 072	9.08 283 9.08 389	0.91 717 0.91 611	9.99 683	S S
56	9.08 176	9.08 495	0.91 505	9.99 681	5 4
57	9.08 280	9.08 600	0.91 400	9.99 680	3
58	9.08 383	9.08 705	0.91 295	9.99 678 9.99 677	2 1
59 60	9.08 486 9.08 589	9.08 810	0.91 190 0.91 086	9.99 677	0
- 00					-
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

					
<u> </u>	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.08 589	9.08 914	0.91 086	9.99 675	60
1	9.08 692 9.08 795	9.09 019 9.09 123	0.90 981 0.90 877	9.99 674	59
2 3	9.08 897	9.09 125	0.90 773	9.99 672 9.99 670	58 57
4	9.08 999	9.09 330	0.90 670	9.99 669	56
5	9.09 101	9.09 434	0.90 566	9.99 667	55
6 7	9.09 202 9.09 304	9.09 537 9.09 640	0.90 463 0.90 360	9.99 666 9.99 664	54 53
8	9.09 405	9.09 742	0.90 258	9.99 663	52
9	9.09 506	9.09 845	0.90 155	9.99 661	51
10	9.09 606	9.09 947	0.90 053	9.99 659	50
11	9.09 707	9.10 049	0.89 951	9.99 658	49
12 13	9.09 807 9.09 907	9.10 150 9.10 252	0.89 850 0.89 748	9.99 656 9.99 65 5	48 47
14	9.10 006	9.10 353	0.89 647	9.99 653	46
15	9.10 106	9.10 454	0.89 546	9.99 651	45
16 17	9.10 205 9.10 304	9.10 555 9.10 656	0.89 445 0.98 344	9.99 650 9.99 648	44 43
18	9.10 402	9.10 756	0.89 244	9.99 647	42
19	9.10 501	9.10 856	0.89 144	9.99 645	41
20	9.10 599	9.10 956	0.89 044	9.99 643	40
21	9.10 697	9.11 056	0.88 944	9.99 642	39
22 23	9.10 795 9.10 893	9.11 155 9.11 254	0.88 845 0.88 746	9.99 640 9.99 638	38 37
24	9.10 990	9.11 353	0.88 647	9.99 637	36
25	9.11 087	9.11 452	0.88 548	9.99 635	35
26 27	9.11 184 9.11 281	9.11 551 9.11 649	0.88 449 0.88 351	9.99 633 9.99 632	34 33
28	9.11 377	9.11 747	0.88 253	9.99 630	32
29	9.11 474	9.11 845	0.88 155	9.99 629	31
80	9.11 570	9.11 943	0.88 057	9.99 627	80
31	9.11 666	9.12 040	0.87 960	9.99 625	29
32 33	9.11 761 9.11 857	9.12 138 9.12 235	0.87 862 0.87 765	9.99 624 9.99 622	28 27
34	9.11 952	9.12 332	0.87 668	9.99 620	26
35	9.12 047	9.12 428	0.87 572	9.99 618	25
36 37	9.12 142 9.12 236	9.12 525 9.12 621	0.87 475 0.87 379	9.99 617 9.99 615	24 23
38	9.12 331	9.12 717	0.87 283	9.99 613	22
39	9.12 425	9.12 813	0.87 187	9.99 612	21
40	9.12 519	9.12 909	0.87 091	9.99 610	20
41 42	9.12 612 9.12 706	9.13 004 9.13 099	0.86 996	9.99 608	19
43	9.12 799	9.13 194	0.86 901 0.86 806	9.99 607 9.99 60 5	18 17
44	9.12 892	9.13 289	0.86 711	9.99 603	16
45 46	9.12 985 9.13 078	9.13 384 9.13 478	0.86 616 0.86 522	9.99 601	15
47	9.13 171	9.13 573	0.86 427	9.99 600 9.99 598	14 13
48	9.13 263	9.13 667	0.86 333	9.99 596	12
49 50	9.13.355	9.13 761	0.86 239	9.99 595	11
51	9.13 447 9.13 539	9.13 854	0.86 146	9.99 593	10
52	9.13 630	9.13 948 9.14 041	0.86 052 0.85 959	9.99 591 9.99 589	9
53	9.13 722	9.14 134	0.85 866	9.99 588	8 7
54 55	9.13 813 9.13 904	9.14 227	0.85 773	9.99 586	6
56	9.13 994	9.14 320 9.14 412	0.85 680 0.85 588	9.99 584 9.99 582	5 4
57	9.14 085	9.14 504	0.85 496	9.99 581	3
58 59	9.14 175 9.14 266	9.14 597 9.14 688	0.85 403	9.99 579	2
60	9.14 356	9.14 780	0.85 312 0.85 220	9.99 577	1
-				9.99 575	9
لسسا	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.14 356	9.14 780	0.85 220	9.99 575	60
1	9.14 445	9.14 872	0.85 128	9.99 574	59
2	9.14 535	9.14 963	0.85 037	9.99 572	58
3	9.14 624	9.15 054	0.84 946	9.99 570	57
4 5	9.14 714 9.14 803	9.15 145 9.15 236	0.84 855 0.84 764	9.99 568 9.99 566	56 55
6	9.14 891	9.15 327	0.84 673	9.99 565	54
7	9.14 980	9.15 417	0.84 583	9.99 563	53
8	9.15 069	9.15 508	0.84 492	9.99 561	52
9	9.15 157 9.15 245	9.15 598	0.84 402	9.99 559 9.99 557	51 50
10	9.15 245	9.15 777	0.84 312	9.99 556	4 9
11 12	9.15 355 9.15 421	9.15 867	0.84 133	9.99 554	48
13	9.15 508	9.15 956	0.84 044	9.99 552	47
14	9.15 596	9.16 046	0.83 954	9.99 550	4 6
15	9.15 683	9.16 135	0.83 865	9.99 548	45
16 17	9.15 770 9.15 857	9.16 224 9.16 312	0.83 776 0.83 688	9.99 546 9.99 545	44 43
18	9.15 944	9.16 401	0.83 599	9.99 543	42
19	9.16 030	9.16 489	0.83 511	9.99 541	41
20	9.16 116	9.16 577	0.83 423	9.99 539	40
21	9.16 203	9.16 665	0.83 335	9.99 537	39
22 23	9.16 289 9.16 374	9.16 753	0.83 247 0.83 159	9.99 535 9.99 533	38
23 24	9.16 374	9.16 841 9.16 928	0.83 072	9.99 532	37 36
25	9.16 545	9.17 016	0.82 984	9.99 530	35
26	9.16 631	9.17 103	0.82 897	9.99 528	34
27	9.16 716 9.16 801	9.17 190 9.17 277	0.82 810	9.99 526 9.99 524	33
28 29	9.16 886	9.17 363	$0.82\ 723 \ 0.82\ 637$	9.99 522	32 31
80	9.16 970	9.17 450	0.82 550	9.99 520	80
31	9.17 055	9.17 536	0.82 464	9.99 518	29
32	9.17 139	9.17 622	0.82 378	9.99 517	28
33	9.17 223	9.17 708 9.17 794	0.82 292	9.99 515	27
34 35	9.17 307 9.17 391	9.17 880	0.82 206 0.82 120	9.99 513 9.99 511	26 25
36	9.17 474	9.17 965	0.82 035	9.99 509	24
37	9.17 558	9.18 051	0.81 949	9.99 507	23
38 39	9.17 641 9.17 724	9.18 136 9.18 221	0.81 864 0.81 779	9.99 505 9.99 503	22 21
40	9.17 807	9.18 306	0.81 694	9.99 501	20
41	9.17 890	9.18 391	0.81 609	9.99 499	20
41	9.17 973	9.18 475	0.81 525	9.99 497	18
43	9.18 055	9.18 560	0.81 440	9.99 495	17
44	9.18 137	9.18 644	0.81 356	9.99 194	16
45 46	9.18 220 9.18 302	9.18 728 9.18 812	0.81 272 0.81 188	9.99 492 9.99 490	15 14
47	9.18 383	9.18 896	0.81 104	9.99 488	13
48	9.18 465	9.18 979	0.81 021	9.99 486	12
49	9.18 547	9.19 063	0.80 937	9.99 484	11
50	9.18 628	9.19 146	0.80 854	9.99 482	10
51	9.18 709	9.19 229	0.80 771	9.99 480	9
52 53	9.18 790 9.18 871	9.19 312 9.19 395	0.80 688 0.80 605	9.99 478 9.99 476	8 7
54	9.18 952	9.19 478	0.80 522	9.99 474	6
55	9.19 033	9.19 561	0.80 439	9.99 472	5
56	9.19 113	9.19 643	0.80 357	9.99 470	4
57 58	9.19 193 9.19 273	9.19 725 9.19 807	0.80 275 0.80 193	9.99 468 9.99 466	3 2
59	9.19 353	9.19 889	0.80 111	9.99 464	ĩ
60	9.19 433	9.19 971	0.80 029	9.99 462	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
ō	9.19 433	9.19 971	0.80 029	9.99 462	60
ľi	9.19 513	9.20 053	0.79 947	9.99 460	59
2	9.19 592	9.20 134	0.79 866	9.99 458	58
3	9.19 672 9.19 751	9.20 216 9.20 297	0.79 784 0.79 703	9.99 456 9.99 454	57 56
4 5	9.19 830	9.20 291	0.79 622	9.99 452	55
6	9.19 909	9.20 459	0.79 541	9.99 450	54
	9.19 988	9.20 540 9.20 621	0.79 460 0.79 379	9.99 448 9.99 446	53 52
8 9	9.20 067 9.20 145	9.20 021	0.19 319	9.99 444	51
10	9.20 223	9.20 782	0.79 218	9.99 442	50
11	9.20 302	9.20 862	0.79 138	9.99 440	49
12	9.20 380	9.20 942	0.79 058	9.99 438	48
13 14	9.20 458 9.20 535	9.21 022 9.21 102	0.78 978 0.78 898	9.99 436 9.99 434	47 46
15	9.20 613	9.21 182	0.78 818	9.99 432	45
16	9.20 691	9.21 261	0.78 739	9.99 429	44
17 18	9.20 768 9.20 845	9.21 341 9.21 420	0.78 659 0.78 580	9.99 427 9.99 425	43 42
19	9.20 922	9.21 499	0.78 501	9.99 423	41
20	9.20 999	9.21 578	0.78 422	9.99 421	40
21	9.21 076	9.21 657	0.78 343	9.99 419	39
$\frac{22}{23}$	9.21 153 9.21 229	9.21 736 9.21 814	0.78 264 0.78 186	9.99 417 9.99 415	38 37
23 24	9.21 229	9.21 893	0.78 107	9.99 413	36
25	9.21 382	9.21 971	0.78 029	9.99 411	35
26	9.21 458	9.22 049	0.77 951	9.99 409	34 33
27 28	9.21 534 9.21 610	9.22 127 9.22 205	0.77 873 0.77 795	9.99 407 9.99 404	32
29	9.21 685	9.22 283	0.77 717	9.99 402	31
30	9.21 761	9.22 361	0.77 639	9.99 400	80
31	9.21 836	9.22 438	0.77 562	9.99 398	29
32 33	9.21 912 9.21 987	9.22 516 9.22 593	0.77 484 0.77 407	9.99 396 9.99 394	28 27
33 34	9.22 062	9.22 670	0.77 330	9.99 392	26
35	9.22 137	9.22 747	0.77 253	9.99 390	25
36 37	9.22 211 9.22 286	9.22 824 9.22 901	0.77 176 0.77 099	9.99 388 9.99 385	24 23
38	9.22 361	9.22 977	0.77 023	9.99 383	22 22
39	9.22 435	9.23 054	0.76 946	9.99 381	21
40	9.22 509	9.23 130	0.76 870	9.99 379	20
41	9.22 583	9.23 206	0.76 794	9.99 377	19
42 43	9.22 657 9.22 731	9.23 283 9.23 359	0.76 717 0.76 641	9.99 375 9.99 372	18 17
44	$9.22 \ 80\overline{5}$	9.23 435	0.76 565	9.99 370	16
45	9.22 878	9.23 510	0.76 490	9.99 368	15
46 47	9.22 952 9.23 025	9.23 586 9.23 661	0.76 414 0.76 339	9.99 366 9.99 364	14 13
48	9.23 098	9.23 737	0.76 263	9.99 362	12
49	9.23 171	9.23 812	0.76 188	9.99 359	11
50	9.23 244	9.23 887	0.76 113	9.99 357	10
51 52	9.23 317 9.23 390	9.23 962 9.24 037	0.76 038 0.75 963	9.99 355 9.99 353	9 8
53	9.23 462	9.24 037	0.75 888	9.99 351	7
54	$9.23\ 53\overline{5}$	9.24 186	0.75 814	9.99 348	7 6
55 56	9.23 607 9.23 679	9.24 261 9.24 335	0.75 739 0.75 665	9.99 346 9.99 344	5
57	9.23 752	9.24 335	0.75 590	9.99 342	4 3
58	9.23 823	9.24 484	0.75 516	9.99 340	2
59	9.23 895	9.24 558	0.75 442	9.99 337 9.99 335	1 0
60					<u> </u>
	L. Cos.	L, Cot.	L. Tan.	L. Sin.	

_	44					
	L, Sin.	L. Tan.	L. Cot.	L. Cos.		
0	9.28 060	9.28 865	0.71 135	9.99 195	60	
1	9.28 125	9.28 933	0.71 067	9.99 192	59	
2 3	9.28 190	9.29 000 9.29 067	0.71 000	9.99 190	58	
4	9.28 254 9.28 319	9.29 134	0.70 933 0.70 866	9.99 187 9.99 185	57 56	
ō	9.28 384	9.29 201	0.70 799	9.99 182	55	
6	9.28 448	9.29 268	0.70 732	9.99 180	54	
7	9.28 512 9.28 577	9.29 335	0.70 665	9.99 177	53	
8 9	9.28 641	9.29 402 9.29 468	0.70 598 0.70 532	9.99 175 9.99 172	52 51	
10	9.28 705	9.29 535	0.70 465	9.99 170	50	
11	9.28 769	9.29 601	0.70 399	9.99 167	49	
12	9.28 833	9.29 668	0.70 332	9.99 165	48	
13	9.28 896	9.29 734	0.70 266	9.99 162	47	
14 15	9.28 960 9.29 024	9.29 800 9.29 866	0.70 200 0.70 134	9.99 160 9.99 157	46 45	
16	9.29 024	9.29 932	0.70 068	9.99 155	44	
17	9.29 150	9.29 998	0.70 002	9.99 152	43	
18	9.29 214	9.30 064	0.69 936	9.99 150	42	
19	9.29 277	9.30 130	0.69 870	9.99 147	41	
20	9.29 340	9.30 195	0.69 805	9.99 145	40	
21	9.29 403	9.30 261	0.69 739	9.99 142	39	
22 23	9.29 466 9.29 529	9.30 326 9.30 391	0.69 674 0.69 609	9.99 140 9.99 137	38 37	
24	9.29 591	9.30 457	0.69 543	9.99 135	36	
25	9.29 654	9.30 522	0.69 478	9.99 132	35	
26	9.29 716	9.30 587	0.69 413	9.99 130	34	
27 28	9.29 779 9.29 841	9.30 652 9.30 717	0.69 348 0.69 283	9.99 127 9.99 124	33 32	
29	9.29 903	9.30 782	0.69 218	9.99 122	31	
80	9.29 966	9.30 846	0.69 154	9.99 119	80	
31	9.30 028	9.30 911	0.69 089	9.99 117	29	
32	9.30 090	9.30 975	0.69 025	9.99 114	28	
33 34	9.30 151	9.31 040	0.68 960 0.68 896	9.99 112 9.99 109	27 26	
35	9.30 213 9.30 275	9.31 104 9.31 168	0.68 832	9.99 106	25	
36	9.30 336	9.31 233	0.68 767	9.99 104	24	
37	9.30 398	9.31 297	0.68 703	9.99 101	23	
38 39	9.30 459 9.30 521	9.31 361 9.31 425	0.68 639 0.68 575	9.99 099 9.99 096	22 21	
40	9.30 582	9.31 489	0.68 511	9.99 093	20	
41	9.30 643	9.31 552	0.68 448	9.99 091	19	
42	9.30 704	9.31 616	0.68 384	9.99 088	18	
43	9.30 765	9.31 679	0.68 321	9.99 086	17	
44	9.30 826	9.31 743	0.68 257	9.99 083	16	
45 46	9.30 887 9.30 947	9.31 806 9.31 870	0.68 194 0.68 130	9.99 080 9.99 078	15 14	
47	9.31 008	9.31 933	0.68 067	9.99 075	13	
48	9.31 068	9.31 996	0.68 004	9.99 072	12	
49	9.31 129	9.32 059	0.67 941	9.99 070	11	
50	9.31 189	9.32 122	0.67 878	9.99 067	10	
51	9.31 250	9.32 185	0.67 815	9.99 064	9	
52 53	9.31 310 9.31 370	9.32 248 9.32 311	0.67 752 0.67 689	9.99 062 9.99 059	8 7	
54	9.31 430	9.32 373	0.67 627	9.99 056	7 6	
55	9.31 490	9.32 436	0.67 564	9.99 054	5	
56	9.31 549	9.32 498	0.67 502	9.99 051 9.99 048	4	
57 58	9.31 609 9.31 669	9.32 561 9.32 623	0.67 439 0.67 377	9.99 046	3 2	
59	9.31 728	9.32 685	0.67 315	9.99 043	ĩ	
60	9.31 788	9.32 747	0.67 253	9.99 040	.0	
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,	

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.31 788	9.32 747	0.67 253	9.99 040	60
1	9.31 847	9.32 810	0.67 190	9.99 038	59
2 3	9.31 907	9.32 872	0.67 128	9.99 035	58
3	9.31 966 9.32 025	9.32 933 9.32 995	0.67 067 0.67 005	9.99 032 9.99 030	57 56
4 5 6	9.32 084	9.33 057	0.66 943	9.99 027	55
6	9.32 143	9.33 119	0.66 881	9.99 024	54
7 8	9.32 202 9.32 261	9.33 180 9.33 242	0.66 820 0.66 758	9.99 022	53 52
9	9.32 201 9.32 319	9.33 303	0.66 697	9.99 019 9.99 016	51
10	9.32 378	9.33 365	0.66 635	9.99 013	50
11	9.32 437	9.33 426	0.66 574	9.99 011	49
12	9.32 495	9.33 487	0.66 513	9.99 008	48
13	9.32 553	9.33 548	0.66 452	9.99 005	47
14 15	9.32 612 9.32 670	9.33 609 9.33 670	0.66 391 0.66 330	9.99 002 9.99 000	46 45
16	9.32 728	9.33 731	0.66 269	9.98 997	44
17	9.32 786	9.33 792	0.66 208	9.98 994	43
18	9.32 844	9.33 853	0.66 147	9.98 991	42
19	9.32 902	9.33 913	0.66 087	9.98 989	41
20 21	9.32 960	9.33 974 9.34 034	0.66 026	9.98 986 9.98 983	40 39
21 22	9.33 075	9.34 034	0.65 905	9.98 980	38
23	9.33 133	9.34 155	0.65 845	9.98 978	37
24	9.33 190	9.34 215	0.65 785	9.98 975	36
25 26	9.33 248 9.33 305	9.34 276 9.34 336	0.65 724 0.65 664	9.98 972 9.98 969	35 34
20 27	9.33 362	9.34 396	0.65 604	9.98 967	33
28	9.33 420	9.34 456	0.65 544	9.98 964	32
29	9.33 477	9.34 516	0.65 484	9.98 961	31
80	9.33 534	9.34 576	0.65 424	9.98 958	80
31	9.33 591	9.34 635	0.65 365	9.98 955	29
32 33	9.33 647 9.33 704	9.34 695 9.34 755	0.65 305 0.65 245	9.98 953 9.98 950	28 27
34	9.33 761	9.34 814	0.65 186	9.98 947	26
35	9.33 818	9.34 874	0.65 126	9.98 944	25
36 37	9.33 874	9.34 933 9.34 992	0.65 067 0.65 008	9.98 941 9.98 938	24 23
38	9.33 931 9.33 987	9.35 051	0.64 949	9.98 936	23 22
39	9.34 043	9.35 111	0.64 889	9.98 933	21
40	9.34 100	9.35 170	0.64 830	9.98 930	20
41	9.34 156	9.35 229	0.64 771	9.98 927	19
42	9.34 212	9.35 288	0.64 712	9.98 924	18
43 44	9.34 268 9.34 324	9.35 347 9.35 405	0.64 653 0.64 595	9.98 921 9.98 919	17 16
45	9.34 380	9.35 464	0.64 536	9.98 916	15
46	9.34 436	9.35 523	0.64 477	9.98 913	14
47 48	9.34 491 9.34 547	9.35 581 9.35 640	0.64 419 0.64 360	9.98 910 9.98 907	13 12
48 49	9.34 547 9.34 602	9.35 698	0.64 302	9.98 904	11
50	9.34 658	9.35 757	0.64 243	9.98 901	10
51	9.34 713	9.35 815	0.64 185	9.98 898	9
52	9.34 769	9.35 873	0.64 127	9.98 896	8
53 54	9.34 824 9.34 879	9.35 931 9.35 989	0.64 069 0.64 011	9.98 893 9.98 890	7 6
55	9.34 934	9.36 047	0.63 953	9.98 887	5
56	9.34 989	9.36 105	0.63 895	9.98 884	4
57 58	9.35 044 9.35 099	9.36 163 9.36 221	0.63 837 0.63 779	9.98 881 9.98 878	3
59	9.35 154	9.36 279	0.63 721	9.98 875	5 4 3 2 1
60	9.35 209	9.36 336	0.63 664	9.98 872	ō
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,
نسينسا					

7	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.35 209	9.36 336	0.63 664	9.98 872	60
ľi	9.35 263	9.36 394	0.63 606	9.98 869	59
2	9.35 318	9.36 452	0.63 548	9.98 867	58
3	9.35 373	9.36 509	0.63 491	9.98 864	57
4 5	9.35 427 9.35 481	9.36 566 9.36 624	0.63 434 0.63 376	9.98 861 9.98 858	56 55
6	9.35 536	9.36 681	0.63 319	9.98 855	54
7	9.35 590	9.36 738	0.63 262	9.98 852	53
8 9	9.35 644 9.35 698	9.36 795 9.36 852	0.63 205 0.63 148	9.98 849	52 51
10	9.35 752	9.36 909	0.63 148	9.98 846 9.98 843	50
11	9.35 806	9.36 966	0.63 034	9.98 840	49
12	9.35 860	9.37 023	0.62 977	9.98 837	48
13	9.35 914	9.37 080	0.62 920	9.98 834	47
14	9.35 968	9.37 137	0.62 863	9.98 831	46
15 16	9.36 022 9.36 075	9.37 193 9.37 250	0.62 807 0.62 750	9.98 828 9.98 825	45 44
17	9.36 129	9.37 306	0.62 694	9.98 822	43
18	9.36 182	9.37 363	0.62 637	9.98 819	42
19	9.36 236	9.37 419	0.62 581	9.98 816	41
20	9.36 289	9.37 476	0.62 524	9.98 813	40
21	9.36 342	9.37 532	0.62 468	9.98 810	39
22 23	9.36 395 9.36 449	9.37 588 9.37 644	0.62 412 0.62 356	9.98 807 9.98 804	38 37
23	9.36 502	9.37 700	0.62 300	9.98 801	36
25	9.36555	9.37 756	0.62 244	9.98 798	35
26	9.36 608	9.37 812	0.62 188	9.98 795	34
27 28	9.36 660 9.36 713	9.37 868 9.37 924	0.62 132 0.62 076	9.98 792 9.98 789	33 32
29	9.36 766	9.37 980	0.62 020	9.98 786	31
80	9.36 819	9.38 035	0.61 965	9.98 783	30
31	9.36 871	9.38 091	0.61 909	9.98 780	29
32	9.36 924	9.38 147	0.61 853	9.98 777	28
33	9.36 976	9.38 202	0.61 798	9.98 774	27
34 35	9.37 028 9.37 081	9.38 257 9.38 313	0.61 743 0.61 687	9.98 771 9.98 768	26 25
36	9.37 133	9.38 368	0.61 632	9.98 765	24
37	9.37 185	9.38 423	0.61 577	9.98 762	23
38 39	9.37 237 9.37 289	9.38 479 9.38 534	0.61 521 0.61 466	9.98 759 9.98 756	22 21
40	9.37 341	9.38 589	0.61 411	9.98 753	20
41	9.37 393	9.38 644	0.61 356	9.98 750	19
42	9.37 445	9.38 699	0.61 301	9.98 746	18
43	9.37 497	9.38 754	0.61 246	9.98 743	17
44 45	9.37 549	9.38 808	0.61 192	9.98 740	16
46 46	9.37 600 9.37 652	9.38 863 9.38 918	0.61 137 0.61 082	9.98 737 9.98 734	15 14
47	9.37 703	9.38 972	0.61 028	9.98 731	13
48	9.37 755	9.39 027	0.60 973	9.98 728	12
49	9.37 806	9.39 082	0.60 918	9.98 725	11
50	9.37 858	9.39 136	0.60 864	9.98 722	10
51 52	9.37 909 9.37 960	9.39 190 9.39 245	0.60 810 0.60 755	9.98 719 9.98 715	9 8
53	9.38 011	9.39 240	0.60 701	9.98 715 9.98 712	7
54	9.38 062	9.39 353	0.60 647	9.98 709	6
55 86	9.38 113	9.39 407	0.60 593	9.98 706	5
56 57	9.38 164 9.38 215	9.39 461 9.39 515	0.60 539 0.60 485	9.98 703 9.98 700	4 3
58	9.38 266	9.39 569	0.60 431	9.98 697	2
59	9.38 317	9.39 623	0.60 377	9.98 694	1
60	9.38 368	9.39 677	0.60 323	9.98 690	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

14°

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.38 368	9.39 677	0.60 323	9.98 690	60
1	9.38 418	9.39 731	0.60 269	9.98 687	59
2	9.38 469	9.39 785	0.60 215	9.98 684	58
3	9.38 519	9.39 838	0.60 162	9.98 681	57
4	9.38 570	9.39 892	0.60 108	9.98 678	56 55
5 6	9.38 620 9.38 670	9.39 945 9.39 999	0.60 055 0.60 001	9.98 675 9.98 671	54 54
7	9.38 721	9.40 052	0.59 948	9.98 668	53
8	9.38 771	9.40 106	0.59 894	9.98 665	52
9	9.38 821	9.40 159	0.59 841	9.98 662	51
10	9.38 871	9.40 212	0.59 788	9.98 659	50
11	9.38 921	9.40 266	0.59 734	9.98 656	49
12 13	9.38 971 9.39 021	9.40 319 9.40 372	0.59 681 0.59 628	9.98 652 9.98 649	48 47
14	9.39 071	9.40 425	0.59 575	9.98 646	46
15	9.39 121	9.40 478	0.59 522	9.98 643	45
16	9.39 170	9.40 531	0.59 469	9.98 640	44
17 18	9.39 220 9.39 270	9.40 584 9.40 636	0.59 416 0.59 364	9.98 636 9.98 633	43 42
19	9.39 319	9.40 689	0.59 304	9.98 630	41
20	9.39 369	9.40 742	0.59 258	9.98 627	40
21	9.39 418	9.40 795	0.59 205	9.98 623	39
22	9.39 467	9.40 847	0.59 153	9.98 620	38
23	9.39 517	9.40 900	0.59 100	9.98 617	37
24 25	9.39 566	9.40 952	0.59 048	9.98 614	36 35
20 26	9.39 615 9.39 664	9.41 005 9.41 057	0.58 995 0.58 943	9.98 610 9.98 607	34
27	9.39 713	9.41 109	0.58 891	9.98 604	33
28	9.39 762	9.41 161	0.58 839	9.98 601	32
29	9.39 811	9.41 214	0.58 786	9.98 597	31
80	9.39 860	9.41 266	0.58 734	9.98 594	80
31	9.39 909	9.41 318	0.58 682	9.98 591	29
32 33	9.39 958 9.40 006	9.41 370 9.41 422	0.58 630 0.58 578	9.98 588 9.98 584	28 27
34	9.40 055	9.41 474	0.58 526	9.98 581	26
35	9.40 103	9.41 526	0.58 474	9.98 578	25
36	9.40 152	9.41 578	0.58 422	9.98 574	24
37 38	9.40 200 9.40 249	9.41 629	0.58 371 0.58 319	9.98 571 9.98 568	23 22
39	9.40 249	9.41 681 9.41 733	0.58 267	9.98 565	21
40	9.40 346	9.41 784	0.58 216	9.98 561	20
41	9.40 394	9.41 836	0.58 164	9.98 558	19
42	9.40 442	9.41 887	0.58 113	9.98 555	18
43	9.40 490	9.41 939	0.58 061	9.98 551	17
44 45	9.40 538	9.41 990	0.58 010	9.98 548	16
46	9.40 586 9.40 634	9.42 041 9.42 093	0.57 959 0.57 907	9.98 545 9.98 541	15 14
47	9.40 682	9.42 144	0.57 856	9.98 538	13
48	9.40 730	9.42 195	0.57 805	9.98 535	12
49	9.40 778	9.42 246	0.57 754	9.98 531	11
50	9.40 825	9.42 297	0.57 703	9.98 528	10
51	9.40 873	9.42 348	0.57 652	9.98 525	9
52 53	9.40 921	9.42 399 9.42 450	0.57 601 0.57 550	9.98 521 9.98 518	8 7
54	9.40 968 9.41 016	9.42 400 9.42 501	0.57 499	9.98 515	6
55	9.41 063	9.42 552	0.57 448	9.98 511	5
56	9.41 111	9.42 603	0.57 397 0.57 347	9.98 508	4
57 58	9.41 158	9.42 653	0.57 347	9.98 505	3
59 59	9.41 205 9.41 252	9.42 70 <u>4</u> 9.42 755	0.57 296 0.57 245	9.98 501 9.98 498	2 1
60	9.41 300	9.42 805	0.57 195	9.98 494	Ô
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,
	L. 008.	L. OUG	L. I dil.	L, OIII.	السنسا

15°

10					
,	L. Sin.	L. Tán.	L. Cot.	L. Cos.	
0	9.41 300	9.42 805	0.57 195	9.98 494	60
1	9.41 347	9.42 856	0.57 144	9.98 491	59
2 3	9.41 394	9.42 906	0.57 094	9.98 488	58
4	9.41 441 9.41 488	9.42 957 9.43 007	0.57 043 0.56 993	9.98 484 9.98 481	57 56
5	9.41 535	9.43 057	0.56 943	9.98 477	55
6	9.41 582	9.43 108	0.56 892	9.98 474	54
7 8	9.41 628	9.43 158	0.56 842	9.98 471	53
l s	9.41 675 9.41 722	9.43 208 9.43 258	0.56 792 0.56 742	9.98 467 9.98 464	52 51
10	9.41 768	9.43 308	0.56 692	9.98 460	50
11	9.41 815	9.43 358	0.56 642	9.98 457	49
12	9.41 861	9.43 408	0.56 592	9.98 453	48
13	9.41 908	9.43 458	0.56 542	9.98 450	47
14 15	9.41 954 9.42 001	9.43 508 9.43 558	0.56 492 0.56 442	9.98 447 9.98 443	46 45
16	9.42 047	9.43 607	0.56 393	9.98 440	44
17	9.42 093	9.43 657	0.56 343	9.98 436	43
18	9.42 140	9.43 707	0.56 293	9.98 433	42
19	9.42 186	9.43 756	0.56 244	9.98 429	41
20	9.42 232	9.43 806	0.46 194	9.98 426	40
21 22	9.42 278 9.42 324	9.43 855 9.43 905	0.56 145 0.56 095	9.98 422 9.98 419	39
23	9.42 370	9.43 954	0.56 046	9.98 415	38 37
24	9.42 416	9.44 004	0.55 996	9.98 412	36
25	9.42 461	9.44 053	0.55 947	9.98 409	35
26 27	9.42 507 9.42 553	9.44 102 9.44 151	0.55 898 0.55 849	9.98 405 9.98 402	34 33
28	9.42 599	9.44 201	0.55 799	9.98 398	32
29	9.42 644	9.44 250	0.55 750	9.98 395	31
80	9.42 690	9.44 299	0.55 701	9.98 391	30
31	9.42 735	9.44 348	0.55 652	9.98 388	29
32	9.42 781	9.44 397	0.55 603	9.98 384	28
33 34	9.42 826 9.42 872	9.44 446 9.44 495	0.55 554 0.55 505	9.98 381 9.98 377	27 26
35	9.42 917	9.44 544	0.55 456	9.98 373	20 25
36	9.42 962	9.44 592	0.55 408	9.98 370	24
37 38	9.43 008 9.43 053	9.44 641	0.55 359	9.98 366	23
39	9.43 003	9.44 690 9.44 738	0.55 310 0.55 262	9.98 363 9.98 359	22 21
40	9.43 143	9.44 787	0.55 213	9.98 356	20
41	9.43 188	9.44 836	0.55 164	9.98 352	19
42	9.43 233	9.44 884	0.55 116	9.98 349	18
43	9.43 278	9.44 933	0.55 067	9.98 345	17
44 45	9.43 323 9.43 367	9.44 981 9.45 029	0.55 019	9.98 342	16
46	9.43 412	9.45 029	0.54 971 0.54 922	9.98 338 9.98 334	15 14
47	9.43 457	9.45 126	0.54 874	9.98 331	13
48	9.43 502	9.45 174	0.54 826	9.98 327	12
49	9.43 546	9.45 222	0.54 778	9.98 324	11
50	9.43 591	9.45 271	0.54 729	9.98 320	10
51 52	9.43 635 9.43 680	9.45 319 9.45 367	0.54 681 0.54 633	9.98 317 9.98 313	9 8
53	9.43 724	9.45 415	0.54 585	9.98 309	°
54	9.43 769	9.45 463	0.54 537	9.98 306	7 6 5
55 86	9.43 813 9.43 857	9.45 511	0.54 489	9.98 302	5
56 57	9.43 807 9.43 901	9.45 559 9.45 606	0.54 441 0.54 394	9.98 299 9.98 295	4 3
58	9.43 946	9.45 654	0.54 346	9.98 291	3 2 1
59	9.43 990	9.45 702	0.54 298	9.98 288	
60	9.44 034	9.45 750	0.54 250	9.98 284	0
	L. Cos.	L. Cot.	L.Tan.	L. Sin.	,
		~	A O		

7	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.44 034	9.45 750	0.54 250	9.98 284	60
1	9.44 078	9.45 797	0.54 203	9.98 281	59
2	9.44 122	9.45 845	0.54 155	9.98 277	58
3	9.44 166 9.44 210	9.45 892 9.45 940	0.54 108 0.54 060	9.98 273 9.98 270	57 56
4 5	9.44 253	9.45 987	0.54 013	9.98 266	55
6 7	9.44 297	9.46 035	0.53 965	9.98 262	54
7	9.44 341	9.46 082	0.53 918 0.53 870	9.98 259 9.98 255	53 52
8 9	9.44 385 9.44 428	9.46 130 9.46 177	0.53 823	9.98 251	51
10	9.44 472	9.46 224	0.53 776	9.98 248	50
11	9.44 516	9.46 271	0.53 729	9.98 244	49
12	9.44 559	9.46 319	0.53 681	9.98 240	48
13	9.44 602	9.46 366	0.53 634	9.98 237	47
14 15	9.44 646 9.44 689	9.46 413 9.46 460	0.53 587 0.53 540	9.98 233 9.98 229	46 45
16	9.44 733	9.46 507	0.53 493	9.98 226	44
17	9.44 776	9.46 554	0.53 446	9.98 222	43
18	9.44 819	9.46 601	0.53 399	9.98 218	42
19	9.44 862	9.46 648	0.53 352	9.98 215	41
20	9.44 905	9.46 694	0.53 306	9.98 211	40
21 22	9.44 948 9.44 992	9.46 741 9.46 788	0.53 259 0.53 212	9.98 207 9.98 204	39 38
23	9.44 992	9.46 835	0.53 165	9.98 200	37
24	9.45 077	9.46 881	0.53 119	9.98 196	36
25	9.45 120	9.46 928	0.53 072	9.98 192	35
26 27	9.45 163 9.45 206	9.46 975 9.47 021	0.53 025 0.52 979	9.98 189 9.98 185	34 33
28	9.45 249	9.47 068	0.52 932	9.98 181	32
29 29	9.45 292	9.47 114	0.52 886	9.98 177	31
80	9.45 334	9.47 160	0.52 840	9.98 174	80
31	9.45 377	9.47 207	0.52 793	9.98 170	29
32	9.45 419	9.47 253	0.52 747	9.98 166 9.98 162	28
33 34	9.45 462 9.45 504	9.47 299	0.52 701 0.52 654	9.98 102 9.98 159	27 26
35	9.45 547	9.47 346 9.47 392	0.52 608	9.98 155	25
36	9.45 589	9.47 438	0.52 562	9.98 151	24
37	9.45 632 9.45 674	9.47 484 9.47 530	0.52 516 0.52 470	9.98 147 9.98 144	23 22
38 39	9.45 716	9.47 576	0.52 424	9.98 140	21
40	9.45 758	9.47 622	0.52 378	9.98 136	20
41	9.45 801	9.47 668	0.52 332	9.98 132	19
42	9.45 843	9.47 714	0.52 286	9.98 129	18
43	9.45 885	9.47 760	0.52 240	9.98 125 9.98 121	17
44 45	9.45 927 9.45 969	9.47 806 9.47 852	0.52 194 0.52 148	9.98 121	16 15
46	9.46 011	9.47 897	0.52 103	9.98 113	14
47	9.46 053	9.47 943	0.52 057	9.98 110	13
48 49	9.46 098 9.46 136	9.47 989 9.48 035	0.52 011 0.51 965	9.98 106 9.98 102	12 11
50	9.46 178	9.48 080	0.51 900	9.98 098	10
51	9.46 220	9.48 126	0.51 874	9.98 094	9
51 52	9.46 262	9.48 120 9.48 171	0.51 829	9.98 090	8
53	9.46 303	9.48 217	0.51 783	9.98 087	7
54	9.46 345	9.48 262	0.51 738	9.98 083	6
55 56	9.46 386 9.46 428	9.48 307 9.48 353	0.51 693 0.51 647	9.98 079 9.98 075	5 4
57	9.46 469	9.48 398	0.51 602	9.98 071	3
58	9.46 511	9.48 443	0.51 557	9.98 067	z
59	9.46 552	9.48 489	0.51 511	9.98 063	1
60	9.46 594	9.48 534	0.51 466	9.98 060	•
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	'

·	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.46 594				
		9.48 534	0.51 466	9.98 060	60
$\frac{1}{2}$	9.46 635 9.46 676	9.48 579 9.48 624	0.51 421 0.51 376	9.98 056 9.98 052	59
3	9.46 717	9.48 669	0.51 370	9.98 002	58 57
4	9.46 758	9.48 714	0.51 286	9.98 044	56
5	9.46 800	9.48 759	0.51 241	9.98 040	55
6	9.46 841	9.48 804	0.51 196	9.98 036	54
7	9.46 882	9.48 849	0.51 151	9.98 032	53
8 9	9.46 923 9.46 964	9.48 894 9.48 939	0.51 106 0.51 061	9.98 029 9.98 025	52
10	9.47 005	9.48 984	0.51 016		51
11	9.47 045	9.49 029		9.98 021	50
12	9.47 045	9.49 029	0.50 971 0.50 927	9.98 017 9.98 013	49 48
13	9.47 127	9.49 118	0.50 882	9.98 009	46 47
14	9.47 168	9.49 163	0.50 837	9.98 005	46
15	9.47 209	9.49 207	0.50 793	9.98 001	45
16	9.47 249	9.49 252	0.50 748	9.97 997	44
17 18	9.47 290 9.47 330	9.49 296 9.49 341	0.50 704 0.50 659	9.97 993	43
19	9.47 371	9.49 385	0.50 615	9.97 989 9.97 986	42 41
20	9.47 411	9.49 430	0.50 570		
21	9.47 452	9.49 474	0.50 526	9.97 982 9.97 978	40
$\frac{21}{22}$	9.47 452 9.47 492	9.49 474 9.49 519	0.50 526	9.97 978	39 38
23	9.47 533	9.49 563	0.50 437	9.97 970	37
24	9.47 573	9.49 607	0.50 393	9.97 966	36
25	9.47 613	9.49 652	0.50 348	9.97 962	35
26	9.47 654	9.49 696	0.50 304	9.97 958	34
27 28	9.47 694 9.47 734	9.49 740 9.49 784	0.50 260 0.50 216	9.97 954	33
29 29	9.47 774	9.49 828	0.50 216	9.97 950 9.97 946	32 31
80	9.47 814	9.49 872	0.50 172	9.97 942	80
31	9.47 854	9.49 916	0.50 084	9.97 938	
32	9.47 894	9.49 910	0.50 084	9.97 934	29 28
33	9.47 934	9.50 004	0.49 996	9.97 930	27
34	9.47 974	9.50 048	0.49 952	9.97 926	26
35	9.48 014	9.50 092	0.49 908	9.97 922	25
36	9.48 054 9.48 094	9.50 136	0.49 864	9.97 918	24
37 38	9.48 133	9.50 180 9.50 223	0.49 820 0.49 777	9.97 914 9.97 910	23 22
39	9.48 173	9.50 267	0.49 733	9.97 906	21
40	9.48 213	9.50 311	0.49 689	9.97 902	20
41	9.48 252	9.50 355	0.49 645	9.97 898	20
42	9.48 292	9.50 398	0.49 602	9.97 894	18
43	9.48 332	9.50 442	0.49 558	9.97 890	17
44	9.48 371	9.50 485	0.49 515	9.97 886	16
45	9.48 411	9.50 529	0.49 471	9.97 882	15
46 47	9.48 450 9.48 490	9.50 572 9.50 616	0.49 428 0.49 384	9.97 878 9.97 874	14
48	9.48 529	9.50 659	0.49 384	9.97 874	13 12
49	9.48 568	9.50 703	0.49 297	9.97 866	11
50	9.48 607	9.50 746	0.49 254	9.97 861	10
51	9.48 647	9.50 789	0.49 211	9.97 857	9
52	9.48 686	9.50 833	0.49 167	9.97 853	8
53	9.48 725	9.50 876	0.49 124	9.97 849	7
54	9.48 764	9.50 919	0.49 081	9.97 845	6
55 56	9.48 803 9.48 842	9.50 962 9.51 005	0.49 038	9.97 841	5
57	9.48 881	9.51 005	0.48 995 0.48 952	9.97 837 9.97 833	4 3
58	9.48 920	9.51 092	0.48 908	9.97 829	2
59	9.48 959	9.51 135	0.48 865	9.97 825	ĩ
60	9.48 998	9.51 178	0.48 822	9.97 821	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,
		MC	-		

	I Sin I Ton I Cot I Con I				
-	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.48 998	9.51 178	0.48 822	9.97 821	60
1 2	9.49 037 9.49 076	9.51 221 9.51 264	0.48 779 0.48 736	9.97 817 9.97 812	59 58
3	9.49 115	9.51 204	0.48 694	9.97 808	57
4	9.49 153	9.51 349	0.48 651	9.97 804	56
5	9.49 192 9.49 231	9.51 392	0.48 608	9.97 800	55
6 7	9.49 269	9.51 435 9.51 478	0.48 565 0.48 522	9.97 796 9.97 792	54 53
8	9.49 308	9.51 520	0.48 480	9.97 788	52
9	9.49 347	9.51 563	0.48 437	9.97 784	51
10	9.49 385	9.51 606	0.48 394	9.97 779	50
11 12	9.49 424 9.49 462	9.51 648 9.51 691	0.48 352 0.48 309	9.97 775 9.97 771	49 48
13	9.49 500	9.51 734	0.48 266	9.97 767	47
14	9.49 539	9.51 776	0.48 224	9.97 763	46
15 16	9.49 577 9.49 615	9.51 819 9.51 861	0.48 181 0.48 139	9.97 759 9.97 754	45 44
17	9.49 654	9.51 903	0.48 097	9.97 750	43
18	9.49 692	9.51 946	0.48 054	9.97 746	42
19	9.49 730	9.51 988	0.48 012	9.97 742	41
20	9.49 768	9.52 031	0.47 969	9.97 738	40
21 22	9.49 806 9.49 844	9.52 073 9.52 115	0.47 927 0.47 885	9.97 734 9.97 729	39 38
23	9.49 882	9.52 157	0.47 843	9.97 725 9.97 721	37
24	9.49 920	9.52 200	0.47 800	9.97 721	36
25 26	9.49 958 9.49 996	9.52 242 9.52 284	0.47 758 0.47 716	9.97 717 9.97 713	35 34
27	9.50 034	9.52 326	0.47 674	9.97 708	33
28	9.50 072	9.52 368	0.47 632	9.97 704	32
29 80	9.50 110	9.52 410	0.47 590	9.97 700	31
31	9.50 148 9.50 185	9.52 452 9.52 494	0.47 548	9.97 696	80
32	9.50 223	9.52 536	0.47 464	9.97 691 9.97 687	29 28
33	9.50 261	9.52 578	0.47 422	9.97 683	27
34 35	9.50 298 9.50 336	9.52 620 9.52 661	0.47 380 0.47 339	9.97 679 9.97 674	26 25
36	9.50 374	9.52 703	0.47 297	9.97 670	20 24
37	9.50 411	9.52 745	0.47 255	9.97 666	23
38 39	9.50 449 9.50 486	9.52 787 9.52 829	0.47 213 0.47 171	9.97 662 9.97 657	22 21
40	9.50 523	9.52 870	0.47 130	9.97 653	20
41	9.50 561	9.52 912	0.47 088	9.97 649	19
42	9.50 598	9.52 953	0.47 047 0.47 008	9.97 645	18
43 44	9.50 635	9.52 995	0.47 008	9.97 640	17
44	9.50 673 9.50 710	9.53 037 9.53 078	0.46 963 0.46 922	9.97 636 9.97 632	16 15
46	9.50 747	9.53 120	0.46 880	9.97 628	14
47 48	9.50 784 9.50 821	9.53 161 9.53 202	0.46 839 0.46 798	9.97 623 9.97 619	13
48 49	9.50 821 9.50 858	9.53 202	0.46 798 0.46 75 6	9.97 619	12 11
50	9.50 896	9.53 285	0.46 718	9.97 610	10
51	9.50 933	9.53 327	0.46 673	9.97 606	. 9
52	9.50 970	9.53 368	0.46 632	9.97 602	8
53 54	9.51 007 9.51 043	9.53 409 9.53 450	0.46 591 0.46 550	9.97 597 9.97 593	7 6 5
55	9.51 043	9.53 492	0.46 508	9.97 589	5
56	9.51 117	9.53 533	0.46 467	9.97 584	4
57 58	9.51 154 9.51 191	9.53 574 9.53 615	0.46 426 0.46 385	9.97 580 9.97 576	3 2
59	9.51 227	9.53 656	0.46 344	9.97 571	í
60	9.51 264	9.53 697	0.46 303	9.97 567	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

_	1 01		1 0:4	1.0	
<u>'</u>	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.51 264	9.53 697	0.46 303	9.97 567	60
1	9.51 301	9.53 738	0.46 262	9.97 563	59
2 3	9.51 338 9.51 374	9.53 779 9.53 820	0.46 221 0.46 180	9.97 558 9.97 554	58 57
4	9.51 411	9.53 861	0.46 139	9.97 550	56
5	9.51 447	9.53 902	0.46 098	9.97 545	55
6	9.51 484	9.53 943	0.46 057	9.97 541	54
7 8	9.51 520 9.51 557	9.53 984 9.54 025	0.46 016 0.45 975	9.97 536 9.97 532	53 52
ů i	9.51 593	9.54 065	0.45 935	9.97 528	51
10	9.51 629	9.54 106	0.45 894	9.97 523	50
11	9.51 666	9.54 147	0.45 853	9.97 519	49
12	9.51 702	9.54 187	0.45 813	9.97 515	48
13	9.51 738	9.54 228	0.45 772	9.97 510	47
14 15	9.51 774 9.51 811	9.54 269 9.54 309	0.45 731 0.45 691	9.97 506	46 45
16	9.51 847	9.54 350	0.45 650	9.97 501 9.97 497	44
17	9.51 883	9.54 390	0.45 610	9.97 492	43
18	9.51 919	9.54 431	0.45 569	9.97 488	42
19	9.51 955	9.54 471	0.45 529	9.97 484	41
20	9.51 991	9.54 512	0.45 488	9.97 479	40
21	9.52 027	9.54 552	0.45 448	9.97 475	39 38
22 23	9.52 063 9.52 099	9.54 593 9.54 633	0.45 407 0.45 367	9.97.470 9.97.466	38 37
24	9.52 135	9.54 673	0.45 327	9.97 461	36
25	9.52 171	9.54 714	0.45 286	9.97 457	35
26	9.52 207	9.54 754	0.45 246	9.97 453	34
27 28	9.52 242 9.52 278	9.54 794 9.54 835	0.45 206 0.45 165	9.97 448 9.97 444	33 32
29	9.52 314	9.54 875	0.45 125	9.97 439	31
80	9.52 350	9.54 915	0.45 085	9.97 435	80
31	9.52 385	9.54 955	0.45 045	9.97 430	29
32	9.52 421	9.54 995	0.45 008	9.97 426	28
33	9.52 456	9.55 035	0.44 965	9.97 421	27
34 35	9.52 492 9.52 527	9.55 075 9.55 115	0.44 925 0.44 885	9.97 417 9.97 412	26 25
36	9.52 563	9.55 155	0.44 845	9.97 408	24
37	9.52 598	9.55 195	0.44 805	9.97 403	23
38	9.52 634	9.55 235	0.44 765	9.97 399	22
39	9.52 669	9.55 275	0.44 725	9.97 394	21
40	9.52 705	9.55 315	0.44 685	9.97 390	20
41 42	9.52 740	9.55 355	0.44 645	9.97 385	19
43	9.52 775 9.52 811	9.55 39 5 9.55 434	0.44 605 0.44 566	9.97 381 9.97 376	18 17
44	9.52 846	9.55 474	0.44 526	9.97 372	16
45	9.52 881	9.55 514	0.44 486	9.97 367	15
46	9.52 916	9.55 554	0.44 446	9.97 363	14
47 48	9.52 951 9.52 986	9.55 593 9.55 633	0.44 407 0.44 367	9.97 358 9.97 353	13 12
49	9.53 021	9.55 673	0.44 327	9.97 349	11
50	9.53 056	9.55 712	0.44 288	9.97 344	10
51	9.53 092	9.55 752	0.44 248	9.97 340	9
52	9.53 126	9.55 791	0.44 209	9.97 335	8
53	9.53 161	9.55 831	0.44 169	9.97 331	7
54 55	9.53 196 9.53 231	9.55 870 9.55 910	0.44 130 0.44 090	9.97 326 9.97 322	6 5
56	9.53 266	9.55 910	0.44 050	9.97 317	4
57	9.53 301	9.55 989	0.44 011	9.97 312	3
58	9.53 336	9.56 028	0.43 972	9.97 308	2
59	9.53 370	9.56 067	0.43 933	9.97 303	1
60	9.53 405	9.56 107	0.43 893	9.97 299	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

		N			_
,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.53 405	9.56 107	0.43 893	9.97 299	60
1	9.53 440	9.56 146	0.43 854	9.97 294	59
2 3	9.53 475 9.53 509	9.56 185 9.56 224	0.43 815 0.43 776	9.97 289 9.97 285	58 57
4	9.53 544	9.56 264	0.43 736	9.97 280	56
5	9.53 578	9.56 303	0.43 697	9.97 276	55
6	9.53 613	9.56 342	0.43 658	9.97 271	54
7	9.53 647	9.56 381	0.43 619	9.97 266	53
8 9	9.53 682 9.53 716	9.56 420 9.56 459	0.43 580 0.43 541	9.97 262 9.97 257	52 51
10	9.53 751	9.56 498	0.43 502	9.97 252	50
11	9.53 785	9.56 537	0.43 463	9.97 248	49
12	9.53 819	9.56 576	0.43 424	9.97 243	48
13	9.53 854	9.56 615	0.43 385	9.97 238	47
14	9.53 888	9.56 654	0.43 346	9.97 234	46
15	9.53 922	9.56 693	0.43 307	9.97 229	45
16 17	9.53 957 9.53 991	9.56 732 9.56 771	$0.43\ 268 \\ 0.43\ 229$	9.97 224 9.97 220	44 43
18	9.54 025	9.56 810	0.43 190	9.97 215	42
19	9.54 059	9.56 849	0.43 151	9.97 210	41
20	9.54 093	9.56 887	0.43 113	9.97 206	40
21	9.54 127	9.56 926	0.43 074	9.97 201	39
22	9.54 161	9.56 965	0.43 035	9.97 196	38
23	9.54 195	9.57 004	0.42 996	9.97 192	37
24 25	9.54 229 9.54 263	9.57 042 9.57 081	0.42 958 0.42 919	9.97 187 9.97 182	36 35
26	9.54 297	9.57 120	0.42 880	9.97 178	34
27	9.54 331	9.57 120 9.57 158 9.57 197	0.42 842	9.97 173	33
28	9.54 365	9.57 197	0.42 803	9.97 168	32
29	9.54 399	9.57 235	0.42 765	9.97 163	31
80	9.54 433	9.57 274	0.42 726	9.97 159	80
31	9.54 466	9.57 312	0.42 688	9.97 154	29
32 33	9.54 500 9.54 534	9.57 351 9.57 389	0.42 649 0.42 611	9.97 149 9.97 145	28 27
34	9.54 567	9.57 428	0.42 572	9.97 140	26
35	9.54 601	9.57 466	0.42 534	9.97 135	25
36	9.54 635	9.57 504	0.42 496	9.97 130	24
37 38	9.54 668 9.54 702	9.57 543 9.57 581	0.42 457 0.42 419	9.97 126 9.97 121	23 22
39	9.54 735	9.57 619	0.42 419	9.97 116	21
40	9.54 769	9.57 658	0.42 342	9.97 111	20
41	9.54 802	9.57 696	0.42 304	9.97 107	19
42	9.54 836	9.57 734	0.42 266	9.97 102	18
43	9.54 869	9.57 772	0.42 228	9.97 097	17
44	9.54 903	9.57 810	0.42 190	9.97 092	16
45 46	9.54 936 9.54 969	9.57 849 9.57 887	0.42 151 0.42 113	9.97 087 9.97 083	15 14
47	9.55 003	9.57 925	0.42 113	9.97 083	13
48	9.55 036	9.57 963	0.42 037	9.97 073	12
49	9.55 069	9.58 001	0.41 999	9.97 068	11
50	9.55 102	9.58 039	0.41 961	9.97 063	10
51	9.55 136	9.58 077	0.41 923	9.97 059	9
52	9.55 169	9.58 115	0.41 885	9.97 054	8
53 54	9.55 202 9.55 235	9.58 153 9.58 191	0.41 847 0.41 809	9.97 049 9.97 044	7 6
55	9.55 268	9.58 191	0.41 771	9.97 039	\ 5
56	9.55 301	9.58 267	0.41 733	9.97 035	4
57	9.55 334	9.58 304	0.41 696	9.97 030	3
58 59	9.55 367	9.58 342	0.41 658	9.97 025	2
60	9.55 400 9.55 433	9.58 380	0.41 620	9.97 020	0
90		9.58 418	0.41 582	9.97 015	
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	'

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	Π
0	9.55 433	9.58 418	0.41 582	9.97 015	60
1	9.55 466	9.58 455	0.41 545	9.97 010	59
2 3	9.55 499	9.58 493	0.41 507	9.97 005	58
3	9.55 532	9.58 531	0.41 469	9.97 001	57
4 5	9.55 564 9.55 597	9.58 569 9.58 606	0.41 431 0.41 394	9.96 996 9.96 991	56 55
6	9.55 630	9.58 644	0.41 356	9.96 986	54
7	9.55 663	9.58 681	0.41 319	9.96 981	53
8 9	9.55 695 9.55 728	9.58 719 9.58 757	0.41 281 0.41 243	9.96 976 9.96 971	52 51
10	9.55 761	9.58 794	0.41 246	9.96 966	50
11	9.53 793	9.58 832	0.41 168	9.96 962	49
12	9.55 826	9.58 869	0.41 131	9.96 957	48
13	9.55 858	9.58 907	0.41 093	9.96 952	47
14	9.55 891	9.58 944	0.41 056	9.96 947	46
15 16	9.55 923 9.55 956	9.58 981 9.59 019	0.41 019 0.40 981	9.96 942 9.96 937	45 44
17	9.55 988	9.59 056	0.40 944	9.96 932	43
18	9.56 021	9.59 094	0.40 906	9.96 927	42
19	9.56 053	9.59 131	0.40 869	9.96 922	41
20	9.56 085	9.59 168	0.40 832	9.96 917	40
21 22	9.56 118 9.56 150	9.59 205 9.59 243	0.40 79 5 0.40 757	9.96 912 9.96 907	39 38
23	9.56 182	9.59 280	0.40 720	9.96 903	37
24	9.56 215	9.59 317	0.40 683	9.96 898	36
25	9.56 247	9.59 354	0.40 646	9.96 893	35
26 27	9.56 279 9.56 311	9.59 391 9.59 429	0.40 609 0.40 571	9.96 888 9.96 883	34 33
28	9.56 343	9.59 466	0.40 534	9.96 878	32
29	9.56 375	9.59 503	0.40 497	9.96 873	31
30	9.56 408	9.59 540	0.40 460	9.96 868	30
31	9.56 440	9.59 577	0.40 423	9.96 863	29
32 33	9.56 472 9.56 504	9.59 614 9.59 651	0.40 386 0.40 349	9.96 858 9.96 853	28 27
34	9.56 536	9.59 688	0.40 312	9.96 848	26
35	9.56 568	9.59 725	0.40 275	9.96 843	25
36	9.56 599	9.59 762	0.40 238	9.96 838	24
37 38	9.56 631 9.56 663	9.59 799 9.59 835	0.40 201 0.40 165	9.96 833 9.96 828	23 22
39	9.56 695	9.59 872	0.40 128	9.96 823	21
40	9.56 727	9.59 909	0.40 091	9.96 818	20
41	9.56 759	9.59 946	0.40 054	9.96 813	19
42	9.56 790	9.59 983	0.40 017	9.96 808	18
43 44	9.56 822 9.56 854	9.60 019 9.60 056	0.39 981 0.39 944	9.96 803 9.96 798	17 16
45	9.56 886	9.60 093	0.39 907	9.96 793	15
46	9.56 917	9.60 130	0.39 870	9.96 788	14
47	9.56 949	9.60 166	0.39 834	9.96 783	13
48 49	9.56 980 9.57 012	9.60 203 9.60 240	0.39 797 0.39 760	9.96 778 9.96 772	12 11
50	9.57 044	9.60 276	0.39 724	9.96 767	10
51	9.57 075	9.60 313	0.39 687	9.96 762	9
52	9.57 107	9.60 349	0.39 651	9.96 757	8
53	9.57 138	9.60 386	0.39 614	9.96 752	7
54 55	9.57 169 9.57 201	9.60 422 9.60 459	0.39 578 0.39 541	9.96 747 9.96 742	6 5
56	9.57 232	9.60 495	0.39 505	9.96 737	4
57	9.57 264	9.60 532	0.39 468	9.96 732	3
58	9.57 295	9.60 568	0.39 432	9.96 727	2 1
59 60	9.57 326 9.57 358	9.60 605	0.39 395	9.96 722 9.96 717	0
-~					
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	•

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.57 358	9.60 641	0.39 359	9.96 717	60
1	9.57 389	9.60 677	0.39 323	9.96 711	59
2	9.57 420	9.60 714	0.39 286	9.96 706	58
3	9.57 451	9.60 750	0.39 250	9.96 701	57
4	9.57 482	9.60 786 9.60 823	0.39 214 0.39 177	9.96 696 9.96 691	56 55
5 6	9.57 514 9.57 545	9.60 859	0.39 141	9.96 686	54
ř	9.57 576	9.60 895	0.39 105	9.96 681	53
8	9.57 607	9.60 931	0.39 069	9.96 676	52
9 10	9.57 638	9.60 967	0.39 033	9.96 670 9.96 665	51 50
	9.57 669	9.61 004	0.38 996	9.96 660	49
11 12	9.57 731	9.61 040 9.61 076	0.38 924	9.96 655	48
13	9.57 762	9.61 112	0.38 888	9.96 650	47
14	9.57 793	9.61 148	0.38 852	9.96 645	46
15 16	9.57 824 9.57 855	9.61 184 9.61 220	0.38 816 0.38 780	9.96 640 9.96 634	45 44
17	9.57 885	9.61 256	0.38 744	9.96 629	43
18	9.57 916	9.61 292	0.38 708	9.96 624	42
19	9.57 947	9.61 328	0.38 672	9.96 619	41
20	9.57 978	9.61 364	0.38 636	9.96 614	40
21 22	9.58 008 9.58 039	9.61 400 9.61 436	0.38 600 0.38 564	9.96 608 9.96 603	39 38
23	9.58 070	9.61 472	0.38 528	9.96 598	37
24	9.58 101	9.61 508	0.38 492	9.96 593	36
25	9.58 131	9.61 544	0.38 456	9.96 588	35 34
.26 27	9.58 162 9.58 192	9.61 579 9.61 615	0.38 421 0.38 385	9.96 582 9.96 577	33
28	9.58 223	9.61 651	0.38 349	9.96 572	32
29	9.58 253	9.61 687	0.38 313	9.96 567	31
80	9.58 284	9.61 722	0.38 278	9.96 562	80
31 32	9.58 314 9.58 345	9.61 758	0.38 242 0.38 206	9.96 556 9.96 551	29 28
33	9.58 375	9.61 794 9.61 830	0.38 200	9.96 546	27
34	9.58 406	9.61 865	$0.38\ 135$	9.96 541	26
35 36	9.58 436 9.58 467	9.61 901 9.61 936	0.38 099 0.38 064	9.96 535 9.96 530	25 24
37	9.58 497	9.61 972	0.38 028	9.96 525	23
38	9.58 527	9.62 008	0.37 992	9.96 520	22
39	9.58 557	9.62 043	0.37 957	9.96 514	21
40	9.58 588	9.62 079	0.37 921	9.96 509	20
41 42	9.58 618	9.62 114	0.37 886	9.96 504 9.96 498	19
42 43	9.58 648 9.58 678	9.62 150 9.62 185	0.37 850 0.37 815	9.96 498	18 17
44	9.58 709	9.62 221	0.37 779	9.96 488	16
45	9.58 739	9.62 256	0.37 744	9.96 483	15
46 47	9.58 769 9.58 799	9.62 292 9.62 327	0.37 708 0.37 673	9.96 477 9.96 472	14 13
48	9.58 829	9.62 362	0.37 638	9.96 467	12
49	9.58 859	9.62 398	0.37 602	9.96 461	11
50	9.58 889	9.62 433	0.37 567	9.96 456	10
51	9.58 919	9.62 468	0.37 532	9.96 451 9.96 445	9
52 53	9.58 949 9.58 979	9.62 504 9.62 539	0.37 496 0.37 461	9.96 440	8 7
54	9.59 009	9.62 574	0.37 426	9.96 435	6
55	9.59 039	9.62 609	0.37 391	9.96 429	6 5 4
56 57	9.59 069 9.59 098	9.62 645 9.62 680	0.37 355 0.37 320	9.96 424 9.96 419	3
58	9.59 128	9.62 715	0.37 285	9.96 413	2
59	9.59 158	9.62 750	0.37 250	9.96 408	1
60	9.59 188	9.62 785	0.37 215	9.96 403	°
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.59 188	9.62 785	0.37 215	9.96 403	60
1	9.59 218	9.62 820	0.37 180	9.96 397	59
3	9.59 247	9.62 855	0.37 145	9.96 392	58
3	9.59 277	9.62 890	0.37 110	9.96 387	57
4 5	9.59 307 9.59 336	9.62 926 9.62 961	0.37 074 0.37 039	9.96 381 9.96 376	56 55
6	9.59 366	9.62 996	0.37 004	9.96 370	54
7	9.59 396	9.63 031	0.36 969	9.96 365	53
8	9.59 425	9.63 066	0.36 934	9.96 360	52
9 10	9.59 455 9.59 484	9.63 101	0.36 899	9.96 354	51 50
11	9.59 484	9.63 170	0.36 830	9.96 349	49
12	9.59 543	9.63 205	0.36 795	9.96 338	49 48
13	9.59 573	9.63 240	0.36 760	9.96 333	47
14	9.59 602	9.63 275	0.36 725	9.96 327	46
15 16	9.59 632 9.59 661	9.63 310 9.63 345	0.36 690	9.96 322 9.96 316	45
17	9.59 690	9.63 379	0.36 655 0.36 621	9.96 311	44 43
18	9.59 720	9.63 414	0.36 586	9.96 305	42
19	9.59 749	9.63 449	0.36 551	9.96 300	41
20	9.59 778	9.63 484	0.36 516	9.96 294	40
21	9.59 808	9.63 519	0.36 481	9.96 289	39
22 23	9.59 837 9.59 866	9.63 553 9.63 588	0.36 447 0.36 412	9.96 284 9.96 278	38 37
24	9.59 895	9.63 623	0.36 377	9.96 273	36
25	9.59 924	9.63 657	0.36 343	9.96 267	35
26	9.59 954	9.63 692	0.36 308	9.96 262	34
27 28	9.59 983 9.60 012	9.63 726 9.63 761	0.36 274 0.36 239	9.96 256 9.96 251	33 32
29	9.60 041	9.63 796	0.36 204	9.96 245	31
80	9.60 070	9.63 830	0.36 170	9.96 240	80
31	9.60 099	9.63 865	0.36 135	9.96 234	29
32	9.60 128	9.63 899	0.36 101	9.96 229	28
33 34	9.60 157 9.60 186	9.63 934 9.63 968	0.36 066 0.36 032	9.96 223 9.96 218	27 26
35	9.60 215	9.64 003	0.35 997	9.96 212	20 25
36	9.60 244	9.64 037	0.35 963	9.96 207	24
37 38	9.60 273 9.60 302	9.64 072	0.35 928	9.96 201	23
39	9.60 331	9.64 106 9.64 140	0.35 894 0.35 860	9.96 196 9.96 190	22 21
40	9.60 359	9.64 178	0.35 825	9.96 185	20
41	9.60 388	9.64 209	0.35 791	9.96 179	19
42	9.60 417	9.64 243	0.35 757	9.96 174	18
43	9.60 446	9.64 278	0.35 722	9.96 168	17
44 45	9.60 474 9.60 503	9.64 312 9.64 346	0.35 688 0.35 654	9.96 162 9.96 157	16 15
46	9.60 532	9.64 381	0.35 619	9.96 151	14
47	9.60 561	9.64 415	0.35 585	9.96 146	13
48 49	9.60 589 9.60 618	9.64 449	0.35 551	9.96 140	12
50	9.60 646	9.64 483 9.64 517	0.35 517	9.96 135	11 10
51	9.60 675	9.64 552	0.35 448	9.96 129	9
52	9.60 704	9.64 586 9.64 586	0.35 448	9.96 123	8
53	9.60 732	9.64 620	0.35 380	9.96 112	7
54 55	9.60 761	9.64 654	0.35 346	9.96 107	6
56	9.60 789 9.60 818	9.64 688 9.64 722	0.35 312 0.35 278	9.96 101 9.96 095	5 4
57	9.60 846	9.64 756	0.35 244	9.96 090	3
58	9.60 875	9.64 790	0.35 210	9.96 084	2
59	9.60 903	9.64 824	0.35 176	9.96 079	1
60	9.60 931	9.64 858	0.35 142	9.96 073	•
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
6	9.60 931	9.64 858	0.35 142	9.96 073	60
1	9.60 960	9.64 892	0.35 142	9.96 067	59
2	9.60 988	9.64 926	0.35 074	9.96 062	58
3	9.61 016	9.64 960	0.35 040	9.96 056	57
4	9.61 045	9.64 994	0.35 006	9.96 050	56
5	9.61 073	9.65 028 9.65 062	0.34 972 0.34 938	9.96 045 9.96 039	55 54
6 7	9.61 101 9.61 129	9.65 096	0.34 904	9.96 034	53
8	9.61 158	9.65 130	0.34 870	9.96 028	52
9	9.61 186	9.65 164	0.34 836	9.96 022	51
10	9.61 214	9.65 197	0.34 803	9.96 017	50
11	9.61 242	9.65 231	0.34 769	9.96 011	49
12 13	9.61 270 9.61 298	9.65 265 9.65 299	0.34 735 0.34 701	9.96 005 9.96 000	48 47
14	9.61 326	9.65 333	0.34 667	9.95 994	46
15	9.61 354	9.65 366	0.34 634	9.95 988	45
16	9.61 382	9.65 400	0.34 600	9.95 982	44
17 18	9.61 411 9.61 438	9.65 434 9.65 467	0.34 566 0.34 533	9.95 977 9.95 971	43 42
19	9.61 466	9.65 501	0.34 499	9.95 965	41
20	9.61 494	9.65 535	0.34 465	9.95 960	40
21	9.61 522	9.65 568	0.34 432	9.95 954	39 .
22	9.61 550	9.65 602	0.34 398	9.95 948	38
23	9.61 578	9.65 636	0.34 364	9.95 942 9.95 937	37
24 25	9.61 606 9.61 634	9.65 669 9.65 703	0.34 331 0.34 297	9.95 931	36 35
26	9.61 662	9.65 736	0.34 264	9.95 925	34
27	9.61 689	9.65 770	0.34 230	9.95 920	33
28	9.61 717	9.65 803	0.34 197 0.34 163	9.95 914 9.95 908	32
29 30	9.61 745 9.61 773	9.65 837 9.65 870	0.34 130	9.95 902	31 30
31	9.61 800	9.65 904	0.34 096	9.95 897	29
32	9.61 828	9.65 937	0.34 063	9.95 891	28
33	9.61 856	9.65 971	0.34 029	9.95 885	27
34	9.61 883	9.66 004	0.33 996	9.95 879	26
35 36	9.61 911 9.61 939	9.66 038 9.66 071	0.33 962 0.33 929	9.95 873 9.95 868	25 24
37	9.61 966	9.66 104	0.33 896	9.95 862	23
38	9.61 994	9.66 138	0.33 862	9.95 856	22
39	9.62 021	9.66 171	0.33 829	9.95 850	21
40	9.62 049	9.66 204	0.33 796	9.95 844	20
41	9.62 076	9.66 238	0.33 762 0.33 729	9.95 839 9.95 833	19
42 43	9.62 104 9.62 131	9.66 271 9.66 304	0.33 729	9.95 833	18 17
44	9.62 159	9.66 337	0.33 663	9.95 821	16
45	9.62 186	9.66 371	0.33 629	9.95 815	15
46 47	9.62 214 9.62 241	9.66 404 9.66 437	0.33 596 0.33 563	9.95 810 9.95 804	14 13
48	9.62 241	9.66 470	0.33 530	9.95 798	13
49	9.62 296	9.66 503	0.33 497	9.95 792	īī
50	9.62 323	9.66 537	0.33 463	9.95 786	10
51	9.62 350	9.66 570	0.33 430	9.95 780	9
52	9.62 377	9.66 603	0.33 397	9.95 775 9.95 769	8
53 54	9.62 405 9.62 432	9.66 636 9.66 669	0.33 364 0.33 331	9.95 763	7 6
55	9.62 459	9.66 702	0.33 298	9.95 757	5
56	9.62 486	9.66 735	0.33 265	9.95 751	4
57 58	9.62 513 9.62 541	9.66 768 9.66 801	0.33 232 0.33 199	9.95 745 9.95 739	3 2
58 59	9.62 568	9.66 834	0.33 166	9.95 733	1 1
60	9.62 595	9.66 867	0.33 133	9.95 728	Ō
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

1	,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
1 9.62 622 9.66 900 0.33 100 9.95 722 58 2 9.62 676 9.66 933 0.33 034 9.95 716 58 3 9.62 670 9.66 966 0.33 034 9.95 704 56 4 9.62 730 9.67 999 0.33 001 9.95 704 56 5 9.62 757 9.67 065 0.32 935 9.95 692 54 7 9.62 811 9.67 131 0.32 899 9.95 680 52 8 9.62 811 9.67 136 0.32 899 9.95 680 52 9 9.62 838 9.67 116 0.32 804 9.95 668 52 10 9.62 865 9.67 116 0.32 804 9.95 667 48 11 9.62 918 9.67 292 0.32 705 9.95 663 48 12 9.62 918 9.67 295 0.32 705 9.95 667 48 13 9.62 918 9.67 295 0.32 705 9.95 667 48 14 9.62 972 9.67 330 0.3	0	9.62 595	9.66 867	0.33 133	9.95 728	60
4 9,62 703 9,66 999 0.33 001 9.95 704 56 5 9,62 757 9,67 005 0.32 935 9.95 698 55 7 9,62 757 9,67 098 0.32 902 9.95 689 55 8 9,62 811 9,67 191 0.32 869 9.95 680 53 9 9,62 838 9,67 196 0.32 807 9.95 663 50 10 9,62 886 9,67 196 0.32 804 9.95 663 50 11 9,62 892 9,67 229 0.32 771 9.95 663 49 12 9,62 918 9,67 229 0.32 771 9.95 663 48 13 9,62 945 9,67 295 0.32 607 9.95 661 47 14 9,62 972 9,67 360 0.32 640 9.95 633 44 15 9,62 999 9,67 360 0.32 640 9.95 621 42 17 9,63 026 9,67 488 0.32 507 9.95 633 44 17 9,63 133 9,67 556	1		9.66 900	0.33 100		59
4 9,62 703 9,66 999 0.33 001 9.95 704 56 5 9,62 757 9,67 005 0.32 935 9.95 698 55 7 9,62 757 9,67 098 0.32 902 9.95 689 55 8 9,62 811 9,67 191 0.32 869 9.95 680 53 9 9,62 838 9,67 196 0.32 807 9.95 663 50 10 9,62 886 9,67 196 0.32 804 9.95 663 50 11 9,62 892 9,67 229 0.32 771 9.95 663 49 12 9,62 918 9,67 229 0.32 771 9.95 663 48 13 9,62 945 9,67 295 0.32 607 9.95 661 47 14 9,62 972 9,67 360 0.32 640 9.95 633 44 15 9,62 999 9,67 360 0.32 640 9.95 621 42 17 9,63 026 9,67 488 0.32 507 9.95 633 44 17 9,63 133 9,67 556	2					
5 9.62 730 9.67 082 0.32 968 9.95 692 54 7 9.62 784 9.67 088 0.32 902 9.95 686 53 8 9.62 881 9.67 181 0.32 869 9.95 680 52 9 9.62 886 9.67 196 0.32 804 9.95 668 50 10 9.62 865 9.67 196 0.32 804 9.95 668 50 11 9.62 892 9.67 229 0.32 771 9.95 663 49 12 9.62 918 9.67 262 0.32 708 9.95 667 48 13 9.62 945 9.67 360 0.32 673 9.95 667 48 14 9.62 949 9.67 360 0.32 673 9.95 634 46 15 9.62 949 9.67 360 0.32 640 9.95 634 46 15 9.63 052 9.67 426 0.32 542 9.95 627 43 18 9.63 079 9.67 488 0.32 542 9.95 627 43 18 9.63 159 9.67 556 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
6 9.62 757 9.67 068 0.32 935 9.95 682 54 7 9.62 811 9.67 131 0.32 869 9.95 680 52 9 9.62 838 9.67 163 0.32 837 9.95 680 52 10 9.62 868 9.67 196 0.32 804 9.95 668 50 11 9.62 892 9.67 292 0.32 771 9.95 663 49 12 9.62 918 9.67 295 0.32 704 9.95 661 47 14 9.62 972 9.67 295 0.32 705 9.95 661 47 14 9.62 972 9.67 295 0.32 673 9.95 631 46 15 9.62 999 9.67 360 0.32 640 9.95 633 44 17 9.63 026 9.67 393 0.32 607 9.95 633 44 17 9.63 079 9.67 488 0.32 509 9.95 615 41 20 9.63 133 9.67 524 0.32 476 9.95 603 43 21 9.63 159 9.67 586 <t< td=""><td>5</td><td>9.62 730</td><td></td><td>0.32 968</td><td></td><td></td></t<>	5	9.62 730		0.32 968		
8 9,62 811 9,67 163 0.32 837 9.95 690 52 10 9,62 865 9,67 163 0.32 837 9.95 668 50 11 9,62 892 9,67 229 0.32 771 9,95 663 49 12 9,62 945 9,67 262 0.32 706 9,95 661 47 13 9,62 945 9,67 262 0.32 706 9,95 661 47 14 9,62 972 9,67 327 0.32 640 9,95 639 45 15 9,62 999 9,67 360 0.32 640 9,95 639 45 16 9,63 026 9,67 360 0.32 647 9,95 637 43 17 9,63 052 9,67 426 0.32 542 9,95 621 42 19 9,63 103 9,67 564 0.32 542 9,95 603 44 20 9,63 133 9,67 556 0.32 411 9,95 603 40 21 9,63 165 9,67 556 0.32 411 9,95 607 38 23 9,63 186 9,67 589				0.32 935		
9 9.62 838 9.67 163 0.32 804 9.95 668 50 10 9.62 866 9.67 196 0.32 804 9.95 668 50 11 9.62 892 9.67 229 0.32 738 9.95 667 48 13 9.62 918 9.67 205 0.32 706 9.95 661 47 14 9.62 972 9.67 327 0.32 640 9.95 631 47 15 9.62 999 9.67 360 0.32 640 9.95 639 45 16 9.63 052 9.67 426 0.32 574 9.95 633 44 17 9.63 052 9.67 426 0.32 574 9.95 621 42 18 9.63 052 9.67 426 0.32 574 9.95 603 44 19 9.63 106 9.67 524 0.32 442 9.95 601 41 20 9.63 133 9.67 524 0.32 444 9.95 603 39 21 9.63 159 9.67 589 0.32 441 9.95 603 39 22 9.63 186 9.67 589						
10						
11 9.62 892 9.67 229 0.32 771 9.95 663 49 12 9.62 918 9.67 262 0.32 788 9.95 657 48 13 9.62 945 9.67 225 0.32 705 9.95 651 47 14 9.62 972 9.67 327 0.32 607 9.95 633 48 15 9.63 026 9.67 309 0.32 607 9.95 639 45 16 9.63 052 9.67 426 0.32 574 9.95 627 43 17 9.63 060 9.67 488 0.32 574 9.95 621 42 19 9.63 106 9.67 481 0.32 574 9.95 621 42 20 9.63 133 9.67 524 0.32 476 9.95 603 40 21 9.63 159 9.67 556 0.32 444 9.95 603 39 22 9.63 186 9.67 589 0.32 411 9.95 603 39 23 9.63 213 9.67 684 0.32 346 9.95 585 36 25 9.63 329 9.67 684						
12 9.62 945 9.67 295 0.32 705 9.95 651 47 13 9.62 945 9.67 295 0.32 705 9.95 651 47 14 9.62 972 9.67 327 0.32 673 9.95 635 46 15 9.63 999 9.67 360 0.32 640 9.96 639 45 17 9.63 062 9.67 426 0.32 574 9.95 627 43 18 9.63 079 9.67 448 0.32 574 9.95 621 42 19 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 159 9.67 556 0.32 476 9.95 603 39 21 9.63 159 9.67 589 0.32 411 9.95 503 39 22 9.63 186 9.67 589 0.32 411 9.95 503 36 23 9.63 239 9.67 684 0.32 378 9.95 585 36 25 9.63 329 9.67 687 0.32 313 9.95 585 36 26 9.63 292 9.67 719						
13 9.62 945 9.67 225 0.32 705 9.95 651 47 14 9.62 972 9.67 326 0.32 673 9.95 645 48 15 9.62 999 9.67 360 0.32 640 9.95 633 44 17 9.63 052 9.67 448 0.32 574 9.95 627 43 18 9.63 079 9.67 448 0.32 542 9.95 621 42 19 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 185 9.67 524 0.32 476 9.95 609 40 21 9.63 185 9.67 556 0.32 444 9.95 603 39 22 9.63 186 9.67 622 0.32 378 9.95 591 37 24 9.63 239 9.67 687 0.32 244 9.95 585 36 25 9.63 266 9.67 687 0.32 281 9.95 573 34 27 9.63 319 9.67 752 0.32 281 9.95 573 34 27 9.63 372 9.67 880						
15 9.63 026 9.67 390 0.32 640 9.95 639 45 16 9.63 026 9.67 393 0.32 607 9.95 627 43 17 9.63 079 9.67 426 0.32 574 9.95 621 42 19 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 133 9.67 524 0.32 476 9.95 609 40 21 9.63 186 9.67 589 0.32 441 9.95 603 39 22 9.63 186 9.67 622 0.32 378 9.95 597 38 23 9.63 239 9.67 687 0.32 313 9.95 597 38 24 9.63 292 9.67 787 0.32 313 9.95 579 35 26 9.63 392 9.67 785 0.32 215 9.95 573 34 27 9.63 319 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 115 9.95 543 30 31 9.63 425 9.67 850		9.62 945	9.67 295			
16 9.63 026 9.67 303 0.32 607 9.96 633 44 17 9.63 052 9.67 428 0.32 574 9.95 627 43 18 9.63 079 9.67 448 0.32 542 9.95 621 42 19 9.63 106 9.67 624 0.32 476 9.95 605 41 20 9.63 189 9.67 556 0.32 444 9.95 603 39 21 9.63 189 9.67 689 0.32 411 9.95 597 38 23 9.63 213 9.67 622 0.32 378 9.95 591 37 24 9.63 239 9.67 687 0.32 318 9.95 585 36 25 9.63 262 9.67 719 0.32 281 9.95 587 34 27 9.63 319 9.67 785 0.32 284 9.95 587 34 28 9.63 345 9.67 880 0.32 183 9.95 567 33 28 9.63 347 9.67 880 0.32 183 9.95 553 31 30 9.63 398 9.67 880			9.67 327			
18 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 159 9.67 524 0.32 476 9.95 603 39 21 9.63 159 9.67 556 0.32 441 9.95 603 39 22 9.63 186 9.67 689 0.32 411 9.95 585 36 24 9.63 239 9.67 684 0.32 346 9.95 585 36 25 9.63 266 9.67 687 0.32 313 9.95 673 34 27 9.63 319 9.67 782 0.32 215 9.95 567 33 28 9.63 345 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 150 9.95 543 30 30 9.63 425 9.67 850 0.32 150 9.95 549 30 31 9.63 425 9.67 850 0.32 183 9.95 553 31 30 9.63 425 9.67 850			9.67 360			
18 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 106 9.67 491 0.32 509 9.95 615 41 20 9.63 159 9.67 524 0.32 476 9.95 603 39 21 9.63 159 9.67 556 0.32 441 9.95 603 39 22 9.63 186 9.67 689 0.32 411 9.95 585 36 24 9.63 239 9.67 684 0.32 346 9.95 585 36 25 9.63 266 9.67 687 0.32 313 9.95 673 34 27 9.63 319 9.67 782 0.32 215 9.95 567 33 28 9.63 345 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 150 9.95 543 30 30 9.63 425 9.67 850 0.32 150 9.95 549 30 31 9.63 425 9.67 850 0.32 183 9.95 553 31 30 9.63 425 9.67 850			9.67 426			
20 9.63 133 9.67 524 0.32 476 9.95 609 40 21 9.63 159 9.67 556 0.32 444 9.95 603 39 22 9.63 186 9.67 589 0.32 411 9.95 597 38 23 9.63 239 9.67 684 0.32 346 9.95 585 36 24 9.63 239 9.67 687 0.32 313 9.95 579 35 26 9.63 292 9.67 719 0.32 281 9.95 579 34 27 9.63 319 9.67 752 0.32 248 9.95 567 33 28 9.63 345 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 817 0.32 183 9.95 555 31 30 9.63 388 9.67 880 0.32 150 9.95 543 32 31 9.63 425 9.67 947 0.32 085 9.95 537 28 32 9.63 451 9.67 947 0.32 085 9.95 537 28 33 9.63 478 9.67 947	18		9.67 458			
21 9.63 159 9.67 556 0.32 444 9.95 603 39 22 9.63 186 9.67 589 0.32 411 9.95 597 38 23 9.63 213 9.67 622 0.32 378 9.95 581 37 24 9.63 299 9.67 684 0.32 346 9.95 585 36 25 9.63 292 9.67 752 0.32 218 9.95 573 34 27 9.63 319 9.67 785 0.32 215 9.95 561 32 28 9.63 345 9.67 875 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 115 9.95 563 31 30 9.63 389 9.67 850 0.32 118 9.95 543 32 31 9.63 425 9.67 850 0.32 118 9.95 543 30 31 9.63 425 9.67 850 0.32 118 9.95 549 30 32 9.63 451 9.67 850 0.32 183 9.95 549 30 33 9.63 471 9.67 915			9.67 491	0.32 509	9.95 615	41
22 9.63 186 9.67 589 0.32 411 9.95 597 38 23 9.63 213 9.67 622 0.32 346 9.95 589 36 24 9.63 296 9.67 687 0.32 346 9.95 585 36 25 9.63 292 9.67 719 0.32 281 9.95 587 35 26 9.63 345 9.67 785 0.32 215 9.95 567 33 28 9.63 372 9.67 817 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 115 9.95 549 30 31 9.63 425 9.67 850 0.32 118 9.95 549 30 31 9.63 345 9.67 850 0.32 118 9.95 549 30 31 9.63 345 9.67 850 0.32 150 9.95 549 30 31 9.63 345 9.67 850 0.32 183 9.95 553 30 31 9.63 425 9.67 947 0.32 030 9.95 549 30 31 9.63 545 9.67 947	20	9.63 133	9.67 524	0.32 476	9.95 609	40
23 9.63 2313 9.67 622 0.32 378 9.95 585 36 24 9.63 266 9.67 684 0.32 346 9.95 585 36 25 9.63 266 9.67 687 0.32 313 9.95 579 35 26 9.63 292 9.67 719 0.32 281 9.95 573 34 27 9.63 345 9.67 785 0.32 215 9.95 561 32 28 9.63 372 9.67 817 0.32 183 9.95 555 31 30 9.63 388 9.67 850 0.32 118 9.95 543 31 31 9.63 425 9.67 882 0.32 118 9.95 543 32 32 9.63 451 9.67 915 0.32 085 9.95 537 28 33 9.63 478 9.67 947 0.32 085 9.95 537 28 33 9.63 551 9.67 960 0.32 020 9.95 525 26 35 9.63 557 9.68 012 0.31 986 9.95 513 24 37 9.63 583 9.68 077				0.32 444		
24 9.63 239 9.67 684 0.32 346 9.95 885 36 25 9.63 296 9.67 687 0.32 313 9.95 679 35 26 9.63 292 9.67 719 0.32 281 9.95 73 34 27 9.63 319 9.67 752 0.32 248 9.95 567 33 28 9.63 345 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 850 0.32 150 9.95 543 31 30 9.63 398 9.67 850 0.32 150 9.95 543 31 31 9.63 425 9.67 850 0.32 118 9.95 543 29 32 9.63 451 9.67 947 0.32 085 9.95 537 28 33 9.63 478 9.67 947 0.32 085 9.95 531 27 34 9.63 551 9.68 012 0.31 988 9.95 519 25 35 9.63 551 9.68 044 0.31 988 9.95 507 23 36 9.63 557 9.68 044				0.32 411		
25 9.63 286 9.67 687 0.32 313 9.95 879 35 26 9.63 292 9.67 719 0.32 281 9.95 573 34 27 9.63 345 9.67 785 0.32 215 9.95 561 32 28 9.63 372 9.67 817 0.32 183 9.95 561 32 30 9.63 398 9.67 850 0.32 110 9.95 549 30 31 9.63 425 9.67 882 0.32 118 9.95 549 30 32 9.63 451 9.67 915 0.32 085 9.95 537 28 32 9.63 478 9.67 947 0.32 085 9.95 537 28 33 9.63 504 9.67 947 0.32 033 9.95 531 27 34 9.63 531 9.68 012 0.31 988 9.95 531 27 35 9.63 557 9.68 044 0.31 966 9.95 513 24 37 9.63 636 9.68 109 0.31 891 9.95 500 22 39 9.63 662 9.68 174						
27 9.63 319 9.67 782 0.32 248 9.95 567 33 28 9.63 345 9.67 785 0.32 215 9.95 561 32 29 9.63 372 9.67 887 0.32 150 9.95 554 30 30 9.63 398 9.67 880 0.32 150 9.95 543 29 31 9.63 425 9.67 882 0.32 118 9.95 543 29 32 9.63 461 9.67 947 0.32 085 9.95 537 28 33 9.63 504 9.67 960 0.32 020 9.85 525 28 35 9.63 551 9.68 012 0.31 988 9.95 513 24 37 9.63 853 9.68 077 0.31 988 9.95 513 24 37 9.63 863 9.68 109 0.31 891 9.95 500 22 38 9.63 610 9.68 109 0.31 891 9.95 500 22 39 9.63 669 9.68 174 0.31 898 9.95 494 21 40 9.63 669 9.68 174						
28 9.63 345 9.67 785 0.32 215 9.95 861 32 29 9.63 372 9.67 817 0.32 183 9.95 555 31 30 9.63 398 9.67 850 0.32 180 9.95 549 30 31 9.63 425 9.67 882 0.32 118 9.95 543 29 32 9.63 451 9.67 947 0.32 033 9.95 537 28 33 9.63 478 9.67 947 0.32 030 9.95 531 27 34 9.63 504 9.67 947 0.32 030 9.95 531 26 35 9.63 531 9.68 012 0.31 988 9.95 519 25 36 9.63 583 9.68 077 0.31 923 9.95 501 23 37 9.63 636 9.68 109 0.31 891 9.95 500 22 39 9.63 662 9.68 174 0.31 888 9.95 494 21 40 9.63 689 9.68 206 0.31 794 9.95 488 20 41 9.63 681 9.68 206			9.67 719			
29 9.63 372 9.67 817 0.32 183 9.95 555 31 30 9.63 398 9.67 880 0.32 150 9.95 549 30 31 9.63 425 9.67 882 0.32 118 9.95 543 29 32 9.63 478 9.67 915 0.32 085 9.95 531 27 34 9.63 504 9.67 947 0.32 033 9.95 531 27 35 9.63 531 9.68 012 0.31 988 9.95 513 24 37 9.63 583 9.68 044 0.31 956 9.95 513 24 37 9.63 636 9.68 109 0.31 891 9.95 507 23 38 9.63 610 9.63 138 9.95 507 23 39 9.63 636 9.68 142 0.31 898 9.95 507 23 39 9.63 662 9.68 142 0.31 888 9.95 494 21 40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 662 9.68 206 0.31 749						
30 9.63 398 9.67 850 0.32 150 9.95 549 30 31 9.63 425 9.67 882 0.32 118 9.95 543 29 32 9.63 461 9.67 915 0.32 085 9.95 537 28 33 9.63 504 9.67 947 0.32 083 9.95 537 28 34 9.63 504 9.67 960 0.32 020 9.95 525 28 35 9.63 531 9.68 012 0.31 988 9.95 519 25 36 9.63 557 9.68 044 0.31 986 9.95 513 24 37 9.63 683 9.68 077 0.31 983 9.95 507 23 38 9.63 636 9.68 109 0.31 891 9.95 500 22 39 9.63 662 9.68 174 0.31 889 9.95 494 21 40 9.63 662 9.68 174 0.31 889 9.95 488 20 41 9.63 669 9.68 206 0.31 761 9.95 488 20 42 9.63 715 9.68 239						
31 9.63 425 9.67 882 0.32 118 9.95 543 29 32 9.63 451 9.67 915 0.32 085 9.95 537 28 33 9.63 478 9.67 947 0.32 085 9.95 537 28 34 9.63 504 9.67 990 0.32 020 9.95 525 28 35 9.63 531 9.68 012 0.31 988 9.95 519 25 36 9.63 557 9.68 044 0.31 986 9.95 513 24 37 9.63 883 9.68 077 0.31 923 9.95 500 22 38 9.63 636 10.968 109 0.31 891 9.95 500 22 39 9.63 666 9.68 142 0.31 881 9.95 494 21 40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 669 9.68 206 0.31 794 9.95 482 19 42 9.63 715 9.68 239 0.31 761 9.95 476 18 43 9.63 741 9.68 271						
32 9.63 451 9.67 947 0.32 085 9.95 531 27 34 9.63 747 9.67 947 0.32 083 9.95 531 27 34 9.63 504 9.67 960 0.32 020 9.95 525 26 35 9.63 531 9.68 012 0.31 986 9.95 519 25 36 9.63 587 9.68 044 0.31 986 9.95 513 24 37 9.63 583 9.68 109 0.31 891 9.95 500 22 39 9.63 636 9.68 142 0.31 881 9.95 500 22 39 9.63 662 9.68 142 0.31 881 9.95 500 22 40 9.63 662 9.68 174 0.31 826 9.95 494 21 41 9.63 662 9.68 276 0.31 794 9.95 492 19 42 9.63 715 9.68 239 0.31 761 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 476 18 45 9.63 794 9.68 368	31	9.63 425	9.67 882	0.32 118	9.95 543	
34 9.63 504 9.67 980 0.32 020 9.88 525 26 35 9.63 551 9.68 012 0.31 988 9.95 519 25 36 9.63 557 9.68 044 0.31 986 9.95 513 24 37 9.63 583 9.68 077 0.31 923 9.95 507 23 38 9.63 610 9.68 109 0.31 891 9.95 500 22 39 9.63 636 9.68 142 0.31 885 9.95 494 21 40 9.63 662 9.68 174 0.31 826 9.95 482 20 41 9.63 689 9.68 206 0.31 761 9.95 476 18 43 9.63 715 9.68 229 0.31 761 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 772 9.68 336 0.31 664 9.95 458 15 45 9.63 820 9.68 366 0.31 664 9.95 452 14 47 9.63 872 9.68 400						28
35 9.63 531 9.68 012 0.31 986 9.95 519 25 36 9.63 557 9.68 044 0.31 986 9.95 513 24 37 9.63 583 9.68 077 0.31 923 9.95 500 22 38 9.63 610 9.68 109 0.31 891 9.95 500 22 39 9.63 636 9.68 142 0.31 888 9.95 494 21 40 9.63 662 9.68 174 0.31 826 9.96 488 20 41 9.63 689 9.68 239 0.31 794 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 767 9.68 303 0.31 697 9.95 458 16 45 9.63 794 9.68 368 0.31 632 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 446 13 48 9.63 872 9.68 400 0.31 600 9.95 446 13 49 9.63 924 9.68 497						
36 9.63 557 9.68 044 0.31 956 9.95 513 24 37 9.63 583 9.68 077 0.31 923 9.95 507 23 38 9.63 636 9.68 109 0.31 891 9.95 500 22 39 9.63 636 9.68 142 0.31 858 9.95 494 21 40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 689 9.68 209 0.31 794 9.95 476 18 42 9.63 714 9.68 229 0.31 761 9.95 470 17 44 9.63 767 9.68 336 0.31 697 9.95 470 17 44 9.63 767 9.68 336 0.31 664 9.95 458 15 45 9.63 794 9.68 336 0.31 664 9.95 452 14 47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 724 9.68 465 0.31 535 9.95 434 11 50 9.63 924 9.68 465						
37 9.63 883 9.68 109 0.31 923 9.95 500 23 38 9.63 610 9.68 109 0.31 881 9.95 500 22 39 9.63 662 9.68 142 0.31 888 9.95 492 21 40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 689 9.68 206 0.31 794 9.95 476 18 43 9.63 715 9.68 229 0.31 761 9.95 476 18 43 9.63 767 9.68 271 0.31 729 9.95 470 17 44 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 794 9.68 366 0.31 632 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 446 13 48 9.63 872 9.68 400 0.31 560 9.95 446 13 48 9.63 898 9.68 497 0.31 535 9.95 427 10 50 9.63 924 9.68 497						
39 9.63 636 9.68 142 0.31 858 9.96 494 21 40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 689 9.68 206 0.31 794 9.95 482 19 42 9.63 715 9.68 239 0.31 761 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 794 9.68 336 0.31 664 9.95 452 14 47 9.63 820 9.68 368 0.31 632 9.95 452 14 47 9.63 896 9.68 400 0.31 600 9.95 446 13 48 9.63 792 9.68 452 0.31 508 9.95 449 12 49 9.63 898 9.68 465 0.31 535 9.95 434 11 50 9.63 924 9.68 529 0.31 471 9.95 427 10 51 9.63 950 9.68 529						
40 9.63 662 9.68 174 0.31 826 9.95 488 20 41 9.63 689 9.68 206 0.31 794 9.95 482 19 42 9.63 715 9.68 299 0.31 761 9.95 476 18 43 9.63 717 9.68 271 0.31 729 9.95 476 18 43 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 794 9.68 366 0.31 664 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 452 14 47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 872 9.68 497 0.31 535 9.95 424 12 49 9.63 989 9.68 497 0.31 535 9.95 427 10 51 9.63 924 9.68 497 0.31 437 9.95 427 10 52 9.63 976 9.68 529 0.31 471 9.95 427 10 53 9.64 002 9.68 593						
41 9.63 689 9.68 206 0.31 794 9.95 482 19 42 9.63 715 9.68 239 0.31 761 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 704 9.68 368 0.31 632 9.95 452 14 46 9.63 820 9.68 368 0.31 602 9.95 440 12 47 9.63 842 9.68 432 0.31 568 9.95 440 12 49 9.63 898 9.68 497 0.31 535 9.95 434 11 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 976 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 593 0.31 407 9.95 409 7 54 9.64 022 9.68 626 0.31 374 9.95 409 7 54 9.64 028 9.68 626 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
422 9.63 715 9.68 239 0.31 761 9.95 476 18 43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 779 9.68 303 0.31 697 9.95 468 16 45 9.63 794 9.68 336 0.31 632 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 452 14 47 9.63 840 9.68 400 0.31 600 9.95 440 12 49 9.63 898 9.68 465 0.31 535 9.95 434 11 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 539 9.95 415 8 53 9.64 002 9.68 593 0.31 477 9.95 409 7 54 9.64 028 9.68 658 0.31 374 9.95 403 6 55 9.64 084 9.68 658 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
43 9.63 741 9.68 271 0.31 729 9.95 470 17 44 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 794 9.68 336 0.31 632 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 452 14 47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 872 9.68 492 0.31 568 9.95 446 12 49 9.63 924 9.68 465 0.31 535 9.95 434 11 50 9.63 950 9.68 529 0.31 471 9.95 427 10 51 9.63 950 9.68 561 0.31 431 9.95 415 8 53 9.64 002 9.68 561 0.31 471 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 409 7 54 9.64 080 9.68 658 0.31 374 9.95 395 5 56 9.64 080 9.68 658 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
44 9.63 767 9.68 303 0.31 697 9.95 464 16 45 9.63 794 9.68 336 0.31 664 9.95 458 15 46 9.63 820 9.68 368 0.31 632 9.95 446 13 47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 872 9.68 492 0.31 588 9.95 440 12 49 9.63 898 9.68 465 0.31 535 9.95 440 12 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 208 9.68 656 0.31 374 9.95 409 7 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 060 9.68 658	43	9.63 741	9.68 271	0.31 729	9.95 470	17
46 9.63 820 9.68 368 0.31 632 9.95 452 14 47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 872 9.68 432 0.31 568 9.95 440 12 49 9.63 898 9.68 465 0.31 535 9.95 434 11 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 477 9.95 409 7 54 9.64 028 9.68 658 0.31 374 9.95 403 6 55 9.64 080 9.68 658 0.31 342 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 786 0.						
47 9.63 846 9.68 400 0.31 600 9.95 446 13 48 9.63 872 9.68 432 0.31 568 9.95 440 12 49 9.63 898 9.68 465 0.31 535 9.95 440 11 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 208 9.68 626 0.31 374 9.95 409 7 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 060 9.68 600 0.31 310 9.95 391 4 57 9.64 108 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.3						
48 9.63 872 9.68 432 0.31 568 9.95 440 12 49 9.63 898 9.68 465 0.31 535 9.95 434 11 50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 976 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 084 9.68 668 0.31 342 9.95 397 5 56 9.64 090 9.68 600 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 129 9.68 754 0.31 246 9.95 378 2 59 9.64 158 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31						
50 9.63 924 9.68 497 0.31 503 9.95 427 10 51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 080 9.68 600 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0	48	9.63 872	9.68 432	0.31 568	9.95 440	12
51 9.63 950 9.68 529 0.31 471 9.95 421 9 52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 060 9.68 600 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0						
52 9.63 976 9.68 561 0.31 439 9.95 415 8 53 9.64 002 9.68 593 0.31 407 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 060 9.68 600 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 372 1 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0						
53 9.64 002 9.68 503 0.31 407 9.95 409 7 54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 080 9.68 600 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0						
54 9.64 028 9.68 626 0.31 374 9.95 403 6 55 9.64 054 9.68 658 0.31 342 9.95 397 5 56 9.64 080 9.68 690 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 158 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0						7
55 9.64 084 9.68 658 0.31 342 9.95 397 5 56 9.64 080 9.68 690 0.31 310 9.95 391 4 57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0				0.31 374		
57 9.64 106 9.68 722 0.31 278 9.95 384 3 58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 188 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0		9.64 054	9.68 658	0.31 342	9.95 397	5
58 9.64 132 9.68 754 0.31 246 9.95 378 2 59 9.64 158 9.68 786 0.31 214 9.95 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0				0.31 310		4
59 9.64 188 9.68 786 0.31 214 9.98 372 1 60 9.64 184 9.68 818 0.31 182 9.95 366 0						
60 9.64 184 9.68 818 0.31 182 9.95 366 0						
L. Cos. L. Cot. L. Tan. L. Sin.	60		9.68 818	0.31 182	9.95 366	0
		L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

		2	<u> </u>		
,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.64 184	9.68 818	0.31 182	9.95 366	60
1	9.64 210	9.68 850	0.31 150	9.95 360	59
2 3	9.64 236 9.64 262	9.68 882	0.31 118	9.95 354	58
4	9.64 288	9.68 914 9.68 946	0.31 086 0.31 054	9.95 348 9.95 341	57 56
5	9.64 313	9.68 978	0.31 022	9.95 335	55
6	9.64 339	9.69 010	0.30 990	9.95 329	54
7 8	9.64 365	9.69 042	0.30 958	9.95 323	53
9	9.64 391 9.64 417	9.69 074 9.69 106	0.30 926 0.30 894	9.95 317 9.95 310	52 51
10	9.64 442	9.69 138	0.30 862	9.95 304	50
11	9.64 468	9.69 170	0.30 830	9.95 298	49
12	9.64 494	9.69 202	0.30 798	9.95 292	48
13	9.64 519	9.69 234	0.30 766	9.95 286	. 47
14 15	9.64 545 9.64 571	9.69 266 9.69 298	0.30 734 0.30 702	9.95 279	46
16	9.64 596	9.69 329	0.30 702	9.95 273 9.95 267	45 44
17	9.64 622	9.69 361	0.30 639	9.95 261	43
18	9.64 647	9.69 393	0.30 607	9.95 254	42
19	9.64 673	9.69 425	0.30 575	9.95 248	41
20	9.64 698	9.69 457	0.30 543	9.95 242	40
21 22	9.64 724 9.64 749	9.69 488	0.30 512	9.95 236	39
22 23	9.64 775	9.69 520 9.69 552	0.30 480 0.30 448	9.95 229 9.95 223	38 37
24	9.64 800	9.69 584	0.30 416	9.95 217	36
25	9.64 826	9.69 615	0.30 385	9.95 211	35
26	9.64 851	9.69 647	0.30 353	9.95 204	34
27 28	9.64 877 9.64 902	9.69 679 9.69 710	0.30 321 0.30 290	9.95 198 9.95 192	33 32
29	9.64 927	9.69 742	0.30 258	9.95 185	31
30	9.64 953	9.69 774	0.30 226	9.95 179	30
31	9.64 978	9.69 805	0.30 195	9.95 173	29
32	9.65 003	9.69 837	0.30 163	9.95 167	28
33	9.65 029	9.69 868	0.30 132	9.95 160	27
34 35	9.65 054 9.65 079	9.69 900 9.69 932	0.30 100 0.30 068	9.95 154 9.95 148	26 25
36	9.65 104	9.69 963	0.30 037	9.95 141	24
37	9.65 130	9.69 995	0.30 005	9.95 135	23
38	9.65 155	9.70 026	0.29 974	9.95 129	22
39	9.65 180	9.70 058	0.29 942	9.95 122	21
40	9.65 205	9.70 089	0.29 911	9.95 116	20
41 42	9.65 230 9.65 255	9.70 121 9.70 152	0.29 879 0.29 848	9.95 110 9.95 103	19 18
43	9.65 281	9.70 184	0.29 816	9.95 097	17
44	9.65 306	9.70 215	0.29 785	9.95 090	16
45	9.65 331 9.65 356	9.70 247	0.29 753	9.95 084	15
46 47	9.65 381	9.70 278 9.70 309	0.29 722 0.29 691	9.95 078 9.95 071	14 13
48	9.65 406	9.70 341	0.29 659	9.95 065	12
49	9.65 431	9.70 372	0.29 628	9.95 059	11
50	9.65 456	9.70 404	0.29 596	9.95 052	10
51	9.65 481	9.70 435	0.29 565	9.95 046	9
52 53	9.65 506	9.70 466	0.29 534	9.95 039	8
53 54	9.65 531 9.65 556	9.70 498 9.70 529	0.29 502 0.29 471	9.95 033 9.95 027	7 6
55	9.65 580	9.70 560	0.29 440	9.95 020	5
56	9.65 605	9.70 592	0.29 408	9.95 014	4 3
57 58	9.65 630 9.65 655	9.70 623	0.29 377	9.95 007	3
58 59	9.65 680	9.70 654 9.70 685	0.29 346 0.29 315	9.95 001 9.94 995	2 1
60	9.65 705	9.70 717	0.29 283	9.94 988	Ô
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
-	9.65 705	9.70 717	0.29 283		-00
	9.65 729	9.70 748	0.29 252	9.94 988 9.94 982	60 59
$\begin{array}{c c} 1 \\ 2 \end{array}$	9.65 754	9.70 779	0.29 202	9.94 962 9.94 975	58
$\tilde{3}$	9.65 779	9.70 810	0.29 190	9.94 969	57
4	9.65 804	9.70 841	0.29 159	9.94 962	56
5	9.65 828 9.65 853	9.70 873 9.70 904	0.29 127 0.29 096	9.94 956 9.94 949	55 54
6 7	9.65 878	9.70 935	0.29 065	9.94 943	53
8	9.65 902	9.70 966	0.29 034	9.94 936	52
9	9.65 927	9.70 997	0.29 003	9.94 930	51
10	9.65 952	9.71 028	0.28 972	9.94 923	50
11	9.65 976	9.71 059	0.28 941	9.94 917	49
12 13	9.66 001 9.66 025	9.71 090 9.71 121	0.28 910 0.28 879	9.94 911 9.94 904	48 47
13	9.66 050	9.71 153	0.28 847	9.94 898	46
15	9.66 075	9.71 184	0.28 816	9.94 891	45
16	9.66 099	9.71 215	0.28 785	9.94 885	44
17 18	9.66 124 9.66 148	9.71 246 9.71 277	0.28 754 0.28 723	9.94 878 9.94 871	43 42
19	9.66 173	9.71 308	0.28 692	9.94 865	41
20	9.66 197	9.71 339	0.28 661	9.94 858	40
21	9.66 221	9.71 370	0.28 630	9.94 852	39
22	9.66 246	9.71 401	0.28 599	9.94 845	38
23	9.66 270	9.71 431	0.28 569	9.94 839	37
24 25	9.66 295 9.66 319	9.71 462 9.71 493	0.28 538 0.28 507	9.94 832 9.94 826	36 35
26	9.66 343	9.71 524	0.28 476	9.94 819	34
27	9.66 368	9.71 555	0.28 445	9.94 813	33
28 29	9.66 392 9.66 416	9.71 586 9.71 617	0.28 414 0.28 383	9.94 806	32
29 80	9.66 441	9.71 648	0.28 352	9.94 799 9.94 793	31 30
31	9.66 465	9.71 679	0.28 321	9.94 786	29
32	9.66 489	9.71 709	0.28 291	9.94 780	28
33	9.66 513	9.71 740	0.28 260	9.94 773	27
34	9.66 537	9.71 771	0.28 229	9.94 767	26
35 36	9.66 562 9.66 586	9.71 802 9.71 833	0.28 198 0.28 167	9.94 760 9.94 753	25 24
37	9.66 610	9.71 863	0.28 137	9.94 747	23
38	9.66 634	9.71 894	0.28 106	9.94 740	22
39	9.66 658	9.71 925	0.28 075	9.94 734	21
40	9.66 682	9.71 955	0.28 045	9.94 727	20
$\begin{array}{c} 41 \\ 42 \end{array}$	9.66 706 9.66 731	9.71 986 9.72 017	0.28 014 0.27 983	9.94 720 9.94 714	19
43	9.66 755	9.72 048	0.27 952	9.94 707	18 17
44	9.66 779	9.72 078	0.27 922	9.94 700	16
45	9.66 803	9.72 109	0.27 891	9.94 694	15
46 47	9.66 827 9.66 851	9.72 140 9.72 170	0.27 860 0.27 830	9.94 687 9.94 680	14 13
48	9.66 875	9.72 201	0.27 799	9.94 674	12
49	9.66 899	9.72 231	0.27 769	9.94 667	11
50	9.66 922	9.72 262	0.27 738	9.94 660	10
51	9.66 946	9.72 293	0.27 707	9.94 654	9
52 53	9.66 970 9.66 994	9.72 323 9.72 354	0.27 677 0.27 646	9.94 647 9.94 640	8
54	9.67 018	9.72 334 9.72 384	0.27 616	9.94 640	7 6
55	9.67 042	9.72 415	0.27 585	9.94 627	5
56	9.67 066	9.72 445	0.27 555	9.94 620	4 3
57 58	9.67 090 9.67 113	9.72 476 9.72 506	0.27 524 0.27 494	9.94 614 9.94 607	3 2
59	9.67 137	9.72 537	0.27 463	9.94 600	í
60	9.67 161	9.72 567	0.27 433	9.94 593	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

,	L. Sin.	L. Tan.	L. Cot.	L. Ços.	
0	9.67 161	9.72 567	0.27 433	9.94 593	60
1	9.67 185	9.72 598	0.27 402	9.94 587	59
2	9.67 208	9.72 628	0.27 372	9.94 580	58
3 4	9.67 232 9.67 256	9.72 659 9.72 689	0.27 341 0.27 311	9.94 573 9.94 567	57 56
5	9.67 280	9.72 720	0.27 280	9.94 560	55
6	9.67 303	9.72 750	0.27 250	9.94 553	54
7	9.67 327	9.72 780	0.27 220	9.94 546	53 52
8 9	9.67 350 9.67 374	9.72 811 9.72 841	0.27 189 0.27 159	9.94 540 9.94 533	52 51
10	9.67 398	9.72 872	0.27 128	9.94 526	50
11	9.67 421	9.72 902	0.27 098	9.94 519	49
12	9.67 445	9.72 932	0.27 068	9.94 513	48
13	9.67 468	9.72 963	0.27 037	9.94 506	47
14 15	9.67 492 9.67 515	9.72 993 9.73 023	0.27 007 0.26 977	9.94 499 9.94 492	46 45
16	9.67 539	9.73 054	0.26 946	9.94 485	44
17	9.67 562	9.73 084	0.26 916	9.94 479	43
18	9.67 586	9.73 114	0.26 886 0.26 856	9.94 472	42 41
19 20	9.67 609 9.67 633	9.73 144 9.73 17 5	0.26 825	9.94 465 9.94 458	40
21	9.67 656	9.73 205	0.26 795	9.94 451	39
22	9.67 680	9.73 235	0.26 765	9.94 445	38
23	9.67 703	9.73 265	0.26 735	9.94 438	37
24	9.67 726	9.73 295	0.26 705	9.94 431	36 35
25 26	9.67 750 9.67 773	9.73 326 9.73 356	0.26 674 0.26 644	9.94 424 9.94 417	34
27	9.67 796	9.73 386	0.26 614	9.94 410	33
28	9.67 820	9.73 416	0.26 584	9.94 404	32
29	9.67 843	9.73 446	0.26 554	9.94 397	31
80	9.67 866	9.73 476	0.26 524	9.94 390	80
31 32	9.67 890 9.67 913	9.73 507 9.73 537	0.26 493 0.26 463	9.94 383 9.94 376	29 28
33	9.67 936	9.73 567	0.26 433	9.94 369	27
84	9.67 959	9.73 597	0.26 403	9.94 362	26
35 36	9.67 982	9.73 627	0.26 373 0.26 343	9.94 355 9.94 349	25 24
37	9.68 006 9.68 029	9.73 657 9.73 687	0.26 313	9.94 342	23
38	9.68 052	9.73 717	0.26 283	9.94 335	22
39	9.68 075	9.73 747	0.26 253	9.94 328	21
40	9.68 098	9.73 777	0.26 223	9.94 321	20
41	9.68 121	9.73 807	0.26 193	9.94 314	19
42 43	9.68 144 9.68 167	9.73 837 9.73 867	0.26 163 0.26 133	9.94 307 9.94 300	18 17
44	9.68 190	9.73 897	0.26 103	9.94 293	16
45	9.68 213	9.73 927	0.26 073	9.94 286	15
46 47	9.68 237 9.68 260	9.73 957 9.73 987	0.26 043 0.26 013	9.94 279 9.94 273	14 13
48	9.68 283	9.74 017	0.25 983	9.94 266	12
49	9.68 305	9.74 047	0.25 953	9.94 259	11
50	9.68 328	9.74 077	0.25 923	9.94 252	10
51	9.68 351	9.74 107	0.25 893	9.94 245	9
52 53	9.68 37 4 9.68 397	9.74 137 9.74 166	0.25 863 0.25 834	9.94 238 9.94 231	8 7
54	9.68 420	9.74 196	0.25 804	9.94 224	6
55	9.68 443	9.74 226	0.25 774	9.94 217	5
56	9.68 466	9.74 256	0.25 744	9.94 210	4 8
57 58	9.68 489 9.68 512	9.74 286 9.74 316	0.25 714 0.25 684	9.94 203 9.94 196	2
59	9.68 534	9.74 345	0.25 655	9.94 189	ī
60	9.68 557	9.74 375	0.25 625	9.94 182	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	•

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.68 557	9.74 375	0.25 625	9.94 182	60
1	9.68 580	9.74 405	0.25 595	9.94 175	59
2	9.68 603	9.74 435	0.25 565	9.94 168	58
3 4	9.68 625 9.68 648	9.74 465 9.74 494	0.25 535 0.25 506	9.94 161 9.94 154	57 56
5	9.68 671	9.74 524	0.25 476	9.94 147	55
6	9.68 694	9.74 554	0.25 446	9.94 140	54
7	9.68 716	9.74 583	0.25 417	9.94 133	53
8 9	9.68 739 9.68 762	9.74 613 9.74 643	0.25 387 0.25 357	9.94 126 9.94 119	52 51
10	9.68 784	9.74 673	0.25 327	9.94 112	50
111	9.68 807	9.74 702	0.25 298	9.94 105	49
12	9.68 829	9.74 732	0.25 268	9.94 098	48
13	9.68 852	9.74 762	0.25 238	9.94 090	47
14 15	9.68 875 9.68 897	9.74 791 9.74 821	0.25 209 0.25 179	9.94 083 9.94 076	46 45
16	9.68 920	9.74 851	0.25 149	9.94 069	44
17	9.68 942	9.74 880	0.25 120	9.94 062	43
18	9.68 965	9.74 910	0.25 090	9.94 055	42
19	9.68 987	9.74 939	0.25 061	9.94 048	41
20	9.69 010	9.74 969	0.25 031	9.94 041	40
21 22	9.69 032 9.69 05 5	9.74 998 9.75 028	0.25 002 0.24 972	9.94 034	39 38
23	9.69 000	9.75 058	0.24 912	9.94 027 9.94 020	37
24	9.69 100	9.75 087	0.24 913	9.94 012	36
25	9.69 122	9.75 117	0.24 883	9.94 005	35
26 27	9.69 144 9.69 167	9.75 146 9.75 176	0.24 854 0.24 824	9.93 998	34 33
28	9.69 189	9.75 205	0.24 798	9.93 991 9.93 984	32
29	9.69 212	9.75 235	0.24 765	9.93 977	31
80	9.69 234	9.75 264	0.24 736	9.93 970	80
31	9.69 256	9.75 294	0.24 706	9.93 963	29
32 33	9.69 279	9.75 323	0.24 677	9.93 955	28
34	9.69 301 9.69 323	9.75 353 9.75 382	0.24 647 0.24 618	9.93 948 9.93 941	27 26
35	9.69 345	9.75 411	0.24 589	9.93 934	25
36	9.69 368	9.75 441	0.24 559	9.93 927	24
37 38	9.69 390 9.69 412	9.75 470 9.75 500	0.24 530 0.24 500	9.93 920 9.93 912	23 22
39	9.69 434	9.75 529	0.24 500	9.93 912	21
40	9.69 456	9.75 558	0.24 442	9.93 898	20
41	9.69 479	9.75 588	0.24 412	9.93 891	19
42	9.69 501	9.75 617	0.24 383	9.93 884	18
43	9.69 523	9.75 647	0.24 353	9.93 876	17
44 45	9.69 545 9.69 567	9.75 676 9.75 705	0.24 324 0.24 295	9.93 869 9.93 862	16 15
46	9.69 589	9.75 735	0.24 265	9.93 855	14
47	9.69 611	9.75 764	0.24 236	9.93 847	13
48	9.69 633	9.75 793	0.24 207	9.93 840	12
49 50	9.69 655	9.75 822	0.24 178 0.24 148	9.93 833 9.93 826	11 10
51	9.69 699	9.75 881	0.24 148	9.93 826	9
52	9.69 721	9.75 910	0.24 119	9.93 811	8
53	9.69 743	9.75 939	0.24 061	9.93 804	8 7 6
54	9.69 765	9.75 969	0.24 031	9.93 797	6
55 56	9.69 787 9.69 809	9.75 998 9.76 027	0.24 002 0.23 973	9.93 789 9.93 782	5 4 3
57	9.69 831	9.76 056	0.23 944	9.93 775	3
58	9.69 853	9.76 086	0.23 914	9.93 768	2
59	9.69 875	9.76 115	0.23 885	9.93 760	
60	9.69 897	9.76 144	0.23 856	9.93 753	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	1 0:-	· -			
<u> </u>	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.69 897	9.76 144	0.23 856	9.93 753	60
1 2	9.69 919 9.69 941	9.76 173 9.76 202	0.23 827	9.93 746	59
3	9.69 963	9.76 231	0.23 798 0.23 769	9.93 738 9.93 731	58 57
4	9.69 984	9.76 261	0.23 739	9.93 724	56
5	9.70 006	9.76 290	0.23 710	9.93 717	55
6 7	9.70 028 9.70 050	9.76 319 9.76 348	0.23 681 0.23 652	9.93 709	54 53
8	9.70 050	9.76 377	0.23 623	9.93 702 9.93 695	52
9	9.70 093	9.76 406	0.23 594	9.93 687	51
10	9.70 115	9.76 435	0.23 565	9.93 680	50
11	9.70 137	9.76 464	0.23 536	9.93 673	49
12	9.70 159	9.76 493	0.23 507	9.93 665	48
13 14	9.70 180 9.70 202	9.76 522 9.76 551	0.23 478 0.23 449	9.93 658 9.93 650	47 46
15	9.70 224	9.76 580	0.23 449	9.93 643	45 45
16	9.70 245	9.76 609	0.23 391	9.93 636	44
17	9.70 267	9.76 639	0.23 361	9.93 628	43
18 19	9.70 288 9.70 310	9.76 668 9.76 697	0.23 332 0.23 303	9.93 621 9.93 614	42 41
20	9.70 332	9.76 725	0.23 275	9.93 606	40
21	9.70 353	9.76 754	0.23 246	9.93 599	39
$\frac{21}{22}$	9.70 375	9.76 783	0.23 217	9.93 591	38
23	9.70 396	9.76 812	0.23 188	9.93 584	37
24 25	9.70 418	9.76 841	0.23 159	9.93 577	36
26 26	9.70 439 9.70 461	9.76 870 9.76 899	0.23 130 0.23 101	9.93 569 9.93 562	35 34
27	9.70 482	9.76 928	0.23 072	9.93 554	33
28	9.70 504	9.76 957	0.23 043	9.93 547	32
29	9.70 525	9.76 986	0.23 014	9.93 539	31
80	9.70 547	9.77 015	0.22 985	9.93 532	80
31 32	9.70 568 9.70 590	9.77 044 9.77 073	0.22 956 0.22 927	9.93 525 9.93 517	29 28
33	9.70 611	9.77 101	0.22 921 0.22 899	9.93 517	28 27
34	9.70 633	9.77 130	0.22 870	9.93 502	26
35 36	9.70 654	9.77 159	0.22 841	9.93 495	25
30 37	9.70 675 9.70 697	9.77 188 9.77 217	$\begin{array}{c} 0.22\ 812 \\ 0.22\ 783 \end{array}$	9.93 487 9.93 480	24 23
38	9.70 718	9.77 246	0.22 754	9.93 472	22
39	9.70 739	9.77 274	0.22 726	9.93 465	21
40	9.70 761	9.77 303	0.22 697	9.93 457	20
41	9.70 782	9.77 332	0.22 668	9.93 450	19
42 43	9.70 803 9.70 824	9.77 361	0.22 639 0.22 610	9.93 442 9.93 435	18 17
44	9.70 846	9.77 390 9.77 418	0.22 510	9.93 427	16
45	9.70 867	9.77 447	0.22 553	9.93 420	15
46	9.70 888	9.77 476	0.22 524	9.93 412	14
47 48	9.70 909 9.70 931	9.77 505 9.77 533	0.22 495 0.22 467	9.93 405 9.93 397	13 12
49	9.70 952	9.77 562	0.22 438	9.93 390	11
50	9.70 973	9.77 591	0.22 409	9.93 382	10
51	9.70 994	9.77 619	0.22 381	9.93 375	9
52	9.71 015	9.77 648	0.22 352	9.93 367	8 7
53 54	9.71 036 9.71 058	9.77 677 9.77 706	0.22 323 0.22 294	9.93 360 9.93 352	7 6
55	9.71 079	9.77 734	0.22 266	9.93 344	5
56	9.71 100	9.77 763	0.22 237	9.93 337	3
57 58	9.71 121	9.77 791	0.22 209	9.93 329	3
59	9.71 142 9.71 163	9.77 820 9.77 849	$0.22\ 180 \ 0.22\ 151$	9.93 322 9.93 314	2 1
60	9.71 184	9.77 877	0.22 123	9.93 307	Ô
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	<u> </u>
0	9.71 184	9.77 877	0.22 123	9.93 307	60
1	9.71 205	9.77 906	0.22 094	9.93 299	59
2	9.71 226	9.77 935	0.22 065	9.93 291	58
3	9.71 247	9.77 963	0.22 037	9.93 284	57
4 5	9.71 268 9.71 289	9.77 992 9.78 020	0.22 008 0.21 980	9.93 276 9.93 269	56 55
6	9.71 289	9.78 020	0.21 980	9.93 261	54
7	9.71 331	9.78 077	0.21 923	9.93 253	53
8	9.71 352	9.78 106	0.21 894	9.93 246	52
9 10	9.71 373	9.78 135 9.78 163	0.21 865	9.93 238 9.93 230	51 50
10	9.71 393 9.71 414	9.78 103	0.21 837	9.93 223	49
12	9.71 414	9.78 192	0.21 780	9.93 215	48
13	9.71 456	9.78 249	0.21 751	9.93 207	47
14	9.71 477	9.78 277	0.21 723	9.93 200	46
15 16	9.71 498 9.71 519	9.78 306 9.78 334	0.21 694 0.21 666	9.93 192 9.93 184	45 44
17	9.71 539	9.78 363	0.21 637	9.93 177	43
18	9.71 560	9.78 391	0.21 609	9.93 169	42
19	9.71 581	9.78 419	0.21 581	9.93 161	41
20	9.71 602	9.78 448	0.21 552	9.93 154	40
21	9.71 622	9.78 476	0.21 524	9.93 146	39
22 23	9.71 643 9.71 664	9.78 505 9.78 533	0.21 495 0.21 467	9.93 138 9.93 131	38 37
24	9.71 685	9.78 562	0.21 438	9.93 123	36
25	9.71 705	9.78 590	0.21 410	9.93 115	35
26 27	9.71 726 9.71 747	9.78 618 9.78 647	0.21 382 0.21 353	9.93 108 9.93 100	34 33
28	9.71 767	9.78 675	0.21 325	9.93 092	32
29	9.71 788	9.78 704	0.21 296	9.93 084	31
30	9.71 809	9.78 732	0.21 268	9.93 077	30
31	9.71 829	9.78 760	0.21 240	9.93 069	29
32	9.71 850	9.78 789	0.21 211	9.93 061	28
33 34	9.71 870 9.71 891	9.78 817 9.78 845	0.21 183 0.21 155	9.93 053 9.93 046	27 26
35	9.71 911	9.78 874	0.21 126	9.93 038	25
36	9.71 932	9.78 902	0.21 098	9.93 030	24
37 38	9.71 952 9.71 973	9.78 930 9.78 959	0.21 070 0.21 041	9.93 022 9.93 014	23 22
39	9.71 994	9.78 987	0.21 011	9.93 007	21
40	9.72 014	9.79 015	0.20 985	9.92 999	20
41	9.72 034	9.79 043	0.20 957	9.92 991	19
42	$9.72\ 05\overline{5}$	9.79 072	0.20 928	9.92 983	18
43 44	9.72 075 9.72 096	9.79 100 9.79 128	0.20 900 0.20 872	9.92 976 9.92 968	17 16
45	9.72 096 9.72 116	9.79 126	0.20 872	9.92 960	15
46	9.72 137	9.79 185	0.20 815	9.92 952	14
47	9.72 157	9.79 213	0.20 787	9.92 944	13
48 49	9.72 177 9.72 198	9.79 241 9.79 269	0.20 759 0.20 731	9.92 936 9.92 929	12 11
50	9.72 218	9.79 297	0.20 703	9.92 921	10
51	9.72 238	9.79 326	0.20 674	9.92 913	9
52	9.72 259	9.79 354	0.20 646	9.92 905	
53	9.72 279	9.79 382	0.20 618	9.92 897	8 7 6
54 55	9.72 299 9.72 320	9.79 410 9.79 438	0.20 590 0.20 562	9.92 889 9.92 881	6 K
56	9.72 320 9.72 340	9.79 466	0.20 502	9.92 874	4
57	9.72 360	9.79 495	0.20 505	9.92 866	3
58 59	9.72 381	9.79 523	0.20 477 0.20 449	9.92 858 9.92 850	5 4 3 2 1
60	9.72 401 9.72 421	9.79 551	0.20 449	9.92 842	0
⊢ —					<u> </u>
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

ON .					
'	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.72 421	9.79 579	0.20 421	9.92 842	60
1	9.72 441	9.79 607	0.20 393	9.92 834	59
2 3	9.72 461 9.72 482	9.79 635 9.79 663	0.20 365 0.20 337	9.92 826 9.92 818	58 57
1 4	9.72 502	9.79 691	0.20 309	9.92 810	56
5	9.72 522	9.79 719	0.20 281	9.92 803	55
6	9.72 542	9.79 747	0.20 253	9.92 795	54
7 8	9.72 562 9.72 582	9.79 776 9.79 804	0.20 224 0.20 196	9.92 787 9.92 779	53 52
9	9.72 602	9.79 832	0.20 168	9.92 771	51
10	9.72 622	9.79 860	0.20 140	9.92 763	50
11	9.72 643	9.79 888	0.20 112	9.92 755	49
12	9.72 663	9.79 916	0.20 084	9.92 747	48
13	9.72 683	9.79 944	0.20 056	9.92 739	47
14 15	9.72 703 9.72 723	9.79 972 9.80 000	0.20 028 0.20 000	9.92 731 9.92 723	46 45
16	9.72 743	9.80 028	0.19 972	9.92 715	44
17	9.72 763	9.80 056	0.19 944	9.92 707	43
18	9.72 783	9.80 084	0.19 916	9.92 699	42
19 20	9.72 803 9.72 823	9.80 112	0.19 888	9.92 691 9.92 683	41 40
21	9.72 823	9.80 140	0.19 860 0.19 832	9.92 683	3 9
21 22	9.72 863	9.80 195	0.19 808	9.92 667	38
23	9.72 883	9.80 223	0.19 777	9.92 659	37
24	9.72 902	9.80 251	0.19 749	9.92 651	36
25 26	9.72 922 9.72 942	9.80 279 9.80 307	0.19 721 0.19 693	9.92 643 9.92 635	35 34
27	9.72 962	9.80 335	0.19 665	9.92 627	33
28	9.72 982	9.80 363	0.19 637	9.92 619	32
29	9.73 002	9.80 391	0.19 609	9.92 611	31
80	9.73 022	9.80 419	0.19 581	9.92 603	80
31	9.73 041	9.80 447	0.19 553	9.92 595	29
32 33	9.73 061 9.73 081	9.80 474 9.80 502	0.19 526 0.19 498	9.92 587 9.92 579	28 27
34	9.73 101	9.80 530	0.19 470	9.92 571	26
35	9.73 121	9.80 558	0.19 442	9.92 563	25
36	9.73 140	9.80 586	0.19 414	9.92 555	24 23
37 38	9.73 160 9.73 180	9.80 614 9.80 642	0.19 386 0.19 358	9.92 546 9.92 538	23 22
39	9.73 200	9.80 669	0.19 331	9.92 530	21
40	9.73 219	9.80 697	0.19 303	9.92 522	20
41	9.73 239	9.80 725	0.19 275	9.92 514	19
42	9.73 259	9.80 753	0.19 247	9.92 506	18
43 44	9.73 278 9.73 298	9.80 781 9.80 808	0.19 219 0.19 192	9.92 498 9.92 490	17 16
45	9.73 298	9.80 836	0.19 192 0.19 164	9.92 482	15
46	9.73 337	9.80 864	0.19 136	9.92 473	14
47	9.73 357	9.80 892	0.19 108	9.92 465	13
48 49	9.73 377 9.73 396	9.80 919 9.80 947	0.19 081 0.19 053	9.92 457 9.92 449	12 11
50	9.73 416	9.80 975	0.19 005	9.92 441	10
51	9.73 435	9.81 003	0.18 997	9.92 433	9
52	9.73 455	9.81 030	0.18 970	9.92 425	
53	9.73 474	9.81 058	0.18 942	9.92 416	8 7 6 5
54 55	9.73 494 9.73 513	9.81 086 9.81 113	0.18 914 0.18 887	9.92 408 9.92 400	6 K
56	9.73 533	9.81 141	0.18 859	9.92 392	4
57	9.73 552	9.81 169	0.18 831	9.92 384	4 3
58	9.73 572	9.81 196	0.18 804	9.92 376	2
59	9.73 591	9.81 224	0.18 776	9.92 367	1
60	9.73 611	9.81 252	0.18 748	9.92 359	Ť
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.73 611	9.81 252	0.18 748	9.92 359	60
1	9.73 630	9.81 279	0.18 721	9.92 351	59
2	9.73 650	9.81 307	0.18 693	9.92 343	58
8 4	9.73 669 9.73 689	9.81 335 9.81 362	0.18 665	9.92 335 9.92 326	57 56
5	9.73 708	9.81 390	0.18 638 0.18 610	9.92 318	55
6	9.73 727	9.81 418	0.18 582	9.92 310	54
7 8	9.73 747 9.73 766	9.81 445 9.81 473	0.18 555 0.18 527	9.92 302 9.92 293	53 52
9	9.73 785	9.81 500	0.18 500	9.92 285	51
10	9.73 805	9.81 528	0.18 472	9.92 277	50
11	9.73 824	9.81 556	0.18 444	9.92 269	49
12 13	9.73 843 9.73 863	9.81 583 9.81 611	0.18 417 0.18 389	9.92 260 9.92 252	48 47
14	9.73 882	9.81 638	0.18 362	9.92 244	46
15	9.73 901	9.81 666	0.18 334	9.92 235	45
16	9.73 921	9.81 693	0.18 307	9.92 227	44
17 18	9.73 940 9.73 959	9.81 721 9.81 748	0.18 279 0.18 252	9.92 219 9.92 211	43 42
19	9.73 978	9.81 776	0.18 224	9.92 202	41
20	9.73 997	9.81 803	0.18 197	9.92 194	40
21	9.74 017	9.81 831	0.18 169	9.92 186	39
22 23	9.74 036 9.74 055	9.81 858 9.81 886	0.18 142 0.18 114	9.92 177 9.92 169	38 37
24	9.74 074	9.81 913	0.18 087	9.92 161	36
25	9.74 093	9.81 941	0.18 059	9.92 152	35
26 27	9.74 113 9.74 132	9.81 968 9.81 996	0.18 032 0.18 004	9.92 144 9.92 136	34 33
28	9.74 151	9.82 023	0.18 004	9.92 127	32
29	9.74 170	9.82 051	0.17 949	9.92 119	31
30	9.74 189	9.82 078	0.17 922	9.92 111	80
31	9.74 208	9.82 106	0.17 894	9.92 102	29
32 33	9.74 227 9.74 246	9.82 133 9.82 161	0.17 867 0.17 839	9.92 094 9.92 086	28 27
34	9.74 265	9.82 188	0:17 812	9.92 077	26
35	9.74 284	9.82 215	0.17 785	9.92 069	25
36 37	9.74 303 9.74 322	9.82 243 9.82 270	0.17 757 0.17 730	9.92 060 9.92 052	24 23
38	9.74 341	9.82 298	0.17 702	9.92 044	22
39	9.74 360	9.82 325	0.17 675	9.92 035	21
40	9.74 379	9.82 352	0.17 648	9.92 027	20
41 42	9.74 398 9.74 417	9.82 380 9.82 407	0.17 620	9.92 018	19
43	9.74 436	9.82 435	0.17 593 0.17 565	9.92 010 9.92 002	18 17
44	9.74 455	9.82 462	0.17 538	9.91 993	16
45 46	9.74 474 9.74 493	9.82 489 9.82 517	0.17 511	9.91 985	15
40 47	9.74 493 9.74 512	9.82 544	0.17 483 0.17 456	9.91 976 9.91 968	14 13
48	9.74 531	9.82 571	0.17 429	9.91 959	12
49	9.74 549	9.82 599	0.17 401	9.91 951	11
50	9.74 568	9.82 626	0.17 374	9.91 942	10
51 52	9.74 587 9.74 606	9.82 653 9.82 681	0.17 347 0.17 319	9.91 934 9.91 925	9
53	9.74 625	9.82 708	0.17 292	9.91 920	8 7
54	9.74 644	9.82 735	0.17 265	9.91 908	6
55 56	9.74 662 9.74 681	9.82 762 9.82 790	0.17 238 0.17 210	9.81 900 9.91 891	5 4 3 2
57	9.74 700	9.82 817	0.17 210	9.91 883	3
58	9.74 719	9.82 844	0.17 156	9.91 874	2
59 60	9.74 737 9.74 756	9.82 871	0.17 129	9.91 866	1
- 80		9.82 899	0.17 101	9.91 857	۳
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.74 756	9.82 899	0.17 101	9.91 857	60
1	9.74 775	9.82 926	0.17 074	9.91 849	59
2	9.74 794	9.82 953	0.17 047	9.91 840	58
3	9.74 812	9.82 980	0.17 020	9.91 832	57
4	9.74 831	9.83 008	0.16 992	9.91 823	56
5 6	9.74 850 9.74 868	9.83 035 9.83 062	0.16 965 0.16 938	9.91 815 9.91 806	55 54
7	9.74 887	9.83 089	0.16 911	9.91 798	53
8	9.74 906	9.83 117	0.16 883	9.91 789	52
9.	9.74 924	9.83 144	0.16 856	9.91 781	51
10	9.74 943	9.83 171	0.16 829	9.91 772	50
11	9.74 961	9.83 198	0.16 802	9.91 763	49
12 13	9.74 980 9.74 999	9.83 225 9.83 252	0.16 778 0.16 748	9.91 755 9.91 746	48 47
14	9.75 017	9.83 280	0.16 720	9.91 738	46
15	9.75 036	9.83 307	0.16 693	9.91 729	45
16	9.75 054	9.83 334	0.16 666	9.91 720	44
17 18	9.75 073 9.75 091	9.83 361 9.83 388	0.16 639 0.16 612	9.91 712 9.91 703	43 42
19	9.75 110	9.83 415	0.16 585	9.91 695	41
20	9.75 128	9.83 442	0.16 558	9.91 686	40
21	9.75 147	9.83 470	0.16 530	9.91 677	39 .
22	9.75 165	9.83 497	0.16 503	9.91 669	38
23 24	9.75 184 9.75 202	9.83 524 9.83 551	0.16 476	9.91 660	37
25	9.75 202 9.75 221	9.83 578	0.16 449 0.16 422	9.91 651 9.91 643	36 35
26	9.75 239	9.83 605	0.16 395	9.91 634	34
27	9.75 258	9.83 632	0.16 368	9.91 625	33
28 29	9.75 276 9.75 294	9.83 659 9.83 686	0.16 341	9.91 617	32
29 30	9.75 313	9.83 713	0.16 314	9.91 608 9.91 599	31 30
31	9.75 331	9.83 740	0.16 260	9.91 591	29
32	9.75 350	9.83 768	0.16 232	9.91 582	29 28
33	9.75 368	9.83 795	0.16 205	9.91 573	27
34	9.75 386	9.83 822	0.16 178	9.91 565	26
35 36	9.75 405 9.75 423	9.83 849 9.83 876	0.16 151 0.16 124	9.91 556 9.91 547	25 24
37	9.75 441	9.83 903	0.16 097	9.91 538	23
38	9.75 459	9.83 930	0.16 070	9.91 530	22
39	9.75 478	9.83 957	0.16 043	9.91 521	21
40	9.75 496	9.83 984	0.16 016	9.91 512	20
41 42	9.75 514 9.75 533	9.84 011 9.84 038	0.15 989 0.15 962	9.91 504 9.91 495	19 18
43	9.75 551	9.84 065	0.15 935	9.91 486	17
44	9.75 569	9.84 092	0.15 908	9.91 477	16
45 46	9.75 587 9.75 605	9.84 119	0.15 881	9.91 469	15
46 47	9.75 624	9.84 146 9.84 173	0.15 854 0.15 827	9.91 460 9.91 451	14 13
48	9.75 642	9.84 200	0.15 800	9.91 442	12
49	9.75 660	9.84 227	0.15 773	9.91 433	11
50	9.75 678	9.84 254	0.15 746	9.91 425	10
51	9.75 696	9.84 280	0.15 720	9.91 416	9
52 53	9.75 714 9.75 733	9.84 307 9.84 334	0.15 693 0.15 666	9.91 407 9.91 398	8 7
54	9.75 751	9.84 361	0.15 639	9.91 389	6
55	9.75 769	9.84 388	0.15 612	9.91 381	5
56 57	9.75 787 9.75 805	9.84 415 9.84 442	0.15 585	9.91 372	4 3
58	9.75 823	9.84 442 9.84 469	0.15 558 0.15 531	9.91 363 9.91 354	2
59	9.75 841	9.84 496	0.15 504	9.91 345	ĩ
60	9.75 859	9.84 523	0.15 477	9.91 336	0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

1 9.75 877 9.84 550 0.15 450 9.91 328 9.75 895 9.84 576 0.15 424 9.91 319 31 9.75 895 9.84 576 0.15 424 9.91 319 31 9.75 913 9.84 603 0.15 397 9.91 301 5 9.75 949 9.84 637 0.15 343 9.91 292 6 9.75 967 9.84 684 0.15 316 9.91 283 7 9.75 985 9.84 711 0.15 289 9.91 274 8 9.76 003 9.84 738 0.15 262 9.91 276 9 9.76 021 9.84 764 0.15 236 9.91 277 10 9.76 039 9.84 791 0.15 209 9.91 248 11 9.76 057 9.84 818 0.15 182 9.91 230 12 9.76 075 9.84 845 0.15 155 9.91 230 12 9.76 075 9.84 845 0.15 155 9.91 230 13 9.76 093 9.84 872 0.15 128 9.91 221 14 9.76 111 9.84 899 0.15 101 9.91 212 15 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 129 9.84 952 0.15 048 9.91 194 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 006 0.14 994 9.91 176 19 9.76 200 9.85 033 0.14 967 9.91 167 22 9.76 271 9.85 180 0.14 887 9.91 141 23 9.76 228 9.85 036 0.14 941 9.91 185 18 9.76 229 9.85 036 0.14 941 9.91 185 12 9.76 228 9.85 036 0.14 941 9.91 123 23 9.76 271 9.85 180 0.14 887 9.91 141 23 9.76 289 9.85 166 0.14 834 9.91 141 22 9.76 233 9.85 130 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 834 9.91 123 23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 834 9.91 123 23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 837 9.91 141 23 9.76 289 9.85 166 0.14 837 9.91 141 23 9.76 336 9.85 247 0.14 753 9.91 087 29 9.76 378 9.85 247 0.14 753 9.91 087 29 9.76 378 9.85 380 0.14 967 9.91 108 33 9.76 448 9.85 247 0.14 753 9.91 087 29 9.76 378 9.85 380 0.14 646 9.91 087 33 9.76 648 9.85 380 0.14 640 9.91 087 33 9.76 651 9.85 380 0.14 640 9.91 051 33 9.76 649 9.85 544 0.14 466 9.91 033 39 9.76 554 9.85 567 0.14 433 9.99 096 42 9.76 677 9.85 647 0.14 433 9.99 096 42 9.76 677 9.85 647 0.14 433 9.99 096 442 9.76 607 9.85 647 0.14 433 9.99 096 442 9.76 607 9.85 647 0.14 433 9.99 096 442 9.76 607 9.85 647 0.14 430 9.99 991 044 9.76 609 9.85 640 0.14 406 9.99 996 444 9.76 642 9.85 700 0.14 300 9.99 990 991 44 9.76 730 9.85 840 0.14 466 9.99 0991 44 9.76 607 9.85 647 0.14 436 9.99 0991 44 9.76 730 9.85						
1 9.75 877 9.84 550 0.15 450 9.91 328 9.75 933 9.84 603 0.15 397 9.91 310 9.84 603 0.15 397 9.91 310 1 5 9.75 931 9.84 603 0.15 370 9.91 301 5 9.75 931 9.84 603 0.15 370 9.91 301 5 9.75 931 9.84 637 0.15 343 9.91 292 9.75 937 9.84 684 0.15 316 9.91 283 7 9.75 985 9.84 711 0.15 289 9.91 274 8 9.76 003 9.84 738 0.15 282 9.91 266 9 9.76 021 9.84 764 0.15 236 9.91 267 10 9.76 039 9.84 791 0.15 209 9.91 248 11 9.76 057 9.84 818 0.15 182 9.91 230 11 9.76 057 9.84 845 0.15 155 9.91 230 12 9.76 073 9.84 872 0.15 128 9.91 221 12 9.76 075 9.84 887 0.15 155 9.91 230 13 9.76 093 9.84 872 0.15 128 9.91 221 14 9.76 111 9.84 899 0.15 101 9.91 212 9.76 124 9.84 979 0.15 021 9.91 85 18 9.76 129 9.84 925 0.15 075 9.91 185 18 9.76 182 9.85 066 0.14 994 9.91 176 9.76 200 9.85 033 0.14 967 9.91 167 9.76 220 9.76 218 9.85 059 0.14 941 9.91 158 9.76 229 9.85 036 0.14 984 9.91 176 19 9.76 200 9.85 033 0.14 967 9.91 167 22 9.76 233 9.85 133 0.14 887 9.91 141 22 9.76 233 9.85 133 0.14 887 9.91 141 22 9.76 233 9.85 133 0.14 887 9.91 152 24 9.76 233 9.85 133 0.14 887 9.91 141 22 9.76 236 9.85 059 0.14 911 9.91 158 22 9.76 253 9.85 166 0.14 914 9.91 182 23 9.76 271 9.85 140 0.14 880 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 130 0.14 807 9.91 167 29 9.76 342 9.85 247 0.14 753 9.91 067 31 9.76 413 9.85 300 0.14 700 9.91 078 30 9.76 379 9.85 380 0.14 670 9.91 078 30 9.76 571 9.85 400 0.14 503 9.91 078 30 9.76 571 9.85 400 0.14 503 9.91 078 30 9.76 571 9.85 540 0.14 673 9.91 078 30 9.76 607 9.85 647 0.14 533 9.91 096 42 9.76 607 9.85 647 0.14 533 9.91 096 42 9.76 607 9.85 647 0.14 533 9.90 966 9.76 677 9.85 647 0.14 333 9.90 987 444 9.76 607 9.85 647 0.14 333 9.90 987 445 9.76 607 9.85 647 0.14 433 9.90 996 442 9.76 607 9.85 647 0.14 433 9.90 996 442 9.76 607 9.85 647 0.14 433 9.90 996 442 9.76 607 9.85 647 0.14 333 9.90 986 54 9.76 687 9.85 887 0.14 113 9.90 889 9.76 687 9.85 887 0.14 103 9.90 889 9.76 68						
2 9.75 8913 9.84 603 0.15 397 9.91 310 3 9.75 913 9.84 603 0.15 397 9.91 301 5 9.75 949 9.84 637 0.15 343 9.91 292 6 9.75 967 9.84 684 0.15 316 9.91 283 7 9.75 985 9.84 711 0.15 289 9.91 267 8 9.76 003 9.84 781 0.15 236 9.91 267 10 9.76 039 9.84 791 0.15 236 9.91 283 11 9.76 039 9.84 818 0.15 128 9.91 230 12 9.76 075 9.84 845 0.15 155 9.91 230 13 9.76 075 9.84 845 0.15 155 9.91 230 14 9.76 111 9.84 8872 0.15 101 9.91 221 14 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 952 0.15 075 9.91 103 17 9.76 200 9.85 033 0.14 967 9.91 167 20 9.76	-					60
3 9.75 913 9.84 603 0.15 397 9.91 310 9.75 931 9.84 630 0.15 377 9.91 301 5 9.75 931 9.84 637 0.15 343 9.91 292 6 9.75 967 9.84 684 0.15 316 9.91 283 7 9.75 985 9.84 711 0.15 289 9.91 274 8 9.76 003 9.84 738 0.15 262 9.91 266 9 9.76 021 9.84 764 0.15 236 9.91 267 10 9.76 039 9.84 791 0.15 209 9.91 267 11 9.76 039 9.84 791 0.15 209 9.91 288 11 9.76 039 9.84 791 0.15 209 9.91 230 9.84 791 0.15 209 9.91 230 9.84 791 0.15 209 9.91 230 9.84 791 0.15 209 9.91 230 9.84 791 0.15 209 9.91 230 9.84 791 0.15 209 9.91 230 9.84 818 0.15 155 9.91 230 9.76 075 9.84 818 0.15 155 9.91 230 9.76 075 9.84 845 0.15 155 9.91 230 9.76 11 9.84 899 0.15 101 9.91 212 9.76 129 9.84 925 0.15 075 9.91 203 9.84 925 0.15 075 9.91 203 9.84 925 0.15 075 9.91 203 9.84 925 0.15 075 9.91 203 9.84 925 0.15 075 9.91 194 17 9.76 164 9.84 979 0.15 021 9.91 185 9.76 182 9.85 066 0.14 994 9.91 176 9.76 200 9.85 033 0.14 967 9.91 167 9.76 200 9.76 201 9.85 033 0.14 967 9.91 167 9.76 200 9.76 201 9.85 033 0.14 967 9.91 167 9.76 200 9.76 201 9.85 103 0.14 887 9.91 141 9.91 22 9.76 253 9.85 113 0.14 887 9.91 141 9.91 22 9.76 253 9.85 113 0.14 887 9.91 141 9.91 22 9.76 326 9.85 985 130 0.14 807 9.91 105 22 9.76 324 9.85 220 0.14 780 9.91 102 22 9.76 324 9.85 220 0.14 780 9.91 103 22 9.76 378 9.85 193 0.14 807 9.91 104 22 9.76 342 9.85 247 0.14 753 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 29 9.76 378 9.85 300 0.14 700 9.91 078 29 9.76 378 9.85 300 0.14 700 9.91 078 29 9.76 448 9.85 407 0.14 503 9.91 060 33 9.76 448 9.85 407 0.14 503 9.91 061 33 9.76 448 9.85 407 0.14 503 9.91 061 33 9.76 654 9.85 507 0.14 400 9.91 078 34 9.76 607 9.85 647 0.14 353 9.90 967 443 9.76 607 9.85 647 0.14 353 9.90 967 444 9.76 609 9.85 507 0.14 400 9.90 998 42 9.76 607 9.85 647 0.14 353 9.90 998 42 9.76 607 9.85 647 0.14 353 9.90 998 42 9.76 607 9.85 647 0.14 353 9.90 998 42 9.76 607 9.85 647 0.14 353 9.90 998 51 448 9.76 612 9.85 600 0.14 400 9.90 998 51 448 9.76 612 9.85 600 0.14 400 9.90 998 51 448 9.76 612 9.85 600 0.14 900 999 999 999 999 999 999 999 999 99						59
4 9.75 949 9.84 630 0.15 343 9.91 292 6 9.75 967 9.84 684 0.15 316 9.91 283 7 9.75 985 9.84 711 0.15 289 9.91 274 8 9.76 003 9.84 738 0.15 289 9.91 274 9 9.76 021 9.84 764 0.15 236 9.91 257 10 9.76 039 9.84 791 0.15 209 9.91 248 11 9.76 057 9.84 818 0.15 182 9.91 229 12 9.76 075 9.84 818 0.15 182 9.91 229 12 9.76 093 9.84 872 0.15 182 9.91 221 14 9.76 111 9.84 892 0.15 101 9.91 212 15 9.76 126 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 972 0.15 021 9.91 185 17 9.76 164 9.84 979 0.15 021 9.91 185 19 9.76 218 9.85 036 0.14 944 9.91 176 20 9.76 2	2 2					58 57
6 9.75 949 9.84 687 0.15 343 9.91 292 7 9.75 985 9.84 711 0.15 269 9.91 274 8 9.76 003 9.84 738 0.15 262 9.91 274 9 9.76 021 9.84 764 0.15 236 9.91 257 10 9.76 039 9.84 791 0.15 209 9.91 248 11 9.76 075 9.84 818 0.15 182 9.91 239 12 9.76 075 9.84 845 0.15 158 9.91 221 13 9.76 075 9.84 845 0.15 158 9.91 221 14 9.76 111 9.84 897 0.15 101 9.91 221 14 9.76 129 9.84 952 0.15 075 9.91 203 16 9.76 129 9.84 952 0.15 075 9.91 224 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 036 0.14 994 9.91 174 19 9.76 236 9.85 036 0.14 914 9.91 185 21 9.76	4					56
7 9.75 985 9.84 711 0.15 289 9.91 274 9 9.76 021 9.84 764 0.15 236 9.91 267 10 9.76 039 9.84 791 0.15 236 9.91 267 11 9.76 057 9.84 818 0.15 182 9.91 239 12 9.76 075 9.84 845 0.15 155 9.91 239 12 9.76 075 9.84 845 0.15 155 9.91 221 14 9.76 111 9.84 899 0.15 101 9.91 221 14 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 952 0.15 075 9.91 203 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 036 0.14 994 9.91 176 19 9.76 200 9.85 033 0.14 994 9.91 185 21 9.76 236 9.85 036 0.14 914 9.91 189 21 9.76 236 9.85 136 0.14 914 9.91 185 21 9.7	5					55
8 9.76 021 9.84 738 0.15 236 9.91 266 9 9.76 021 9.84 764 0.15 236 9.91 2267 10 9.76 039 9.84 818 0.15 182 9.91 239 11 9.76 075 9.84 818 0.15 185 9.91 239 12 9.76 075 9.84 845 0.15 155 9.91 239 13 9.76 093 9.84 872 0.15 101 9.91 221 14 9.76 119 9.84 899 0.15 101 9.91 221 15 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 952 0.15 075 9.91 203 17 9.76 182 9.85 006 0.14 904 9.91 176 19 9.76 200 9.85 033 0.14 967 9.91 167 20 9.76 218 9.85 059 0.14 944 9.91 176 21 9.76 253 9.86 113 0.14 887 9.91 167 22 9.76 273 9.85 140 0.14 867 9.91 132 23 9.	6			0.15 316		54
9 9.76 021 9.84 764 0.15 236 9.91 257 10 9.76 039 9.84 791 0.15 209 9.91 248 11 9.76 057 9.84 845 0.15 155 9.91 230 13 9.76 093 9.84 872 0.15 155 9.91 230 13 9.76 093 9.84 872 0.15 128 9.91 221 14 9.76 111 9.84 899 0.15 101 9.91 212 15 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 952 0.15 075 9.91 203 16 9.76 146 9.84 952 0.15 004 9.91 194 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 006 0.14 944 9.91 176 18 9.76 182 9.85 006 0.14 944 9.91 176 18 9.76 200 9.85 033 0.14 967 9.91 167 19 9.76 200 9.85 033 0.14 967 9.91 167 19 9.76 200 9.85 033 0.14 967 9.91 167 19 9.76 256 9.85 086 0.14 941 9.91 178 18 9.76 256 9.85 086 0.14 941 9.91 178 18 9.76 256 9.85 086 0.14 941 9.91 188 122 9.76 253 9.85 113 0.14 887 9.91 141 123 23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 105 27 9.76 342 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 227 0.14 753 9.91 096 9.76 378 9.85 380 0.14 727 9.91 087 29 9.76 378 9.85 380 0.14 727 9.91 087 29 9.76 378 9.85 380 0.14 673 9.91 089 31 32 9.76 448 9.85 380 0.14 620 9.91 078 32 9.76 488 9.85 380 0.14 620 9.91 078 33 9.76 488 9.85 487 0.14 533 9.91 080 32 9.76 488 9.85 487 0.14 533 9.91 080 32 9.76 501 9.85 387 0.14 673 9.91 080 33 9.76 488 9.85 487 0.14 533 9.91 080 32 9.76 571 9.85 380 0.14 460 9.91 033 35 9.76 544 9.85 567 0.14 433 9.90 987 440 9.76 572 9.85 594 0.14 466 9.90 9987 441 9.76 569 9.85 547 0.14 383 9.90 987 440 9.76 572 9.85 594 0.14 406 9.90 998 442 9.76 607 9.85 647 0.14 383 9.90 987 44 9.76 665 9.85 727 0.14 273 9.90 987 44 9.76 665 9.85 697 0.14 433 9.90 987 44 9.76 665 9.85 697 0.14 433 9.90 987 44 9.76 685 9.85 697 0.14 433 9.90 987 550 9.76 685 9.85 697 0.14 433 9.90 987 550 9.76 687 9.85 697 0.14 400 9.90 986 550 9.76 677 9.85 607 0.14 193 9.90 987 550 9.76 677 9.85 607 0.14 193 9.90 987 550 9.76 677 9.85 607 0.14 193 9.90 987 550 9.76 677 9.85 607 0.14 193 9.90 988 550 9.76 677 9.85 607 0.14 083 9.90 887 550 9.76 870 9.86 000 0.13 900 9.90 885 5				0.15 289		53 52
10 9.76 039 9.84 791 0.15 209 9.91 248 4 11 9.76 057 9.84 818 0.15 182 9.91 239 12 13 9.76 075 9.84 845 0.15 155 9.91 230 13 13 9.76 093 9.84 872 0.15 128 9.91 221 14 14 9.76 111 9.84 895 0.15 075 9.91 203 16 16 9.76 129 9.84 925 0.15 075 9.91 203 16 16 9.76 164 9.84 979 0.15 021 9.91 185 18 17 9.76 182 9.85 033 0.14 994 9.91 176 19 19 9.76 200 9.85 035 0.14 994 9.91 176 19 20 9.76 218 9.85 059 0.14 944 9.91 149 19 149 9.91 149 19 149 19 149 149 9.91 149 14 14 9.91 149 14 14 9.91 149 14 14 9.91 149 14 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>51</td></td<>						51
11						50
12						49
14 9.76 111 9.84 899 0.15 101 9.91 212 15 9.76 129 9.84 925 0.15 075 9.91 203 16 9.76 146 9.84 979 0.15 021 9.91 184 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 006 0.14 994 9.91 176 19 9.76 200 9.85 033 0.14 967 9.91 167 20 9.76 218 9.85 085 0.14 967 9.91 167 22 9.76 236 9.85 086 0.14 914 9.91 176 22 9.76 236 9.85 086 0.14 914 9.91 149 22 9.76 235 9.85 113 0.14 887 9.91 141 23 9.76 271 9.85 140 0.14 887 9.91 141 23 9.76 289 9.85 166 0.14 834 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 105 27 9.76 342 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 227 0.14 780 9.91 105 28 9.76 380 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 395 9.85 327 0.14 673 9.91 069 31 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 503 9.91 063 33 9.76 448 9.85 407 0.14 503 9.91 023 36 9.76 501 9.85 487 0.14 566 9.91 033 9.76 519 9.85 487 0.14 566 9.91 033 9.76 519 9.85 487 0.14 566 9.91 033 9.76 519 9.85 544 0.14 546 9.91 023 36 9.76 501 9.85 487 0.14 513 9.91 042 34 9.76 567 9.85 540 0.14 486 9.91 023 36 9.76 572 9.85 547 0.14 433 9.90 987 40 9.76 572 9.85 544 0.14 438 9.90 987 44 9.76 597 9.85 544 0.14 438 9.90 987 44 9.76 597 9.85 544 0.14 438 9.90 987 44 9.76 597 9.85 544 0.14 438 9.90 987 44 9.76 597 9.85 547 0.14 433 9.90 987 44 9.76 597 9.85 547 0.14 433 9.90 987 44 9.76 597 9.85 547 0.14 433 9.90 987 44 9.76 597 9.85 547 0.14 406 9.90 987 44 9.76 695 9.85 677 0.14 433 9.90 987 44 9.76 695 9.85 677 0.14 433 9.90 987 44 9.76 695 9.85 797 0.14 220 9.90 915 48 9.76 730 9.85 887 0.14 113 9.90 988 550 9.76 747 9.85 860 0.14 406 9.90 988 550 9.76 747 9.85 860 0.14 406 9.90 988 550 9.76 747 9.85 860 0.14 406 9.90 988 550 9.76 747 9.85 860 0.14 200 9.90 985 550 9.76 747 9.85 860 0.14 200 9.90 985 550 9.76 747 9.85 860 0.14 406 9.90 986 998 550 9.76 747 9.85 860 0.14 406 9.90 986 998 550 9.76 747 9.85 860 0.14 406 9.90 988 550 9.76 747 9.85 860 0.14 406 9.90 988 550 9.76 870 9.85 940 0.14 406 9.90 886 998 325 5					9.91 230	48
15 9.76 129 9.84 925 0.15 075 9.91 203 4 16 9.76 146 9.84 979 0.15 021 9.91 185 4 17 9.76 182 9.85 006 0.14 994 9.91 176 9.91 185 18 9.76 202 9.85 033 0.14 967 9.91 167 4 20 9.76 218 9.85 086 0.14 941 9.91 149 21 9.76 236 9.85 086 0.14 941 9.91 149 22 9.76 253 9.85 113 0.14 887 9.91 141 23 9.76 271 9.85 140 0.14 860 9.91 123 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 096 27 9.76 384 9.85 273 0.14 727 9.91 087 28 9.76 378 9.85 327 0.14 673 9.91 060 30 9.76 385 9.85 327 0.14 646<					9.91 221	47
16 9.76 146 9.84 952 0.15 048 9.91 194 17 9.76 164 9.84 979 0.15 021 9.91 185 18 9.76 182 9.85 006 0.14 994 9.91 176 49 19 176 200 9.85 033 0.14 967 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 9.91 167 49 49 9.91 167 49 14 9.91 167 49 49 14 9.91 144 9.91 144 9.91 144 29 16 6 14 867 9.91 144 9.91 149 29 76 271 9.85 186 0.14 860 9.91 132 24 9.76 289 9.85 193 0.14 860 9.91 132 24 9.76 289 9.85 193 0.14 780 9.91 105 27 9.76 324 <						46
17 9.76 164 9.84 979 0.15 021 9.91 185 4 19 9.76 200 9.85 033 0.14 994 9.91 176 2 20 9.76 218 9.85 039 0.14 941 9.91 167 2 20 9.76 236 9.85 086 0.14 941 9.91 149 9.91 149 21 9.76 253 9.85 113 0.14 887 9.91 141 29.1 149 22 9.76 253 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 840 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 105 27 9.76 342 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 227 0.14 780 9.91 076 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 378 9.85 327 0.14 673 9.91 069 31 9.76 431 9.85 380 0.14 646 9.91 069 33 9.76 4431 9.85 384 0.14 646 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>45 44</td>						45 44
18 9.76 182 9.85 006 0.14 994 9.91 176 4 20 9.76 208 9.85 033 0.14 967 9.91 167 4 20 9.76 218 9.85 059 0.14 941 9.91 158 4 21 9.76 236 9.85 086 0.14 914 9.91 149 9.91 149 22 9.76 253 9.85 113 0.14 887 9.91 141 9.91 123 24 9.76 289 9.85 166 0.14 807 9.91 123 24 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 780 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 327 0.14 673 9.91 087 29 9.76 378 9.85 387 0.14 673 9.91 069 3 31 9.76 413 9.85 384 0.14 646 9.91 069 3 32 9.76 431 9.85 384 0.14 646 9.91 060 32 9.76 443 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>43</td></td<>						43
20 9.76 218 9.85 059 0.14 941 9.91 158 4 21 9.76 236 9.85 086 0.14 914 9.91 149 9.91 149 22 9.76 253 9.85 113 0.14 887 9.91 141 9.91 142 23 9.76 271 9.85 140 0.14 834 9.91 132 9.95 166 0.14 834 9.91 123 24 9.76 289 9.85 193 0.14 807 9.91 105 9.91 105 26 9.76 304 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 227 0.14 753 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 702 9.91 078 30 9.76 431 9.85 384 0.14 646 9.91 069 31 9.76 443 9.85 380 0.14 646 9.91 069 32 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 560 9.85 434 0.14 540 9.91 023			9.85 006			42
21 9.76 236 9.85 086 0.14 914 9.91 149 22 9.76 253 9.85 113 0.14 887 9.91 141 23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 753 9.91 096 28 9.76 380 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 395 9.85 380 0.14 700 9.91 078 31 9.76 413 9.85 384 0.14 646 9.91 060 32 9.76 431 9.85 380 0.14 673 9.91 060 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 460 9.90 996 39 9.76 554 9.85 547 0.14 433 9.90 987 40 9.76 572 9.85 584 0.14 466 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 987 41 9.76 590 9.85 567 0.14 433 9.90 987 42 9.76 572 9.85 584 0.14 466 9.90 996 42 9.76 677 9.85 647 0.14 380 9.90 996 42 9.76 677 9.85 647 0.14 380 9.90 996 42 9.76 677 9.85 647 0.14 380 9.90 996 42 9.76 677 9.85 647 0.14 300 9.90 996 44 9.76 642 9.85 700 0.14 300 9.90 991 44 9.76 642 9.85 700 0.14 273 9.90 987 44 9.76 642 9.85 700 0.14 300 9.90 991 44 9.76 642 9.85 700 0.14 206 9.90 991 44 9.76 642 9.85 700 0.14 206 9.90 991 44 9.76 642 9.85 700 0.14 206 9.90 991 44 9.76 677 9.85 647 0.14 246 9.90 994 996 44 9.76 677 9.85 807 0.14 273 9.90 987 44 9.76 685 9.85 780 0.14 246 9.90 994 996 44 9.76 674 9.85 807 0.14 103 9.90 986 50 9.76 747 9.85 807 0.14 103 9.90 986 50 9.76 747 9.85 807 0.14 103 9.90 887 51 9.76 780 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.85 940 0.14 060 9.90 886 50 9.76 870 9.86 946 0.13 954 9.90 823 58 9.76 887 9.86						41
22 9.76 253 9.86 113 0.14 887 9.91 141 23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 807 9.91 132 25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 753 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 378 9.85 300 0.14 700 9.91 078 31 9.76 413 9.85 364 0.14 646 9.91 060 32 9.76 431 9.85 380 0.14 646 9.91 061 32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 443 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 023 36 9.76 501 9.85 514 0.14 460 9.91 023 36 9.76 501 9.85 514 0.14 486 9.91 023 39 9.76 554 9.85 540 0.14 480 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 584 0.14 406 9.90 996 42 9.76 607 9.85 647 0.14 380 9.90 996 42 9.76 607 9.85 647 0.14 380 9.90 996 44 9.76 642 9.85 700 0.14 380 9.90 960 44 9.76 642 9.85 700 0.14 300 9.90 981 44 9.76 642 9.85 700 0.14 300 9.90 981 44 9.76 642 9.85 700 0.14 300 9.90 981 44 9.76 642 9.85 700 0.14 200 9.90 981 44 9.76 642 9.85 700 0.14 200 9.90 981 44 9.76 642 9.85 700 0.14 300 9.90 996 44 9.76 677 9.85 647 0.14 266 9.90 993 46 9.76 677 9.85 867 0.14 246 9.90 996 996 9.76 677 9.85 870 0.14 246 9.90 993 44 9.76 660 9.85 727 0.14 273 9.90 985 48 9.76 712 9.85 807 0.14 246 9.90 994 9.76 730 9.85 834 0.14 166 9.90 996 951 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 807 0.14 133 9.90 986 50 9.76 747 9.85 807 0.14 130 9.90 887 51 9.76 782 9.85 913 0.14 007 9.90 887 51 9.76 800 9.85 940 0.14 000 9.90 880 55 976 800 9.85 940 0.14 000 9.90 880 55 976 800 9.85 940 0.14 000 9.90 860 55 9.76 800 9.85 940 0.14 000 9.90 860 55 9.76 870 9.85 940 0.14 000 9.90 860 55 9.76 870 9.85 940 0.14 000 9.90 860 55 9.76 870 9.85 940 0.14 000 9.90 880 55 996 976 976 870 9.85 940 0.14 000 9.90 880 55 996 976 870 9.85 940 0.14 000 9.90 880 55 996 976 870 9.86 970 0.13 980 9.90 882 570 9.76 870 9.86 970 0.13 980 9.90 882 570 9.76 870 9.86 970 0.13 980 9.90 882 570		0110 200				40
23 9.76 271 9.85 140 0.14 860 9.91 132 24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 763 9.91 087 28 9.76 386 9.85 273 0.14 700 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 087 29 9.76 378 9.85 327 0.14 673 9.91 089 31 9.76 413 9.85 384 0.14 646 9.91 069 31 9.76 431 9.85 384 0.14 646 9.91 061 32 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 501 9.85 487 0.14 513 9.91 042 34 9.76 519 9.85 544 0.14 486 9.91 053 37 9						39
24 9.76 289 9.85 166 0.14 834 9.91 123 25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 753 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 702 9.91 078 30 9.76 395 9.85 327 0.14 673 9.91 069 31 9.76 413 9.85 380 0.14 646 9.91 069 32 9.76 431 9.85 380 0.14 646 9.91 060 32 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 593 9.91 023 35 9.76 501 9.85 487 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 460 9.90 996 39 9.76 557 9.85 540 0.14 460 9.90 996 39 9						38 37
25 9.76 307 9.85 193 0.14 807 9.91 114 26 9.76 324 9.85 220 0.14 780 9.91 105 27 9.76 342 9.85 247 0.14 727 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 395 9.85 327 0.14 673 9.91 060 31 9.76 431 9.85 384 0.14 646 9.91 061 32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 569 9.91 033 35 9.76 501 9.85 514 0.14 540 9.91 023 36 9.76 501 9.85 540 0.14 460 9.91 005 38 9.76 554 9.85 540 0.14 460 9.90 996 39 9.76 572 9.85 594 0.14 430 9.90 987 40 9						36
27 9.76 342 9.85 247 0.14 753 9.91 096 28 9.76 360 9.85 273 0.14 727 9.91 087 29 9.76 378 9.85 300 0.14 673 9.91 078 30 9.76 395 9.85 327 0.14 673 9.91 069 3 31 9.76 413 9.85 384 0.14 646 9.91 060 3 32 9.76 431 9.85 380 0.14 646 9.91 060 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 460 9.91 033 38 9.76 537 9.85 540 0.14 460 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978	25					35
28 9.76 378 9.85 273 0.14 727 9.91 087 9.91 078 30 9.76 378 9.85 300 0.14 700 9.91 078 31 9.76 395 9.85 387 0.14 673 9.91 069 31 9.76 431 9.85 384 0.14 646 9.91 060 32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 513 9.91 014 37 9.76 519 9.85 514 0.14 460 9.90 996 39 9.76 554 9.85 540 0.14 486 9.91 005 38 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 584 0.14 406 9.90 996 42 9.76 677 9.85 647 0.14 380 9.90 987 43 9.76 625 9.85 647 0.14 380 9.90 981 44 9.76 642 9.85 700 0.14 300 9.90 960 43 9.76 642 9.85 700 0.14 273 9.90 951 44 9.76 642 9.85 700 0.14 273 9.90 933 46 9.76 660 9.85 727 0.14 273 9.90 934 47 9.76 695 9.85 887 0.14 246 9.90 934 48 9.76 712 9.85 807 0.14 246 9.90 934 48 9.76 712 9.85 807 0.14 246 9.90 934 48 9.76 712 9.85 807 0.14 246 9.90 934 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 807 0.14 130 9.90 906 51 49 9.76 730 9.85 807 0.14 130 9.90 986 50 9.76 747 9.85 807 0.14 130 9.90 986 50 9.76 747 9.85 807 0.14 130 9.90 887 51 9.76 780 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 807 0.14 130 9.90 887 51 9.76 782 9.85 930 0.14 100 9.90 887 51 9.76 782 9.85 940 0.14 100 9.90 887 51 9.76 782 9.85 940 0.14 100 9.90 887 51 9.76 782 9.85 940 0.14 000 9.90 860 54 9.76 817 9.85 807 0.14 103 9.90 869 53 9.76 800 9.85 940 0.14 000 9.90 860 54 9.76 870 9.85 940 0.14 000 9.90 860 54 9.76 870 9.85 940 0.14 000 9.90 860 54 9.76 870 9.85 940 0.14 000 9.90 860 54 9.76 870 9.86 000 0.13 980 9.90 832 57 9.76 870 9.86 000 0.13 980 9.90 832 57 9.76 870 9.86 000 0.13 980 9.90 832 57 9.76 870 9.86 000 0.13 980 9.90 832 57 9.76 870 9.86 000 0.13 980 9.90 832 58 9.76 887 9.86 073 0.13 990 9.90 805						34
29 9.76 378 9.85 300 0.14 700 9.91 078 30 9.76 395 9.85 327 0.14 673 9.91 069 31 9.76 413 9.85 354 0.14 673 9.91 069 32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.66 466 9.85 434 0.14 566 9.91 033 35 9.76 501 9.85 487 0.14 513 9.91 014 37 9.65 519 9.85 514 0.14 486 9.91 005 38 9.76 557 9.85 540 0.14 486 9.91 005 39 9.76 572 9.85 547 0.14 433 9.90 996 39 9.76 572 9.85 547 0.14 433 9.90 987 40 9.76 672 9.85 620 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 960 42 9.76 676 9.85 77 0.14 326 9.90 911 44 9.						33 32
30 9.76 395 9.85 327 0.14 673 9.91 069 31 9.76 413 9.85 354 0.14 646 9.91 060 32 9.76 431 9.85 380 0.14 646 9.91 060 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 487 0.14 513 9.91 042 37 9.76 537 9.85 540 0.14 460 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 978 41 9.76 572 9.85 594 0.14 406 9.90 978 42 9.76 672 9.85 620 0.14 330 9.90 969 42 9.76 677 9.85 647 0.14 353 9.90 951 43 9.76 625 9.85 727 0.14 236 9.90 951 44 9						31 '
31 9.76 413 9.85 354 0.14 646 9.91 060 32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 487 0.14 513 9.91 042 37 9.76 537 9.85 514 0.14 460 9.90 996 38 9.76 537 9.85 567 0.14 433 9.90 986 39 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 572 9.85 620 0.14 333 9.90 960 42 9.76 677 9.85 620 0.14 333 9.90 960 43 9.76 625 9.85 647 0.14 333 9.90 960 43 9.76 625 9.85 727 0.14 300 9.90 914 45 9.76 667 9.85 787 0.14 203 9.90 942 45 9						30
32 9.76 431 9.85 380 0.14 620 9.91 051 33 9.76 448 9.85 407 0.14 593 9.91 042 34 9.76 466 9.85 434 0.14 593 9.91 042 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 514 0.14 513 9.91 005 37 9.76 537 9.85 514 0.14 460 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 572 9.85 620 0.14 380 9.90 989 42 9.76 677 9.85 647 0.14 380 9.90 960 43 9.76 625 9.85 647 0.14 380 9.90 951 44 9.76 625 9.85 700 0.14 300 9.90 951 44 9.76 625 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 784 0.14 246 9.90 924 47 9						29
34 9.76 486 9.85 434 0.14 566 9.91 033 35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 487 0.14 513 9.91 014 37 9.76 519 9.85 514 0.14 486 9.91 005 38 9.76 537 9.85 540 0.14 486 9.91 005 39 9.76 554 9.85 560 0.14 436 9.90 996 39 9.76 554 9.85 567 0.14 436 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 969 42 9.76 607 9.85 647 0.14 333 9.90 960 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 625 9.85 700 0.14 326 9.90 951 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 784 0.14 246 9.90 924 47 9.76 667 9.85 786 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 926 49 9.76 730						28
35 9.76 484 9.85 460 0.14 540 9.91 023 36 9.76 501 9.85 487 0.14 513 9.91 014 37 9.76 519 9.85 514 0.14 486 9.91 005 38 9.76 537 9.85 540 0.14 460 9.90 996 39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 572 9.85 620 0.14 380 9.90 969 42 9.76 607 9.85 647 0.14 333 9.90 960 43 9.76 625 9.85 700 0.14 306 9.90 951 44 9.76 625 9.85 727 0.14 273 9.90 933 45 9.76 667 9.85 784 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 896 50 9.76 730 9.85 887 0.14 140 9.90 887 51 9						27
36 9.76 501 9.85 487 0.14 513 9.91 014 37 9.76 519 9.85 514 0.14 486 9.91 005 38 9.76 557 9.85 540 0.14 486 9.91 096 39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 672 9.85 594 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 960 42 9.76 607 9.85 647 0.14 326 9.90 951 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 642 9.85 727 0.14 230 9.90 942 45 9.76 677 9.85 754 0.14						26 25
37 9.76 519 9.85 514 0.14 486 9.91 005 38 9.76 537 9.85 540 0.14 460 9.90 996 39 9.76 554 9.85 567 0.14 406 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 969 42 9.76 607 9.85 647 0.14 353 9.90 960 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 625 9.85 700 0.14 230 9.90 931 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 780 0.14 246 9.90 924 47 9.76 685 9.85 87 0.14 193 9.90 906 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 884 0.14 166 9.90 887 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.						24
39 9.76 554 9.85 567 0.14 433 9.90 987 40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 969 42 9.76 607 9.85 647 0.14 380 9.90 960 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 642 9.85 700 0.14 326 9.90 942 45 9.76 660 9.85 727 0.14 273 9.90 942 46 9.76 677 9.85 754 0.14 246 9.90 924 47 9.76 695 9.85 870 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 140 9.90 878 52 9.76 800 9.85 940 0.14 060 9.90 869 53 9	37					23
40 9.76 572 9.85 594 0.14 406 9.90 978 41 9.76 590 9.85 620 0.14 380 9.90 969 42 9.66 607 9.85 647 0.14 383 9.90 969 43 9.76 605 9.85 674 0.14 353 9.90 961 44 9.76 642 9.85 700 0.14 300 9.90 942 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 754 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 886 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 782 9.85 887 0.14 140 9.90 889 52 9.76 782 9.85 893 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 872 9.85 993 0.14 07 9.90 860 54 9						22
41 9.76 590 9.85 620 0.14 380 9.90 969 42 9.76 607 9.85 647 0.14 353 9.90 960 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 642 9.85 700 0.14 300 9.90 942 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 784 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 852 9.85 933 0.14 007 9.90 842 56 9.76 852 9.86 900 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 0673 0.13 920 9.90 805						21
42 9.76 607 9.85 647 0.14 353 9.90 960 43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 622 9.85 700 0.14 326 9.90 951 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 780 0.14 226 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 996 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 993 0.14 003 9.90 851 55 9.76 852 9.86 020 0.13 980 9.90 832 57 9						20
43 9.76 625 9.85 674 0.14 326 9.90 951 44 9.76 642 9.85 700 0.14 300 9.90 942 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 754 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 893 0.14 060 9.90 860 54 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9						19 18
44 9.76 642 9.85 700 0.14 300 9.90 942 45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 754 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 143 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9						17
45 9.76 660 9.85 727 0.14 273 9.90 933 46 9.76 677 9.85 754 0.14 246 9.90 924 47 9.76 695 9.85 780 0.14 220 9.90 915 48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 852 9.86 993 0.14 007 9.90 842 56 9.76 872 9.86 906 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 904 9.86 100 0.13 900 9.90 805	44	9.76 642	9.85 700	0.14 300	9.90 942	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.14 273		15
48 9.76 712 9.85 807 0.14 193 9.90 906 49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 026 0.13 980 9.90 823 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						14 13
49 9.76 730 9.85 834 0.14 166 9.90 896 50 9.76 747 9.85 860 0.14 140 9.90 887 1 51 9.76 765 9.85 887 0.14 113 9.90 878 52 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						12
51 9.76 765 9.85 887 0.14 113 9.90 878 52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						11
52 9.76 782 9.85 913 0.14 087 9.90 869 53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805	50	9.76 747	9.85 860	0.14 140	9.90 887	10
53 9.76 800 9.85 940 0.14 060 9.90 860 54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						9
54 9.76 817 9.85 967 0.14 033 9.90 851 55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						8
55 9.76 835 9.85 993 0.14 007 9.90 842 56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						7 6
56 9.76 852 9.86 020 0.13 980 9.90 832 57 9.76 870 9.86 046 0.13 954 9.90 823 58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805						5
58 9.76 887 9.86 073 0.13 927 9.90 814 59 9.76 904 9.86 100 0.13 900 9.90 805	56	9.76 852	9.86 020	0.13 980	9.90 832	4
59 9.76 904 9.86 100 0.13 900 9.90 805						3
						2 1
						ô
L. Cos. L. Cot. L. Tan. L. Sin.		L. Cos.	L. Cot.	L. Tan.	L. Sin.	,

ან						
,	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
0	9.76 922	9.86 126	0.13 874	9.90 796	60	
1	9.76 939	9.86 153	0.13 847	9.90 787	59	
2	9.76 957	9.86 179	0.13 821	9.90 777	58 57	
3 4	9.76 974 9.76 991	9.86 206 9.86 232	0.13 794 0.13 768	9.90 768 9.90 759	56	
5	9.77 009	9.86 259	0.13 741	9.90 750	55	
6	9.77 026	9.86 285	0.13 715	Q QO 741	54	
7	9.77 043	9.86 312	0.13 688	9.90 731 9.90 722	53 52	
8 9	9.77 061 9.77 078	9.86 338 9.86 365	0.13 662 0.13 635	9.90 713	51	
10	9.77 095	9.86 392	0.13 608	9.90 704	50	
11	9.77 112	9.86 418	0.13 582	9.90 694	49	
12	9.77 130	9.86 445	0.13 555	9.90 685	48	
13	9.77 147	9.86 471	0.13 529	9.90 676	47	
14 15	9.77 164 9.77 181	9.86 498 9.86 524	0.13 502 0.13 476	9.90 667 9.90 657	46 45	
16	9.77 199	9.86 551	0.13 449	9.90 648	44	
17	9.77 216	9.86 577	0.13 423	9.90 639	43	
18	9.77 233	9.86 603	0.13 397	9.90 630	42	
19	9.77 250	9.86 630	0.13 370	9.90 620	41	
20	9.77 268	9.86 656	0.13 344	9.90 611	40 39	
21 22	9.77 288 9.77 302	9.86 683 9.86 709	0.13 317 0.13 291	9.90 602 9.90 592	39 38	
23	9.77 319	9.86 736	0.13 264	9.90 583	37	
24	9.77 336	9.86 762	0.13 238	9.90 574	36	
25 26	9.77 353	9.86 789 9.86 815	0.13 211 0.13 185	9.90 565 9.90 555	35 34	
27	9.77 370 9.77 387	9.86 842	0.13 158	9.90 546	33	
28	9.77 405	9.86 868	0.13 132	9.90 537	32	
29	9.77 422	9.86 894	0.13 106	9.90 527	31	
30	9.77 439	9.86 921	0.13 079	9.90 518	80	
31	9.77 456	9.86 947	0.13 053	9.90 509	29	
32 33	9.77 473 9.77 490	9.86 974 9.87 000	0.13 026 0.13 000	9.90 499 9.90 490	28 27	
34	9.77 507	9.87 027	0.12 973	9.90 480	26	
35	9.77 524	9.87 053	0.12 947	9.90 471	25	
36	9.77 541	9.87 079	0.12 921	9.90 462 9.90 452	24 23	
37 38	9.77 558 9.77 575	9.87 106 9.87 132	0.12 894 0.12 868	9.90 443	22	
39	9.77 592	9.87 158	0.12 842	9.90 434	21	
40	9.77 609	9.87 185	0.12 815	9.90 424	20	
41	9.77 626	9.87 211	0.12 789	9.90 415	19	
42	9.77 643	9.87 238	0.12 762	9.90 405	18	
43 44	9.77 660 9.77 677	9.87 264 9.87 290	0.12 736 0.12 710	9.90 396 9.90 386	17 16	
45	9.77 694	9.87 317	0.12 683	9.90 377	15	
46	9.77 711	9.87 317 9.87 343	0.12 657	9.90 368	14	
47.	9.77 728 9.77 744	9.87 369 9.87 396	0.12 631	9.90 358 9.90 349	13 12	
48 49	9.77 744 9.77 761	9.87 396 9.87 422	0.12 604 0.12 578	9.90 339	11	
50	9.77 778	9.87 448	0.12 552	9.90 330	10	
51	9.77 795	9.87 475	0.12 525	9.90 320	9	
52	9.77 812	9.87 501	0.12 499	9.90 311	8	
53	9.77 829	9.87 527	0.12 473	9.90 301 9.90 292	7	
54 55	9.77 846 9.77 862	9.87 554 9.87 580	0.12 446 0.12 420	9.90 292 9.90 282	6 5	
56	9.77 879	9.87 606	0.12 394	9.90 273	4 1	
57	9.77 896	9.87 633	0.12 367	9.90 263	ŝ	
58	9.77 913	9.87 659	0.12 341 0.12 315	9.90 254 9.90 244	2 1	
59 60	9.77 930 9.77 946	9.87 685	0.12 315	9.90 235	0	
- VV					_	
L	L. Cos.	L. Cot.	L. Tan.	L. Sin.		

°

,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.77 946	9.87 711	0.12 289	9.90 235	60
ı	9.77 963	9.87 738	0.12 262	9.90 225	59
2	9.77 980	9.87 764	0.12 236	9.90 216	58
3	9.77 997	9.87 790	0.12 210	9.90 206	57
4 5	9.78 013	9.87 817	0.12 183	9.90 197	56
6	9.78 030 9.78 047	9.87 843 9.87 869	0.12 157 0.12 131	9.90 187 9.90 178	55 54
7	9.78 063	9.87 895	0.12 105	9.90 168	53
8	9.78 080	9.87 922	0.12 078	9.90 159	52
9	9.78 097	9.87 948	0.12 052	9.90 149	51
10	9.78 113	9.87 974	0.12 026	9.90 139	50
11	9.78 130	9.88 000	0.12 000	9.90 130	49
12 13	9.78 147 9.78 163	9.88 027 9.88 053	0.11 973 0.11 947	9.90 120 9.90 111	48 47
14	9.78 180	9.88 079	0.11 921	9.90 101	46
15	9.78 197	9.88 105	0.11 895	9.90 091	45
16	9.78 213	9.88 131	0.11 869	9.90 082	44
17 18	9.78 230 9.78 246	9.88 158 9.88 184	0.11 842 0.11 816	9.90 072 9.90 063	43 42
19	9.78 263	9.88 210	0.11 790	9.90 053	41
20	9.78 280	9.88 236	0.11 764	9.90 043	40
21	9.78 296	9.88 262	0.11 738	9.90 034	39
22	9.78 313	9.88 289	0.11 711	9.90 024	38
23	9.78 329	9.88 315	0.11 685	9.90 014	37
24 25	9.78 346 9.78 362	9.88 341 9.88 367	0.11 659 0.11 633	9.90 005 9.89 995	36 35
26	9.78 379	9.88 393	0.11 607	9.89 985	34
27	9.78 395	9.88 420	.0.11 580	9.89 976	33
28	9.78 412	9.88 446	0.11 554	9.89 966	32
29 80	9.78 428	9.88 472	0.11 528	9.89 956	31
31	9.78 445	9.88 498 9.88 524	0.11 502	9.89 947 9.89 937	30
32	9.78 461 9.78 478	9.88 524 9.88 550	0.11 476 0.11 450	9.89 937 9.89 927	29 28
33	9.78 494	9.88 577	0.11 423	9.89 918	27
34	9.78 510	9.88 603	0.11 397	9.89 908	26
35 36	9.78 527 9.78 543	9.88 629 9.88 655	0.11 371 0.11 345	9.89 898 9.89 888	25 24
37	9.78 560	9.88 681	0.11 343	9.89 879	23
38	9.78 576	9.88 707	0.11 293	9.89 869	22
39	9.78 592	9.88 733	0.11 267	9.89 859	21
40	9.78 609	9.88 759	0.11 241	9.89 849	20
41	9.78 625	9.88 786	0.11 214	9.89 840	19
42 43	9.78 642 9.78 658	9.88 812 9.88 838	0.11 188 0.11 162	9.89 830 9.89 820	18 17
43 44	9.78 674	9.88 864	0.11 102	9.89 810	16
45	9.78 691	9.88 890	0.11 110	9.89 801	15
46	9.78 707	9.88 916	0.11 084	9.89 791	14
47 48	9.78 723 9.78 739	9.88 942 9.88 968	0.11 058 0.11 032	9.89 781 9.89 771	13 12
49	9.78 756	9.88 994	0.11 006	9.89 761	11
50	9.78 772	9.89 020	0.10 980	9.89 752	10
51	9.78 788	9.89 046	0.10 954	9.89 742	9
52	9.78 805	9.89 073	0.10 927	9.89 732	8 7
53 54	9.78 821 9.78 837	9.89 099 9.89 125	0.10 901 0.10 875	$9.89722 \\ 9.89712$	7 6
55	9.78 853	9.89 125	0.10 849	9.89 712	5
56	9.78 869	9.89 177	0.10 823	9.89 693	4
57	9.78 886	9.89 203	0.10 797	9.89 683	3
58 59	9.78 902 9.78 918	9.89 229 9.89 255	0.10 771 0.10 745	9.89 673 9.89 663	2 1
60	9.78 934	9.89 281	0.10 745	9.89 653	0
⊢ —		L. Cot.	L. Tan.	L. Sin.	,
	L. Cos.	L. Cot.	L. IAN.	L. SIII.	

L. Sin. L. Tan. L. Cot. L. Cos. 0 9.78 934 9.89 281 0.10 719 9.89 653 1 9.78 950 9.89 307 0.10 693 9.89 643 2 9.78 967 9.89 335 0.10 647 9.89 633 3 9.78 963 9.89 359 0.10 641 9.89 624 4 9.78 999 9.89 385 0.10 615 9.89 614 5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 015 9.89 437 0.10 589 9.89 604 7 9.79 047 9.89 437 0.10 539 9.89 584 8 9.79 063 9.89 483 0.10 511 9.89 584 9 9.79 079 9.89 515 0.10 485' 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 693 0.10 407 9.89 534 13 9.79 144 9.89 619	60 59 58 57 56 55
1 9.78 950 9.89 307 0.10 693 9.89 643 2 9.78 967 9.89 333 0.10 667 9.89 633 3 9.78 983 9.89 359 0.10 641 9.89 624 4 9.78 999 9.89 385 0.10 615 9.89 614 5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 031 9.89 437 0.10 589 9.89 604 7 9.79 047 9.89 463 0.10 537 9.89 584 8 9.79 063 9.89 489 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485' 9.89 564 10 9.79 085 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 160 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 504 15 9.79 176<	59 58 57 56 55
2 9.78 967 9.89 333 0.10 667 9.89 633 3 9.78 983 9.89 385 0.10 641 9.89 624 4 9.78 999 9.89 385 0.10 615 9.89 614 5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 031 9.89 437 0.10 563 9.89 594 7 9.79 047 9.89 463 0.10 537 9.89 584 8 9.79 063 9.89 489 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485' 9.89 564 10 9.79 085 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 124 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 534 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 126	58 57 56 55
3 9.78 983 9.89 359 0.10 641 9.89 624 4 9.78 999 9.89 385 0.10 615 9.89 614 5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 031 9.89 437 0.10 563 9.89 594 7 9.79 047 9.89 463 0.10 537 9.89 584 8 9.79 079 9.89 515 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 534 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 303 9.89 504 16 9.79 120 9.89 723 0.10 277 9.89 485 17 9.79 208	57 56 55
4 9.78 999 9.89 385 0.10 615 9.89 614 5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 031 9.89 437 0.10 563 9.89 594 7 9.79 047 9.89 463 0.10 537 9.89 584 8 9.79 063 9.89 489 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485 9.89 564 10 9.79 905 9.89 541 0.10 485 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 385 9.89 504 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 128 9.89 723 0.10 203 9.89 504 17 9.79 208 9.89 73 0.10 277 9.89 485 18 9.79 224	56 55
5 9.79 015 9.89 411 0.10 589 9.89 604 6 9.79 031 9.89 437 0.10 563 9.89 594 7 9.79 043 9.89 463 0.10 537 9.89 584 8 9.79 063 9.89 489 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485' 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 554 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 356 9.89 514 15 9.79 172 9.89 677 0.10 329 9.89 504 16 9.79 192 9.89 677 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79	55
6 9.79 031 9.89 437 0.10 563 9.89 584 9.79 047 9.89 463 0.10 537 9.89 584 9.79 063 9.89 489 0.10 511 9.89 574 9.79 079 9.89 515 0.10 485′ 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 564 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 647 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 485 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 729 0.10 251 9.89 475 19 9.79 226 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 801 0.10 173 9.89 445	
8 9.79 063 9.89 489 0.10 511 9.89 574 9 9.79 079 9.89 515 0.10 485' 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 554 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 667 0.10 365 9.89 514 15 9.79 172 9.89 667 0.10 303 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 485 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 224 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	54
9 9.79 079 9.89 515 0.10 488 9.89 564 10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 729 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 255 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 445 21 9.79 272 9.89 827 0.10 173 9.89 445	53
10 9.79 095 9.89 541 0.10 459 9.89 564 11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 224 9.89 775 0.10 251 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	52 51
11 9.79 111 9.89 567 0.10 433 9.89 544 12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	50
12 9.79 128 9.89 593 0.10 407 9.89 534 13 9.79 144 9.89 619 0.10 381 9.89 524 14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	49
14 9.79 160 9.89 645 0.10 355 9.89 514 15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 687 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 251 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	48
15 9.79 176 9.89 671 0.10 329 9.89 504 16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 743 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	47
16 9.79 192 9.89 697 0.10 303 9.89 495 17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	46 45
17 9.79 208 9.89 723 0.10 277 9.89 485 18 9.79 224 9.89 749 0.10 251 9.89 475 19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 465 21 9.79 272 9.89 827 0.10 173 9.89 445	44
19 9.79 240 9.89 775 0.10 225 9.89 465 20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	43
20 9.79 256 9.89 801 0.10 199 9.89 455 21 9.79 272 9.89 827 0.10 173 9.89 445	42
21 9.79 272 9.89 827 0.10 173 9.89 445	41
	40
	39 38
22	37
24 9.79 319 9.89 905 0.10 095 9.89 415	36
25	35
26	34 33
28 9.79 383 9.90 009 0.09 991 9.89 375	32
29 9.79 399 9.90 035 0.09 965 9.89 364	31
30 9.79 415 9.90 061 0.09 939 9.89 354	80
31 9.79 431 9.90 086 0.09 914 9.89 344	29
32	28
33	27 26
35 9.79 494 9.90 190 0.09 810 9.89 304	25
36 9.79 510 9.90 216 0.09 784 9.89 294	24
37	23 22
39 9.79 558 9.90 294 0.09 706 9.89 264	21
40 9.79 573 9.90 320 0.09 680 9.89 254	20
41 9.79 589 9.90 346 0.09 654 9.89 244	19
42 9.79 605 9.90 371 0.09 629 9.89 233	18
43 9.79 621 9.90 397 0.09 603 9.89 223	17
44 9.79 636 9.90 423 0.09 577 9.89 213 45 9.79 652 9.90 449 0.09 551 9.89 203	16 15
46 9.79 668 9.90 475 0.09 525 9.89 193	14
47 9.79 684 9.90 501 0.09 499 9.89 183	13
48 9.79 699 9.90 527 0.09 473 9.89 173 49 9.79 715 9.90 553 0.09 447 9.89 162	12
	11
50 9.79 731 9.90 578 0.09 422 9.89 152 51 9.79 746 9.90 604 0.09 396 9.89 142	10
52 9.79 746 9.90 604 0.09 396 9.89 142 52 9.79 762 9.90 630 0.09 370 9.89 132	9 8
53 9.79 778 9.90 656 0.09 344 9.89 122	7
54 9.79 793 9.90 682 0.09 318 9.89 112	6
55 9.79 809 9.90 708 0.09 292 9.89 101 56 9.79 825 9.90 734 0.09 266 9.89 091	5 4
57 9.79 840 9.90 759 0.09 241 9.89 081	3
58 9.79 856 9.90 785 0.09 21 5 9.89 071	2
59 9.79 872 9.90 811 0.09 189 9.89 060	1
60 9.79 887 9.90 837 0.09 163 9.89 050	0
L. Cos. L. Cot. L. Tan. L. Sin.	

UJ						
<u> </u>	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
0	9.79 887	9.90 837	0.09 163	9.89 050	60	
1 1	9.79 903	9.90 863	0.09 137	9.89 040	59	
2 3	9.79 918 9.79 934	9.90 889 9.90 914	0.09 111 0.09 086	9.89 030	58 57	
4	9.79 950	9.90 940	0.09 060	9.89 020 9.89 009	56	
5	9.79 965	9.90 966	0.09 034	9.88 999	55	
6	9.79 981	9.90 992	0.09 008	9.88 989	54	
7 8	9.79 996 9.80 012	9.91 018 9.91 043	0.08 982	9.88 978	53 52	
ı ş	9.80 012	9.91 043	0.08 957 0.08 931	9.88 968 9.88 958	51	
10	9.80 043	9.91 095	0.08 905	9.88 948	50	
11	9.80 058	9.91 121	0.08 879	9.88 937	49	
12	9.80 074	9.91 147	0.08 853	9.88 927	48	
13	9.80 089	9.91 172	0.08 828	9.88 917	47	
14	9.80 105	9.91 198	0.08 802	9.88 906	46	
15 16	9.80 120 9.80 136	9.91 224 9.91 250	0.08 776 0.08 750	9.88 8 96 9.88 886	45 44	
17	9.80 151	9.91 276	0.08 724	9.88 875	43	
18	9.80 166	9.91 301	0.08 699	9.88 865	42	
19	9.80 182	9.91 327	0.08 673	9.88 855	41	
20	9.80 197	9.91 353	0.08 647	9.88 844	40	
21	9.80 213	9.91 379	0.08 621	9.88 834	39	
22 23	9.80 228 9.80 244	9.91 404 9.91 430	0.08 596	9.88 824	38 37	
24	9.80 259	9.91 456	0.08 570 0.08 544	9.88 813 9.88 803	36	
25	9.80 274	9.91 482	0.08 518	9.88 793	35	
26	9.80 290	9.91 507	0.08 493	9.88 782	34	
27	9.80 305	9.91 533	0.08 467	9.88 772	33 32	
28 29	9.80 320 9.80 336	9.91 559 9.91 585	0.08 441 0.08 415	9.88 761 9.88 751	31	
80	9.80 351	9.91 610	0.08 390	9.88 741	80	
31	9.80 366	9.91 636	0.08 364	9.88 730	29	
32	9.80 382	9.91 662	0.08 338	9.88 720	28	
33	9.80 397	9.91 688	0.08 312	9.88 709	27	
34	9.80 412	9.91 713 9.91 739	0.08 287	9.88 699	26	
35 36	9.80 428 9.80 443	9.91 739	0.08 261 0.08 235	9.88 688 9.88 678	25 24	
37	9.80 458	9.91 791	0.08 209	9.88 668	23	
38	9.80 473	9.91 816	0.08 184	9.88 657	22	
39	9.80 489	9.91 842	0.08 158	9.88 647	21	
40	9.80 504	9.91 868	0.08 132	9.88 636	20	
41	9.80 519	9.91 893	0.08 107	9.88 626	19	
42 43	9.80 534 9.80 550	9.91 919 9.91 94 5	0.08 081 0.08 055	9.88 615 9.88 605	18 17	
44	9.80 565	9.91 971	0.08 029	9.88 594	16	
45	9.80 580	9.91 996	0.08 004	9.88 584	15	
46	9.80 595	9.92 022	0.07 978	9.88 573	14	
47 48	9.80 610 9.80 625	9.92 048 9.92 073	0.07 952 0.07 927	9.88 563	13 12	
49	9.80 641	9.92 073	0.07 921	9.88 552 9.88 542	11	
50	9.80 656	9.92 125	0.07 875	9.88 531	10	
51	9.80 671	9.92 150	0.07 850	9.88 521	9	
52	9.80 686	9.92 176	0.07 824	9.88 510	8	
53	9.80 701	9.92 202	0.07 798	9.88 499	7	
54 85	9.80 716	9.92 227	0.07 773	9.88 489	6 5	
55 56	9.80 731 9.80 746	9.92 253 9.92 279	0.07 747 0.07 721	9.88 478 9.88 468	4	
57	9.80 762	9.92 304	0.07 696	9.88 457	3	
58	9.80 777	9.92 330	0.07 670	9.88 447	2	
59	9.80 792	9.92 356	0.07 644	9.88 436	1	
60	9.80 807	9.92 381	0.07 619	9.88 425	•	
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,	

,	L. Sin. L. Tan. L. Cot. L. Cos.					
			0.07 619		60	
0	9.80 807	9.92 381	0.07 593	9.88 425 9.88 415		
1 2	9.80 822 9.80 837	9.92 407 9.92 433	0.07 567	9.88 404	59 58	
3	9.80 852	9.92 458	0.07 542	9.88 394	57	
.4	9.80 867	9.92 484	0.07 516	9.88 383	56	
5	9.80 882	9.92 510	0.07 490 0.07 465	9.88 372	55	
6 7	9.80 897 9.80 912	9.92 535 9.92 561	0.07 439	9.88 362 9.88 351	54 53	
8	9.80 927	9.92 587	0.07 413	9.88 340	52	
9	9.80 942	9.92 612	0.07 388	9.88 330	51	
10	9.80 957	9.92 638	0.07 362	9.88 319	50	
11	9.80 972	9.92 663	0.07 337	9.88 308	49	
12 13	9.80 987 9.81 002	9.92 689 9.92 715	0.07 311 0.07 285	9.88 298 9.88 287	48 47	
14	9.81 002	9.92 740	0.07 260	9.88 276	46	
15	9.81 032	9.92 766	0.07 260 0.07 234	9.88 266	45	
16	9.81 047	9.92 792	0.07 208	9.88 255	44	
17 18	9.81 061 9.81 076	9.92 817 9.92 843	0.07 183 0.07 157	9.88 244 9.88 234	43 42	
19	9.81 091	9.92 868	0.07 132	9.88 223	41	
20	9.81 106	9.92 894	0.07 106	9.88 212	40	
21	9.81 121	9.92 920	0.07 080	9.88 201	39	
22	9.81 136	9.92 945	0.07 058	9.88 191	38	
23	9.81 151	9.92 971	0.07 029	9.88 180	37	
24 25	9.81 166 9.81 180	9.92 996 9.93 022	0.07 004 0.06 978	9.88 169 9.88 158	36 35	
26	9.81 195	9.93 048	0.06 952	9.88 148	34	
27	9.81 210 9.81 225	9.93 073	0.06 927	9.88 137	33	
28	9.81 225 9.81 240	9.93 099 9.93 124	0.06 901	9.88 126 9.88 115	32 31	
29 30	9.81 254	9.93 150	0.06 876	9.88 105	80	
31	9.81 269	9.93 175	0.06 825	9.88 094	29	
32	9.81 284	9.93 201	0.06 799	9.88 083	28	
33	9.81 299	9.93 227	0.06 773	9.88 072	27	
34	9.81 314	9.93 252	0.06 748	9.88 061	26	
35 36	9.81 328 9.81 343	9.93 278 9.93 303	0.06 722 0.06 697	9.88 051 9.88 040	25 24	
37	9.81 358	9.93 329	0.06 671	9.88 029	23	
38	9.81 372	9.93 354	0.06 646	9.88 018	22	
39	9.81 387	9.93 380	0.06 620	9.88 007	21	
40	9.81 402	9.93 406	0.06 594	9.87 996	20	
41	9.81 417	9.93 431	0.06 569	9.87 985	19	
42 43	9.81 431 9.81 446	9.93 457 9.93 482	0.06 543 0.06 518	9.87 975 9.87 964	18 17	
44	9.81 461	9.93 508	0.06 492	9.87 953	16	
45	9.81 475	9.93 533	0.06 467	9.87 942	15	
46 47	9.81 490 9.81 505	9.93 559 9.93 584	0.06 441 0.06 416	9.87 931 9.87 920	14 13	
48	9.81 519	9.93 610	0.06 390	9.87 909	13	
49	9.81 534	9.93 636	0.06 364	9.87 898	11	
50	9.81 549	9.93 661	0.06 339	9.87 887	10	
51	9.81 563	9.93 687	0.06 313	9.87 877	9	
52	9.81 578	9.93 712	0.06 288	9.87 866	8	
53 54	9.81 592 9.81 607	9.93 738 9.93 763	0.06 262 0.06 237	9.87 855 9.87 844	7	
55	9.81 622	9.93 789	0.06 211	9.87 833	5	
56	9.81 636	9.93 814	0.06 186	9.87 822	4	
57 58	9.81 651 9.81 665	9.93 840 9.93 865	0.06 160 0.06 135	9.87 811 9.87 800	3 2	
59	9.81 680	9.93 891	0.06 109	9.87 789	í	
60	9.81 694	9.93 916	0.06 084	9.87 778	ō	
_	L. Cos,	L. Cot.	L. Tan.	L. Sin.	,	
<u> </u>		L. 00t.	1 4111		لسنسا	

	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
6	9.81 694	9.93 916	0.06 084	9.87 778	60
ľi	9.81 709	9.93 942	0.06 058	9.87 767	59
2	9.81 723	9.93 967	0.06 033	9.87 756	58
3	9.81 738	9.93 993	0.06 007	9.87 745	57
4	9.81 752 9.81 767	9.94 018 9.94 044	0.05 982 0.05 956	9.87 734 9.87 723	56 55
5 6	9.81 781	9.94 069	0.05 931	9.87 712	54
7	9.81 796	9.94 095	0.05 905	9.87 701	53
8	9.81 810	9.94 120	0.05 880	9.87 690	52
9	9.81 825	9.94 146	0.05 854	9.87 679	51 50
10 11	9.81 839 9.81 854	9.94 171 -	0.05 829	9.87 668 9.87 657	49
12	9.81 868	9.94 197	0.05 778	9.87 646	48
13	9.81 882	9.94 248	0.05 752	9.87 635	47
14	9.81 897	9.94 273	0.05 727	9.87 624	46
15	9.81 911	9.94 299 9.94 324	0.05 701 0.05 676	9.87 613	45 44
16 17	9.81 926 9.81 940	9.94 350	0.05 650	9.87 601 9.87 590	43
18	9.81 955	9.94 375	0.05 625	9.87 579	42
19	9.81 969	9.94 401	0.05 599	9.87 568	41
20	9.81 983	9.94 426	0.05 574	9.87 557	40
21	9.81 998	9.94 452	0.05 548	9.87 546	39
22 23	9.82 012 9.82 026	9.94 477 9.94 503	0.05 523 0.05 497	9.87 535 9.87 524	38 37
23	9.82 041	9.94 528	0.05 472	9.87 513	36
25	$9.82\ 055$	9.94 554	0.05 446	9.87 501	35
26	9.82 069	9.94 579	0.05 421	9.87 490	34
27 28	9.82 084 9.82 098	9.94 604 9.94 630	0.05 396 0.05 370	9.87 479 9.87 468	33 32
29	9.82 112	9.94 655	0.05 345	9.87 457	31
30	9.82 126	9.94 681	0.05 319	9.87 446	80
31	9.82 141	9.94 706	0.05 294	9.87 434	29
32	9.82 155	9.94 732	0.05 268	9.87 423	28
33 34	9.82 169 9.82 184	9.94 757 9.94 783	0.05 243 0.05 217	9.87 412 9.87 401	27 26
35 35	9.82 198	9.94 808	0.05 217	9.87 390	25
36	$9.82\ 212$	9.94 834	0.05 166	9.87 378	24
37	9.82 226	9.94 859	0.05 141	9.87 367	23
38 39	9.82 240 9.82 255	9.94 884 9.94 910	0.05 116 0.05 090	9.87 356 9.87 348	22 21
40	9.82 269	9.94 935	0.05 068	9.87 334	20
41	9.82 283	9.94 961	0.05 039	9.87 322	19
42	9.82 297	9.94 986	0.05 014	9.87 311	18
43	9.82 311	9.95 012	0.04 988	9.87 300	17
44 45	9.82 326 9.82 340	9.95 037 9.95 062	0.04 963 0.04 938	9.87 288 9.87 277	16 15
46	9.82 354	9.95 088	0.04 938	9.87 266	14
47	9.82 368	9.95 113	0.04 887	9.87 255	13
48	9.82 382	9.95 139	0.04 861	9.87 243	12
49 50	9.82 396 9.82 410	9.95 164	0.04 836	9.87 232 9.87 221	11 10
50 51	9.82 424	9.95 190	0.04 810	9.87 221	9
51 52	9.82 424 9.82 439	9.95 215	0.04 780	9.87 209	8
53	9.82 453	9.95 266	0.04 734	9.87 187	7
54	9.82 467	9.95 291	0.04 709	9.87 175	6
55 56	9.82 481 9.82 495	9.95 317 9.95 342	0.04 683 0.04 658	9.87 164 9.87 153	5 4
57	9.82 509	9.95 368	0.04 632	9.87 141	3
58	9.82 523	9.95 393	0.04 607	9.87 130	2
59	9.82 537	9.95 418	0.04 582	9.87 119	1
60	9.82 551	9.95 444	0.04 556	9.87 107	• 0
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	<u>'</u>

0 9.82 5615 9.95 444 0.04 566 9.87 107 €0 1 9.82 568 9.95 446 0.04 565 9.87 106 59 2 9.82 593 9.95 520 0.04 400 9.87 073 57 4 9.82 693 9.95 520 0.04 409 9.87 073 57 5 9.82 631 9.95 571 0.04 429 9.87 070 56 6 9.82 635 9.95 596 0.04 404 9.87 039 54 7 9.82 663 9.95 672 0.04 333 9.87 016 52 9 9.82 677 9.95 698 0.04 302 9.86 993 50 10 9.82 691 9.95 698 0.04 302 9.86 993 50 11 9.82 705 9.95 793 0.04 277 9.86 982 49 12 9.82 719 9.95 793 0.04 272 9.86 993 40 12 9.82 719 9.95 794 0.04 226 9.86 989 41 15 9.82 719 0.95 726 0	,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
1 9.82 565 9.95 469 0.04 531 9.87 096 58 2 9.82 593 9.95 590 0.04 400 9.87 085 58 3 9.82 693 9.95 596 0.04 400 9.87 073 57 4 9.82 607 9.95 545 0.04 429 9.87 070 56 5 9.82 635 9.95 596 0.04 404 9.87 039 54 7 9.82 649 9.95 596 0.04 404 9.87 039 54 7 9.82 649 9.95 672 0.04 333 9.87 016 52 9 9.82 677 9.95 672 0.04 328 9.87 005 51 10 9.82 691 9.95 698 0.04 302 9.86 993 50 11 9.82 705 9.95 778 0.04 226 9.86 993 50 12 9.82 119 9.95 748 0.04 226 9.86 995 50 13 9.82 733 9.95 774 0.04 226 9.86 997 48 14 9.82 747 9.95 799 0.04 201 9.86 947 46 15 9.82 761 9.95 825 0.04 175 9.86 936 45 16 9.82 765 9.95 895 0.04 175 9.86 936 45 17 9.82 788 9.95 875 0.04 125 9.86 913 43 18 9.82 802 9.95 901 0.04 009 9.86 902 44 17 9.82 816 9.95 926 0.04 074 9.86 890 41 19 9.82 816 9.95 926 0.04 074 9.86 890 41 19 9.82 816 9.95 926 0.04 074 9.86 890 41 20 9.82 835 9.95 932 0.04 088 9.86 857 39 21 9.82 834 9.95 977 0.04 023 9.86 879 40 21 9.82 835 9.96 023 0.03 972 9.86 845 38 22 9.82 899 9.96 078 0.03 972 9.86 841 37 22 9.82 895 9.96 035 0.03 974 9.86 832 36 23 9.82 972 9.96 129 0.03 871 9.86 783 33 24 9.82 895 9.96 205 0.03 795 9.86 763 30 31 9.82 982 9.96 231 0.03 795 9.86 775 31 32 9.82 985 9.96 205 0.03 795 9.86 775 31 34 9.83 023 9.96 205 0.03 795 9.86 677 31 35 9.83 810 9.96 281 0.03 795 9.86 673 32 35 9.83 810 9.96 281 0.03 795 9.86 775 31 36 9.83 101 9.96 681 0.03 820 9.86 775 31 37 9.83 982 9.96 687 0.03 887 9.86 682 24 40 9.83 161 9.96 686 0.03 744 9.86 690 16 40 9.83 161 9.96 686 0.03 744 9.86 690 16 41 9.83 120 9.96 686 0.03 344						-00
2 9.82 579 9.95 445 0.04 505 9.87 085 58 88 9.82 593 9.95 590 0.04 4490 9.87 073 56 56 9.82 621 9.95 571 0.04 429 9.87 060 55 66 9.82 635 9.95 596 0.04 404 9.87 039 54 7 9.82 649 9.95 622 0.04 378 9.87 028 53 9.82 637 9.95 672 0.04 328 9.87 005 51 9 9.82 677 9.95 672 0.04 328 9.87 005 51 9 9.82 677 9.95 672 0.04 328 9.87 005 51 10 9.82 691 9.95 688 0.04 272 9.86 983 50 11 9.82 705 9.95 774 0.04 236 9.86 970 48 13 9.82 719 9.95 774 0.04 226 9.86 970 48 13 9.82 747 9.95 799 0.04 201 9.86 947 46 15 9.82 761 9.95 825 0.04 175 9.86 984 45 16 9.82 775 9.95 895 0.04 175 9.86 984 45 16 9.82 775 9.95 895 0.04 175 9.86 984 45 18 9.82 802 9.95 801 0.04 099 9.86 902 42 19 9.82 816 9.95 950 0.04 125 9.86 913 43 18 9.82 802 9.95 901 0.04 099 9.86 802 41 19 9.82 816 9.95 950 0.04 125 9.86 879 40 19 9.82 816 9.95 950 0.04 125 9.86 879 40 19 9.82 816 9.95 950 0.04 125 9.86 894 42 42 9.82 816 9.95 950 0.04 125 9.86 894 42 42 9.82 816 9.95 950 0.04 125 9.86 800 41 19 9.82 816 9.95 950 0.04 125 9.86 800 41 19 9.82 816 9.95 950 0.04 125 9.86 801 41 9.82 816 9.95 950 0.04 0.99 9.86 802 42 42 9.82 816 9.95 950 0.04 0.99 9.86 805 38 45 45 45 45 45 45 45 45 45 45 45 45 45	-					
3 9.82 593 9.95 520 0.04 485 9.87 673 87 5 9.82 621 9.95 541 0.04 429 9.87 060 56 6 9.82 635 9.95 596 0.04 404 9.87 039 54 7 9.82 643 9.95 622 0.04 378 9.87 028 53 8 9.82 663 9.95 672 0.04 328 9.87 016 52 9 9.82 677 9.95 672 0.04 328 9.87 016 52 10 9.82 691 9.95 672 0.04 329 9.86 993 50 11 9.82 705 9.95 673 0.04 277 9.86 983 50 12 9.82 705 9.95 723 0.04 277 9.86 985 49 12 9.82 719 9.95 773 0.04 277 9.86 989 47 14 9.82 733 9.95 779 0.04 201 9.86 995 47 14 9.82 775 9.95 850 0.04 125 9.86 994 44 17 9.82 802 9.95 970 0						
6 9.82 635 9.95 596 0.04 429 9.87 039 54 7 9.82 649 9.95 622 0.04 378 9.87 028 53 8 9.82 667 9.95 622 0.04 378 9.87 028 53 9 9.82 677 9.95 672 0.04 328 9.87 005 51 10 9.82 661 9.95 688 0.04 277 9.86 993 50 11 9.82 719 9.95 748 0.04 252 9.86 993 50 11 9.82 719 9.95 748 0.04 252 9.86 970 48 13 9.82 719 9.95 748 0.04 252 9.86 970 48 13 9.82 719 9.95 779 0.04 220 9.86 994 47 14 9.82 761 9.95 885 0.04 175 9.86 936 45 16 9.82 785 9.95 850 0.04 175 9.86 934 44 17 9.82 816 9.95 957 0.04 109 9.86 902 42 20 9.82 816 9.95 957 <th< th=""><th>3</th><th></th><th>9.95 520</th><th></th><th></th><th></th></th<>	3		9.95 520			
6 9.82 635 9.95 596 0.04 429 9.87 039 54 7 9.82 649 9.95 622 0.04 378 9.87 028 53 8 9.82 667 9.95 622 0.04 378 9.87 028 53 9 9.82 677 9.95 672 0.04 328 9.87 005 51 10 9.82 661 9.95 688 0.04 277 9.86 993 50 11 9.82 719 9.95 748 0.04 252 9.86 993 50 11 9.82 719 9.95 748 0.04 252 9.86 970 48 13 9.82 719 9.95 748 0.04 252 9.86 970 48 13 9.82 719 9.95 779 0.04 220 9.86 994 47 14 9.82 761 9.95 885 0.04 175 9.86 936 45 16 9.82 785 9.95 850 0.04 175 9.86 934 44 17 9.82 816 9.95 957 0.04 109 9.86 902 42 20 9.82 816 9.95 957 <th< th=""><th>4</th><th></th><th></th><th></th><th></th><th>56</th></th<>	4					56
7 9.82 649 9.95 622 0.04 378 9.87 028 83 9 9.82 677 9.95 672 0.04 328 9.87 005 51 10 9.82 691 9.95 698 0.04 302 9.86 993 50 11 9.82 705 9.95 723 0.04 277 9.86 982 49 12 9.82 719 9.95 748 0.04 225 9.86 970 48 13 9.82 733 9.95 774 0.04 226 9.86 999 47 14 9.82 761 9.95 850 0.04 1175 9.86 994 44 15 9.82 761 9.95 850 0.04 125 9.86 994 44 16 9.82 775 9.95 850 0.04 125 9.86 991 44 17 9.82 816 9.95 926 0.04 125 9.86 991 44 17 9.82 816 9.95 926 0.04 074 9.86 890 41 20 9.82 836 9.95 926 0.04 074 9.86 887 40 21 9.82 844 9.95 952						
8						
10	8	9.82 663	9.95 647	0.04 353		
11		9.82 677			9.87 005	51
12						50
13						
14 9.82 747 9.95 799 0.04 201 9.86 947 46 15 9.82 761 9.95 826 0.04 175 9.86 936 45 16 9.82 776 9.95 850 0.04 150 9.86 936 45 17 9.82 788 9.95 875 0.04 125 9.86 913 43 18 9.82 802 9.95 901 0.04 099 9.86 902 42 19 9.82 816 9.95 926 0.04 074 9.86 890 41 20 9.82 830 9.95 932 0.04 048 9.86 879 40 21 9.82 844 9.95 977 0.04 023 9.86 867 39 22 9.82 858 9.96 002 0.03 998 9.86 855 38 23 9.82 872 9.96 028 0.03 972 9.86 844 37 24 9.82 885 9.96 053 0.03 972 9.86 842 35 25 9.82 899 9.96 078 0.03 982 9.86 852 36 26 9.82 913 9.96 104 0.03 896 9.86 803 34 27 9.82 927 9.96 129 0.03 871 9.86 798 33 28 9.82 941 9.96 155 0.03 845 9.86 786 32 29 9.82 968 9.96 800 0.03 820 9.86 775 31 30 9.82 988 9.96 205 0.03 749 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 740 28 34 9.83 023 9.96 307 0.03 668 9.86 004 28 35 9.83 037 9.96 332 0.03 668 9.86 705 25 36 9.83 037 9.96 332 0.03 668 9.86 705 25 36 9.83 037 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 433 0.03 567 9.86 669 24 40 9.83 106 9.96 459 0.03 440 9.86 670 22 39 9.83 133 9.96 510 0.03 490 9.86 670 22 39 9.83 133 9.96 610 0.03 440 9.86 680 21 40 9.83 106 9.96 459 0.03 841 9.86 670 22 41 9.83 120 9.96 484 0.03 516 9.86 612 17 44 9.83 120 9.96 484 0.03 516 9.86 612 17 44 9.83 120 9.96 636 0.03 440 9.86 669 21 44 9.83 161 9.96 560 0.03 440 9.86 669 21 45 9.83 188 9.96 611 0.03 719 9.86 659 21 46 9.83 188 9.96 610 0.03 440 9.86 659 21 47 9.83 202 9.96 636 0.03 389 9.86 577 14 48 9.83 174 9.96 586 0.03 344 9.86 670 22 9.83 299 9.96 687 0.03 388 9.86 554 12 9.83 299 9.96 687 0.03 388 9.86 554 12 9.83 299 9.96 688 0.03 392 9.86 550 13 49 9.83 229 9.96 689 0.03 841 9.86 642 18 49 9.83 229 9.96 689 0.03 841 9.86 640 45 9.83 188 9.96 691 0.03 889 9.86 557 14 49 9.83 229 9.96 689 0.03 841 9.86 640 45 9.83 889 9.86 650 0.03 889 9.86 554 12 9.83 289 9.96 689 0.03 110 9.86 448 9.86 640 45 9.83 384 9.96 990 0.03 110 9.86 448 35 9.86 691 0.03 0.03 0.00 9.86 425 15 50 9.8						
15						
17				0.04 175	9.86 936	45
18		9.82 775				
19				0.04 120		
21 9.82 844 9.95 977 0.04 023 9.86 867 39 22 9.82 858 9.96 002 0.03 998 9.86 855 38 23 9.82 872 9.96 028 0.03 972 9.86 844 37 24 9.82 885 9.96 053 0.03 947 9.86 832 36 25 9.82 899 9.96 078 0.03 922 9.86 821 35 26 9.82 991 9.96 104 0.03 896 9.86 809 34 27 9.82 927 9.96 129 0.03 871 9.86 798 33 28 9.82 941 9.96 155 0.03 845 9.86 786 32 29 9.82 955 9.96 180 0.03 820 9.86 775 31 30 9.82 968 9.96 205 0.03 795 9.86 762 29 9.82 986 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 205 0.03 795 9.86 762 29 32 9.82 996 9.96 281 0.03 719 9.86 728 27 34 9.83 023 9.96 307 0.03 693 9.86 717 26 35 9.83 037 9.96 332 0.03 693 9.86 717 26 35 9.83 037 9.96 332 0.03 683 9.86 705 25 36 9.83 051 9.96 357 0.03 693 9.86 705 25 38 9.83 078 9.96 433 0.03 567 9.86 659 21 40 9.83 106 9.96 459 0.03 541 9.86 659 21 40 9.83 106 9.96 459 0.03 541 9.86 665 21 17 44 9.83 161 9.96 535 0.03 440 9.86 605 14 4 9.83 161 9.96 560 0.03 440 9.86 605 14 9.83 147 9.96 560 0.03 440 9.86 601 14 9.83 161 9.96 560 0.03 440 9.86 601 14 9.83 161 9.96 560 0.03 440 9.86 601 14 9.83 161 9.96 560 0.03 440 9.86 601 14 9.83 129 9.96 687 0.03 389 9.86 577 14 4 9.83 161 9.96 560 0.03 440 9.86 500 16 49 9.83 128 9.96 611 0.03 389 9.86 577 14 4 9.83 161 9.96 560 0.03 440 9.86 600 16 6 9.83 188 9.96 611 0.03 389 9.86 577 14 9.83 202 9.96 687 0.03 340 9.86 504 12 9.83 202 9.96 687 0.03 340 9.86 504 12 9.83 202 9.96 687 0.03 388 9.86 554 12 9.83 202 9.96 687 0.03 388 9.86 550 13 9.83 202 9.96 687 0.03 388 9.86 554 12 9.83 202 9.96 687 0.03 388 9.86 550 13 9.83 202 9.96 687 0.03 388 9.86 550 13 9.83 202 9.96 687 0.03 388 9.86 550 15 9.83 202 9.96 687 0.03 388 9.86 550 15 9.83 202 9.86 680 0.03 161 9.86 442 55 9.83 310 9.86 690 0.03 110 9.86 448 3 55 9.83 310 9.86 690 0.03 110 9.86 448 3						
22	20	9.82 830	9.95 952	0.04 048	9.86 879	40
22		9.82 844				
24 9.82 885 9.96 053 0.03 947 9.86 832 36 25 9.82 899 9.96 078 0.03 922 9.86 821 35 26 9.82 913 9.96 104 0.03 896 9.86 809 34 27 9.82 927 9.96 129 0.03 845 9.86 798 33 28 9.82 941 9.96 180 0.03 845 9.86 786 32 29 9.82 956 9.96 180 0.03 820 9.86 775 31 30 9.82 968 9.96 205 0.03 769 9.86 763 30 31 9.82 982 9.96 256 0.03 744 9.86 740 28 32 9.82 996 9.96 256 0.03 719 9.86 752 29 34 9.83 037 9.96 337 0.03 688 9.86 705 25 35 9.83 037 9.96 337 0.03 688 9.86 705 25 36 9.83 061 9.96 337 0.03 688 9.86 705 22 37 9.83 065 9.96 337						38
25						
26 9.82 913 9.96 104 0.03 896 9.86 809 34 27 9.82 927 9.96 129 0.03 871 9.86 798 33 28 9.82 941 9.96 155 0.03 845 9.86 786 32 29 9.82 955 9.96 180 0.03 820 9.86 775 31 30 9.82 968 9.96 205 0.03 769 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 762 29 32 9.82 996 9.96 256 0.03 744 9.86 740 28 33 9.83 010 9.96 321 0.03 719 9.86 722 29 34 9.83 023 9.96 307 0.03 693 9.86 717 26 35 9.83 051 9.96 357 0.03 643 9.86 705 25 37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 438 0.03 517 9.86 682 23 39 9.83 092 9.96 433						
28 9.82 941 9.96 155 0.03 845 9.86 786 32 29 9.82 956 9.96 180 0.03 820 9.86 775 31 30 9.82 968 9.96 205 0.03 795 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 752 29 32 9.82 996 9.96 281 0.03 714 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 728 27 34 9.83 037 9.96 337 0.03 668 9.86 705 25 35 9.83 051 9.96 387 0.03 668 9.86 705 25 36 9.83 065 9.96 383 0.03 617 9.86 694 24 37 9.83 065 9.96 483 0.03 592 9.86 670 22 39 9.83 092 9.96 433 0.03 567 9.86 659 21 40 9.83 130 9.96 459 0.03 541 9.86 647 20 41 9.83 120 9.96 484						
29 9.82 956 9.96 180 0.03 820 9.86 775 31 30 9.82 968 9.96 205 0.03 795 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 752 29 32 9.82 996 9.96 256 0.03 719 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 728 27 34 9.83 023 9.96 307 0.03 693 9.86 717 26 35 9.83 051 9.96 357 0.03 643 9.86 694 24 37 9.83 065 9.96 383 0.03 617 9.86 694 24 37 9.83 065 9.96 433 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 092 9.96 433 0.03 567 9.86 635 21 40 9.83 106 9.96 459 0.03 541 9.86 635 19 41 9.83 120 9.96 484						
80 9.82 968 9.96 205 0.03 795 9.86 763 30 31 9.82 982 9.96 231 0.03 769 9.86 752 29 32 9.82 996 9.96 256 0.03 744 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 724 28 34 9.83 023 9.96 307 0.03 668 9.86 717 26 35 9.83 051 9.96 357 0.03 668 9.86 705 25 36 9.83 051 9.96 37 0.03 668 9.86 705 25 37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 106 9.96 459 0.03 541 9.86 654 21 40 9.83 120 9.96 484 0.03 516 9.86 634 18 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 536						
31						
32 9.82 996 9.96 256 0.03 744 9.86 740 28 33 9.83 010 9.96 281 0.03 719 9.86 728 27 34 9.83 023 9.96 307 0.03 698 9.86 717 26 35 9.83 037 9.96 332 0.03 688 9.86 705 25 36 9.83 051 9.96 387 0.03 643 9.86 694 24 37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 106 9.96 459 0.03 541 9.86 659 21 40 9.83 106 9.96 484 0.03 516 9.86 635 19 41 9.83 120 9.96 536 0.03 460 9.86 624 18 43 9.83 147 9.96 536 0.03 465 9.86 612 17 44 9.83 174 9.96 586 0.03 440 9.86 589 15 46 9.83 174 9.96 636		0102 000				
33						
35 9.83 037 9.96 332 0.03 668 9.86 705 25 36 9.83 051 9.96 387 0.03 643 9.86 694 24 37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 092 9.96 439 0.03 567 9.86 659 21 40 9.83 106 9.96 459 0.03 516 9.86 635 19 41 9.83 120 9.96 484 0.03 516 9.86 634 18 42 9.83 133 9.96 535 0.03 465 9.86 612 17 44 9.83 161 9.96 536 0.03 440 9.86 601 16 45 9.83 174 9.96 586 0.03 440 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 225 9.96 636 0.03 389 9.86 554 12 49 9.83 229 9.96 637	33	9.83 010	9.96 281	0.03 719	9.86 728	
36 9.83 051 9.96 387 0.03 643 9.86 694 24 37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 679 22 39 9.83 092 9.96 433 0.03 567 9.86 659 21 40 9.83 106 9.96 459 0.03 516 9.86 635 19 41 9.83 120 9.96 484 0.03 516 9.86 635 19 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 161 9.96 586 0.03 440 9.86 600 16 45 9.83 174 9.96 586 0.03 444 9.86 589 15 46 9.83 188 9.96 611 0.03 384 9.86 554 12 47 9.83 220 9.96 686 0.03 364 9.86 554 12 49 9.83 2215 9.96 687 0.03 313 9.86 554 12 49 9.83 226 9.96 738						
37 9.83 065 9.96 383 0.03 617 9.86 682 23 38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 092 9.96 433 0.03 567 9.86 667 22 40 9.83 106 9.96 459 0.03 541 9.86 647 20 41 9.83 120 9.96 484 0.03 516 9.86 635 19 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 586 0.03 440 9.86 600 16 45 9.83 174 9.96 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 384 9.86 571 14 47 9.83 202 9.96 636 0.03 364 9.86 561 13 48 9.83 215 9.96 687 0.03 384 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 594 11 50 9.83 242 9.96 772						
38 9.83 078 9.96 408 0.03 592 9.86 670 22 39 9.83 092 9.96 433 0.03 567 9.86 659 21 40 9.83 106 9.96 459 0.03 541 9.86 647 20 41 9.83 120 9.96 484 0.03 516 9.86 635 19 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 586 0.03 440 9.86 601 17 44 9.83 174 9.96 586 0.03 440 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 202 9.96 636 0.03 364 9.86 554 12 49 9.83 225 9.96 687 0.03 388 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 530 10 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738						
40 9.83 106 9.96 459 0.03 541 9.86 647 20 41 9.83 120 9.96 484 0.03 516 9.86 635 19 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 535 0.03 465 9.86 602 17 44 9.83 161 9.96 560 0.03 440 9.86 600 16 45 9.83 174 9.96 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 571 14 47 9.83 202 9.96 636 0.03 384 9.86 554 12 49 9.83 215 9.96 662 0.03 384 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 554 12 51 9.83 256 9.96 738 0.03 262 9.86 518 9.83 262 9.83 270 9.96 788 0.03 212 9.86 507 85 52 9.83 270 9.96 763 0.03 287 9.86 507 85 53 9.83 283 9.96 788 0.03 212 9.86 495 75 54 9.83 29 9.96 788 0.03 212 9.86 495 75 54 9.83 29 9.96 788 0.03 186 9.86 485 655 9.83 310 9.96 839 0.03 161 9.86 485 655 9.83 310 9.96 849 0.03 161 9.86 472 556 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 385 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 990 0.03 085 9.86 436 2 9.83 378 9.96 996 0.03 084 9.86 436 2 9.83 378 9.96 996 0.03 084 9.86 436 2 9.83 378 9.96 996 0.03 084 9.86 436 2 9.83 378 9.96 996 0.03 084 9.86 413 0						
41 9.83 120 9.96 484 0.03 516 9.86 635 19 42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 535 0.03 465 9.86 612 17 44 9.83 161 9.96 560 0.03 440 9.86 602 16 45 9.83 174 9.96 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 202 9.96 636 0.03 384 9.86 567 13 48 9.83 215 9.96 636 0.03 384 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 550 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 27 9.86 518 9 52 9.83 270 9.96 788 0.03 212 9.86 495 7 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 485 655 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 310 9.96 839 0.03 161 9.86 472 5 57 9.83 384 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						
42 9.83 133 9.96 510 0.03 490 9.86 624 18 43 9.83 147 9.96 536 0.03 465 9.86 602 17 44 9.83 161 9.96 560 0.03 440 9.86 601 16 45 9.83 174 9.96 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 5577 14 47 9.83 202 9.96 636 0.03 364 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 530 10 51 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 788 0.03 237 9.86 507 8 53 9.83 293 9.96 788 0.03 186 9.86 495 7 54 9.83 329 9.96 894 <						
43 9.83 147 9.96 535 0.03 465 9.86 612 17 44 9.83 161 9.96 580 0.03 440 9.86 600 16 45 9.83 174 9.95 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 202 9.96 636 0.03 364 9.86 565 13 48 9.83 215 9.96 662 0.03 338 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 270 9.96 738 0.03 262 9.86 518 9 52 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 482 5 56 9.83 324 9.96 864 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
44 9.83 161 9.96 560 0.03 440 9.86 600 16 45 9.83 174 9.96 586 0.03 414 9.86 589 15 46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 202 9.96 636 0.03 364 9.86 565 13 48 9.83 215 9.96 662 0.03 338 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 520 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 237 9.86 507 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 391 9.96 839 0.03 161 9.86 483 6 55 9.83 310 9.96 864 0.03 136 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 440 4 57 9.83 388 9.96 890						
46 9.83 188 9.96 611 0.03 389 9.86 577 14 47 9.83 202 9.96 636 0.03 364 9.86 565 13 48 9.83 215 9.96 662 0.03 338 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 270 9.96 763 0.03 262 9.86 518 9 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 4472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 338 9.96 890 0.03 110 9.86 446 4 57 9.83 365 9.96 940 0.03 085 9.86 436 2 59 9.83 378 9.96 966 0.03 034 9.86 413 0 60 9.83 378 9.96 966	44	9.83 161	9.96 560	0.03 440	9.86 600	16
47 9.83 202 9.96 636 0.03 364 9.86 565 13 48 9.83 215 9.96 662 0.03 338 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 237 9.86 507 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 080 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0						
48 9.83 215 9.96 662 0.03 338 9.86 554 12 49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 237 9.86 507 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 381 9.96 890 0.03 110 9.86 446 3 58 9.83 351 9.96 9915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 034 9.86 413 0 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						
49 9.83 229 9.96 687 0.03 313 9.86 542 11 50 9.83 242 9.96 712 0.03 288 9.86 530 10 51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 237 9.86 507 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 482 5 56 9.83 324 9.96 864 0.03 136 9.86 404 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 9 9.83 365 9.96 940 0.03 034 9.86 413 0 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /		9.83 215	9.96 662			
51 9.83 256 9.96 738 0.03 262 9.86 518 9 52 9.83 270 9.96 763 0.03 237 9.86 507 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 440 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 034 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /	49	9.83 229	9.96 687	0.03 313	9.86 542	
52 9.83 270 9.96 763 0.03 237 9.86 607 8 53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 080 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /	50				9.86 530	10
53 9.83 283 9.96 788 0.03 212 9.86 495 7 54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						
54 9.83 297 9.96 814 0.03 186 9.86 483 6 55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 460 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						8 7
55 9.83 310 9.96 839 0.03 161 9.86 472 5 56 9.83 324 9.96 864 0.03 136 9.86 440 4 57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						
57 9.83 338 9.96 890 0.03 110 9.86 448 3 58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /	55	9.83 310	9.96 839	0.03 161	9.86 472	5
58 9.83 351 9.96 915 0.03 085 9.86 436 2 59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L. Cos. L. Cot. L. Tan. L. Sin. /						4
59 9.83 365 9.96 940 0.03 060 9.86 425 1 60 9.83 378 9.96 966 0.03 034 9.86 413 0 L, Cos. L, Cot. L, Tan. L, Sin. /						3 2
60 9.83 378 9.96 966 0.03 034 9.86 413 0 L, Cos. L, Cot. L. Tan. L. Sin.						
	60	9.83 378		0.03 034	9.86 413	0
		L. Cos.			L. Sin.	,

•	L. Sin,	L. Tan.	L. Cot.	L. Cos.	
0	9.83 378	9.96 966	0.03 034	9.86 413	60
1	9.83 392	9.96 991	0.03 009	9.86 401	59
2	9.83 405	9.97 016	0.02 984	9.86 389	58
3	9.83 419	9.97 042	0.02 958	9.86 377	57
4 5	9.83 432 9.83 446	9.97 067 9.97 092	0.02 933 0.02 908	9.86 366 9.86 354	56 55
6	9.83 459	9.97 118	0.02 882	9.86 342	53 54
7	9.83 473	9.97 143	0.02 857	9.86 330	53
8	9.83 486	9.97 168 9.97 193	0.02 832	9.86 318	52
9 10	9.83 500		0.02 807	9.86 306	51
	9.83 513	9.97 219	0.02 781	9.86 295	50
11 12	9.83 527 9.83 540	9.97 244 9.97 269	0.02 756 0.02 731	9.86 283 9.86 271	49 48
13	9.83 554	9.97 295	0.02 705	9.86 259	47
14	9.83 567	9.97 320	0.02 680	9.86 247	46
15	9.83 581	9.97 345	0.02 655	9.86 235	45
16 17	9.83 594 9.83 608	9.97 371 9.97 396	0.02 629 0.02 604	9.86 223 9.86 211	44 43
18	9.83 621	9.97 421	0.02 579	9.86 200	42
19	9.83 634	9.97 447	0.02 553	9.86 188	41
20	9.83 648	9.97 472	0.02 528	9.86 176	40
21	9.83 661	9.97 497	0.02 503	9.86 164	39
22	9.83 674	9.97 523	0.02 477	9.86 152	38
23 24	9.83 688 9.83 701	9.97 548 9.97 573	0.02 452 0.02 427	9.86 140 9.86 128	37 36
25	9.83 715	9.97 598	0.02 402	9.86 116	35
26	9.83 728	9.97 624	0.02 376	9.86 104	34
27	9.83 741	9.97 649	0.02 351	9.86 092	83
28 29	9.83 755 9.83 768	9.97 674 9.97 700	0.02 326 0.02 300	9.86 080 9.86 068	32 31
80	9.83 781	9.97 725	0.02 275	9.86 056	80
31	9.83 795	9.97 750	0.02 250	9.86 044	29
32	9.83 808	9.97 776	0.02 200	9.86 032	28
33	9.83 821	9.97 801	0.02 199	9.86 020	27
34 35	9.83 834	9.97 826	0.02 174	9.86 008	26
36	9.83 848 9.83 861	9.97 851 9.97 877	0.02 149 0.02 123	9.85 996 9.85 984	25 24
37	9.83 874	9.97 902	0.02 098	9.85 972	23
38	9.83 887	9.97 927	0.02 073	9.85 960	22
39	9.83 901	9.97 953	0.02 047	9.85 948	21
40	9.83 914	9.97 978	0.02 022	9.85 936	20
41	9.83 927	9.98 003	0.01 997	9.85 924	19
42 43	9.83 940 9.83 954	9.98 029 9.98 054	0.01 971 0.01 946	9.85 912 9.85 900	18 17
44	9.83 967	9.98 079	0.01 921	9.85 888	16
45	9.83 980	9.98 104	0.01 896	9.85 876	15
46 47	9.83 993 9.84 006	9.98 130 9.98 155	0.01 870 0.01 845	9.85 864	14
48	9.84 020	9.98 180	0.01 845	9.85 851 9.85 839	13 12
49	9.84 033	9.98 206	0.01 794	9.85 827	îĩ
50	9.84 046	9.98 231	0.01 769	9.85 815	10
51	9.84 059	9.98 256	0.01 744	9.85 803	9
52	9.84 072	9.98 281	0.01 719	9.85 791	8
53 54	9.84 085 9.84 098	9.98 307 9.98 332	0.01 693 0.01 668	9.85 779 9.85 766	7 6
55	9.84 112	9.98 357	0.01 643	9.85 754	5
56	9.84 125	9.98 383	0.01 617	9.85 742	4
<i>5</i> 7	9.84 138	9.98 408	0.01 592	9.85 730	3
59	9.84 151 9.84 164	9.98 433 9.98 458	0.01 567 0.01 542	9.85 718 9.85 706	2 1
60	9.84 177	9.98 484	0.01 516	9.85 693	ō
	L. Cos.	L. Cot.	L. Tan.		•
		L. OUL.	L. I all.	L. Sin.	,

		4			
<u>'</u>	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
0	9.84 177	9.98 484	0.01 516	9.85 693	60
1	9.84 190	9.98 509	0.01 491	9.85 681	59
$\frac{2}{3}$	9.84 203 9.84 216	9.98 534 9.98 560	0.01 466 0.01 440	9.85 669 9.85 657	58 57
4	9.84 229	9.98 585	0.01 415	9.85 645	56
5	9.84 242	9.98 610	0.01 390	9.85 632	55
6 7	9.84 255	9.98 635	0.01 365	9.85 620	54 53
8	9.84 269 9.84 282	9.98 661 9.98 686	0.01 339 0.01 314	9.85 608 9.85 596	52
9	9.84 295	9.98 711	0.01 289	9.85 583	51
10	9.84 308	9.98 737	0.01 263	9.85 571	50
11	9.84 321	9.98 762	0.01 238	9.85 559	49
12	9.84 334	9.98 787	0.01 213	9.85 547	48
13 14	9.84 347 9.84 360	9.98 812 9.98 838	0.01 188 0.01 162	9.85 534 9.85 522	47 46
15	9.84 373	9.98 863	0.01 102	9.85 510	45
16	9.84 385	9.98 888	0.01 112	9.85 497	44
17	9.84 398	9.98 913	0.01 087	9.85 485	43
18 19	9.84 411 9.84 424	9.98 939 9.98 964	0.01 061 0.01 036	9.85 473 9.85 460	42 41
20	9.84 437	9.98 989	0.01 000	9.85 448	40
21	9.84 450	9.99 015	0.00 985	9.85 436	39
22	9.84 463	9.99 040	0.00 960	9.85 423	38
23	9.84 476	9.99 065	0.00 935	9.85 411	37
24 25	9.84 489	9.99 090	0.00 910	9.85 399	36 35
26 26	9.84 502 9.84 515	9.99 116 9.99 141	0.00 884 0.00 859	9.85 386 9.85 374	34
27	9.84 528	9.99 166	0.00 834	9.85 361	33
28	9.84 540	9.99 191	0.00 809	9.85 349	32
29	9.84 553	9.99 217	0.00 783	9.85 337	31
80	9.84 566	9.99 242	0.00 758	9.85 324	80
31 32	9.84 579 9.84 592	9.99 267 9.99 293	0.00 733	9.85 312	29 28
33	9.84 605	9.99 318	0.00 707 0.00 682	9.85 299 9.85 287	27 27
34	9.84 618	9.99 343	0.00 657	9.85 274	26
35	9.84 630	9.99 368	0.00 632	9.85 262	25
36 37	9.84 643 9.84 656	9.99 394 9.99 419	0.00 606 0.00 581	9.85 250 9.85 237	24 23
38	9.84 669	9.99 444	0.00 556	9.85 225	22
39	9.84 682	9.99 469	0.00 531	9.85 212	21
40	9.84 694	9.99 495	0.00 505	9.85 200	20
41	9.84 707	9.99 520	0.00 480	9.85 187	19
42 43	9.84 720 9.84 733	9.99 545	0.00 455	9.85 175	18 17
44	9.84 745	9.99 570 9.99 596	0.00 430 0.00 404	9.85 162 9.85 150	16
45	9.84 758	9.99 621	0.00 379	9.85 137	15
46	9.84 771	9.99 646	0.00 354	9.85 125	14
47 48	9.84 784 9.84 796	9.99 672 9.99 697	0.00 328 0.00 303	9.85 112 9.85 100	13 12
49	9.84 809	9.99 722	0.00 303	9.85 087	11
50	9.84 822	9.99 747	0.00 253	9.85 074	10
51	9.84 835	9.99 773	0.00 227	9.85 062	9
52	9.84 847	9.99 798	0.00 202	9.85 049	8
53 54	9.84 860 9.84 873	9.99 823 9.99 848	0.00 177 0.00 152	9.85 037 9.85 024	7 6
55	9.84 885	9.99 874	0.00 132	9.85 024	′ 5
56	9.84 898	9.99 899	0.00 101	9.84 999	4
57 58	9.84 911	9.99 924	0.00 076	9.84 986	3
59	9.84 923 9.84 936	9.99 949 9.99 975	0.00 051 0.00 025	9.84 974 9.84 961	3 2 1
60	9.84 949	10.00 000	0.00 000	9.84 949	ō
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	,
			2 0		

III.

FOUR-PLACE TABLES.

- (1) LOGARITHMS OF NUMBERS.
- (2) LOGARITHMS OF THE SINE, COSINE, TANGENT, AND COTANGENT, AT INTERVALS OF TEN MINUTES FROM 0° TO 90°.
- (3) Values of the Sine, Cosine, Tangent, and Cotangent, at Intervals of Ten Minutes from 0° to 90° .

N	0	1	2	8	4	5	6	7	8	9
0	0000	0000	3010	4771	6021	6990	7782	8451	9031	9542
1	0000	0414	0792	1139	1461	1761	2041	2304	2553	2788
2 3	3010	3222	3424	3617	3802	3979	4150	4314	4472	4624
	4771	4914	5051	5185	5315	5441	5563	5682	5798	5911
4	6021	6128	6232	6335	6435	6532	6628	6721	6812	6902
5	6990	7076	7160	7243	7324	7404	7482	7559	7634	7709
6	7782	7853	7924	7993	8062	8129	8195	8261	8325	8388
7	8451	8513	8573	8633	8692	8751	8808	8865	8921	8976
8	9031	9085	9138	9191	9243	9294	9345	9395	9445	9494
9	9542	9590	9638	9685	9731	9777	9823	9868	9912	9956
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	42 00	4216	4232	424 9	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
80	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	54 03	541 6	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
87	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38 39	5798 8011	5809	5821	5832	5843	5855	5866	5877 5988	5888 5999	5899 6010
	5911	5922	5933	5944	5955	5966	5977			
40	6∪21	6u31	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425 6522
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803 6893
48 49	6812 6902	6821	6830	6839	6848	6857	6866 6955	6875 6964	6884 6972	6981
40	0902	6911	6920	6928	6937	6946	0000	0304	0812	OSOT
n	0	1	2	8	4	5	6	7	8	9

N	0	1	8	8	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	70 84	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9140
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9968	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
N	0	1	2	8	4	5	6	7	8	9

FOUR-PLACE LOGARITHMS (AUGMENTED) OF TRIGONOMETRIC FUNCTIONS.

10	٥	1	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
20	0	00						90
30 9408 8,0658 1,9342 0000 30 40 8,0658 1,9342 0000 20 10 8,2419 1,7581 9,9999 00 8 10 3088 3089 6931 9999 40 20 3668 3669 6331 9999 40 40 4437 4638 5362 9998 20 50 5050 5053 4947 9998 10 20 6097 65779 4221 9997 50 30 6397 6401 3599 9996 30 40 6677 6682 3318 9995 30 40 6677 6682 3318 9995 30 40 6677 6682 3318 9993 50 30 7857 7645 7652 2348 9993 50 30 7857 7865 2135 9992	l		7.4637					
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		20						
50 1627 1627 8373 0000 10 1 00 8.2419 1.7581 9.9999 00 8 10 3088 3089 6931 9999 50 20 3668 3669 6331 9999 30 40 4637 4638 5362 9998 20 50 5050 5053 4947 9998 10 2 00 8.5428 8.5431 1.4569 9.9997 00 8 10 5776 5779 4221 9997 00 8 20 6097 6101 3899 9996 30 30 6397 6401 3899 9996 30 40 6677 6682 3318 9995 20 3 00 8.7188 8.7194 1.2806 9.9994 00 8 3 00 8.7188 8.7194 1.2806 9.9994	l							
10 3088 3089 6911 9999 50 20 3668 3669 6331 9999 40 40 4637 4638 5362 9998 20 50 5050 5053 4947 9998 10 20 6057 6101 3899 9996 40 30 6397 6401 3599 9996 30 40 6677 6682 3318 9995 20 40 6677 6682 3318 9995 10 30 8.7188 8.7194 1.2806 9.9994 00 8 30 7857 7665 2348 9993 40 8 10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 30 8867 7933 9991 20 40 8059 8067 1933 99	Ì							- 1
20 3668 3669 6331 9999 40 30 4179 4181 5819 9998 30 40 4637 4638 5362 9998 10 50 5050 5053 4947 9998 10 20 6097 65779 4221 9997 50 20 6097 6101 3899 9996 40 40 6677 6682 3318 9995 20 40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 30 78138 7429 2571 9993 50 40 8059 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1544 9.9889 90 10 8613 8624 1376 <	1							89
30 4179 4181 5819 9999 30 40 4637 4638 5362 9998 20 50 5050 5053 4947 9998 10 2 00 8.5428 8.5431 1.4569 9.9997 00 8 10 5776 5779 4221 9997 00 8 30 6397 6401 3899 9996 40 40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 300 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 40 8 20 7645 7652 2348 9993 40 8 30 7867 7865 2135 9992 30 4 40 8059 8067 1933 9991 2					6911			
40 4637 4638 5362 9998 20 50 5050 5063 4947 9998 10 2 00 8.5428 8.5431 1.4569 9.9997 50 10 5776 5779 4221 9997 50 30 6397 6401 3599 9996 30 40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 10 7423 7429 2571 9993 40 10 7423 7429 2571 9993 40 30 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 50 8251 8261 1739 9989 10 4 00 8.8436 8.8446 1.1554 9.9989 90 10 8613 8624	ľ							
50 5050 5053 4947 9998 10 2 00 8.5428 8.5431 1.4569 9.9997 00 8 10 5776 5779 4221 9997 50 20 6097 6101 3899 9996 40 30 6397 6401 3599 9996 40 40 6677 6682 3318 9995 20 50 6940 6945 3055 9993 10 8 00 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 50 30 7887 7865 2135 9992 30 40 8069 8067 1933 9991 20 4 00 8.8436 8.8446 1.1554 9.9989 00 8 10 8613 8624 1376 9989 50 <								
10 5776 5779 4221 9997 50 20 6097 6101 3899 9996 40 30 6387 6401 3599 9996 30 40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 8 00 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 30 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9989 00 8 10 8613 8624 1376 9989 40 40 9104 <		50	5050	5053	4947		10	
20 6097 6401 3899 9996 40 30 6397 6401 3599 9996 30 40 6677 6682 3318 9995 10 50 6940 6945 3055 9995 10 10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 300 7867 7865 2135 9992 30 40 8059 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9899 50 10 8613 8624 1376 9989 50 20 8783 8796 1205 9988 40 40 9104 9118 0882 9986 20 50 92266 9272 0728 <	2							88
30 6397 6401 3599 9996 30 40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 8 00 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 40 30 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 30 8521 8261 1739 9990 10 40 8069 8067 1933 9991 20 861 30 8946 9989 50 8990 10 8 40 9983 40 9989 50 8 10 8613 8624 1376 9989 50 8 40 9984 40 9104 9118 0882 9986 20 20 8848 40 9104 9118 0882 9985		70						
40 6677 6682 3318 9995 20 50 6940 6945 3055 9995 10 8 00 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 30 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9889 00 10 8613 8624 1376 9989 00 0 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50								
50 6940 6945 3055 9995 10 3 00 8.7188 8.7194 1.2806 9.9994 00 8 10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 300 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9889 50 10 8613 8624 1376 9989 50 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 40 9455 9563 0437 9982 50 20 9682								
10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 30 7857 7865 2135 9992 30 40 8059 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9899 50 20 8783 8795 1205 9989 50 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 92266 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 0 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9616 <								
10 7423 7429 2571 9993 50 20 7645 7652 2348 9993 40 30 7857 7865 2135 9992 30 40 8059 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9899 50 20 8783 8795 1205 9989 50 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 92266 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 0 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9616 <	8			8.7194	1.2806	9.9994	00	87
30 7857 7865 2135 9992 30 40 8069 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9899 00 10 8613 8624 1376 9989 00 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9882 9701 0299 9981 40 40 9945 9966 0034 9979 20 30 9.0192			7423	7429	2571	9993	50	
40 8059 8067 1933 9991 20 50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9989 50 10 8613 8624 1376 9989 50 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 9945 9966 0034 9979 20 30 9816 9636 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.0093 0.9907 9977								
50 8251 8261 1739 9990 10 4 00 8.8436 8.8446 1.1554 9.9899 50 10 8613 8624 1376 9989 50 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0192 9.0216 0.9784 9.9976 00 8 30								
10 8613 8624 1376 9989 50 20 8783 8796 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.003 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9644 9975 50 3								
10 8613 8624 1376 9989 50 20 8783 8795 1205 9988 40 30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 20 0426 0453 9547 9973 40 8	4	00	8.8436	8.8446	1.1554	9,9989	00	86
30 8946 8960 1040 9987 30 40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 20 10 9545 9563 0437 9982 50 20 9682 9701 0299 9961 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.0093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 20 4226 0453 9547 9973 40 8 9972 30 0599 0567 9433 9972 30 0599 0567 9433 9972 30 9972 40 0648 0678 9322 9971 <th>_</th> <th>10</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>	_	10						-
40 9104 9118 0882 9986 20 50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9961 40 30 9816 9636 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 2973 40 9876 00 8 30 0539 0567 9433 9972 30 9678 9322 9971 20 40 0648 0678 9322 9971 20 8								
50 9256 9272 0728 9985 10 5 00 8.9403 8.9420 1.0580 9.9983 00 8 10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.0033 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9644 9975 50 975 50 20 0426 0453 9547 9973 40 9433 9972 30 40 0648 0678 9322 9971 20 20 40 0485 9.0891 0.9109 9.9968 50 20 1060								
10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 20 0426 0453 9547 9973 40 20 0539 0567 9433 9972 30 30 0539 0567 9433 9972 30 50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 20 1060 1096 8904 9964 40 30								
10 9545 9563 0437 9982 50 20 9682 9701 0299 9981 40 30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 50 2975 50 30 0539 0567 9433 9972 30 40 0648 0678 9322 9971 20 20 20 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 10 10 0961 0995 9005 9968 50 20 10 10 10 0961 0995 9005 9968 50 <th>5</th> <th>00</th> <th>8.9403</th> <th>8.9420</th> <th>1.0580</th> <th>9.9983</th> <th>00</th> <th>85</th>	5	00	8.9403	8.9420	1.0580	9.9983	00	85
30 9816 9836 0164 9980 30 40 9945 9966 0034 9979 20 50 9.0070 9.0093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 20 20 0426 0453 9547 9973 40 30 0539 0567 9433 9972 30 40 20 2075 0786 9214 9969 10 9696 20 10 0961 0985 905 9968 00 8 10 20 1060 1096 8904 9964 40 40 1262 1291 8709 9961 20 8 20 157 1194 8806 9963 30 157 1194 8806 9963 30 157 1291 8709 9961 20 50						9982		
40 9945 9966 0034 9979 20 50 9.0070 9.0093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9644 9975 50 20 20 0426 0453 9547 9973 40 20 20 20 0426 0453 9547 9973 40 20 <th></th> <th>20</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		20						
50 9.0070 9.0093 0.9907 9977 10 6 00 9.0192 9.0216 0.9784 9.9976 00 8 10 0311 0336 9664 9975 50 20 0426 0453 9547 9973 40 30 0539 0567 9433 9972 30 40 0648 0678 9322 9971 20 50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.958 00 8	ŀ							
10 0311 0336 9664 9975 50 20 0426 0453 9547 9973 40 30 0539 0567 9433 9972 30 40 0648 0678 9322 9971 20 50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 10 0961 0995 9005 9966 50 20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 16								
20 0426 0453 9547 9973 40 30 0539 0567 9433 9972 30 40 0648 0678 9322 9971 20 50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 10 0961 0995 9005 9966 50 20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1202 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30	6		9.0192	9.0216	0.9784	9.9976	00	84
30 0539 0567 9433 9972 30 40 0648 0678 9322 9971 20 50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.9968 00 8 10 0961 0995 9005 9966 50 966 50 20 1060 1096 8904 9964 40 964 40 1252 1291 8709 9961 20 10 20 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
40 0648 b 0678 b 9322 b 9971 b 20 b 50 0755 b 0786 b 9214 b 9969 b 10 b 7 00 9.0859 b 9.0891 b 0.9109 b 9.968 b 00 b 10 0961 b 0995 b 9005 b 9966 b 50 b 20 1060 b 1096 b 8904 b 9964 b 40 b 30 1157 b 1194 b 8806 b 9963 b 30 b 40 1252 b 1291 b 8709 b 9961 b 20 b 50 1345 b 1385 b 8615 b 9959 b 10 b 8 00 b 9.1436 b 9.1478 b 0.8522 b 9.9958 b 00 b 8 b 10 b 1525 b 1569 b 8431 b 9956 b 50 b 50 b 20 b 1612 b 1658 b 8342 b 9954 b 40 b 1781 b 1831 b 8169 b 9950 b 20 b 20 b 1863 b 1915 b 8085 b 9								
50 0755 0786 9214 9969 10 7 00 9.0859 9.0891 0.9109 9.968 00 8 10 0961 0995 9005 9966 50 20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 20 167 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10	1							
10 0961 0995 9005 9966 50 20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1202 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10								
20 1060 1096 8904 9964 40 30 1157 1194 8806 9963 30 40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10	7							88
30 1157 1194 8806 9963 30 40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10								
40 1252 1291 8709 9961 20 50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10								
50 1345 1385 8615 9959 10 8 00 9.1436 9.1478 0.8522 9.9958 00 8 10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10								,
10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10								
10 1525 1569 8431 9956 50 20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10		00	9.1436	9 1478	0.8522	9 9958	00	82
20 1612 1658 8342 9954 40 30 1697 1745 8255 9952 30 40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10	ľ	10						-~
40 1781 1831 8169 9950 20 50 1863 1915 8085 9948 10		20	1612				40	
50 1863 1915 8085 9948 10	Į.							
	9	00						81
L. Cos. L. Cot. L. Tan. L. Sin. / C	-		L. Cos.	L. Cot.	L. Tan.	L. Sin.	7	٥

0 1	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
9 00	9.1943	9.1997	0.8003	9.9946	00 8	1
10	2022	2078	7922	9944	50	
20 30	2100	2158 2236	7842 7764	9942 9940	40	
40	2176	2313	7687	9938	30 20	1
50	2251 2324	2389	7611	9936	10	
10 00	9.2397	9.2463	0.7537	9.9934	00 8	0
10	2468	2536	7464	9931	50	
20	2538	2609	7391	9929	40	l
. 30	2606	2680	7320	9927	30	
40 50	2674 2740	2750 2819	7250 7181	9924 9922	20 10	
11 00	9.2806	9.2887	0.7113	9.9919	00 79	9
10	2870	2953	7047	9917	50	
20	2934	3020	6980	9914	40	
30	2997	3085	6915	9912	30	
40 50	3058 3119	3149 3212	6851 6788	9909 9907	20 10	
						_
12 00	9.3179 3238	9.3275 3336	0.6725 6664	9.9904	00 7	8
10 20	3236 3296	3397	6603	9901 9899	50 40	
30	3353	3458	6542	9896	30	
40	3410	3517	6483	9893	20	
50	3466	3576	6424	9890	10	
18 00	9.3521	9.3634	0.6366	9.9887	00 7	7
10	3575	3691	6309	9884	50	-
20	3629	3748	6252	9881	40	
30	3682	3804	6196	9878	30	
40 50	3734 3786	3859 3914	6141 6086	9875 9872	20 10	
14 00	9.3837	9.3968	0.6032	9,9869	00 7	R
10	3887	4021	5979	9866	50	•
20	3937	4074	5926	9863	40	
30	3986	4127	5873	9859	30	
40	4035	4178	5822	9856	20	
50	4083	4230	5770	9853	10	_
15 00 10	9.4130 4177	9.4281 4331	0.5719 5669	9.9849 9846	00 7 50	5
20	4223	4381	5619	9843	40	
30	4269	4430	5570	9839	30	
40	4314	4479	5521	9836	20	
50	4359	4527	5473	9832	10	
16 00	9.4403	9.4575	0.5425	9.9828	00 7	4
10	4447	4622	5378	9825	50	
20 30	4491	4669	5331	9821	40	
40	4533 4576	4716 4762	5284 5238	9817 9814	30 20	
50	4618	4808	5192	9810	10	
17 00	9.4659	9.4853	0.5147	9.9806	00 7	3
10	4700	4898	5102	9802	50	
20	4741	4943	5057	9798	40	
30 40	4781 4821	4987	5013	9794	30 20	
50	4861	5031 5075	4969 4925	9790 9786	10	
18 00	9.4900	9.5118	0.4882	9.9782	00 7	2
	L. Cos.	L. Cot.	L. Tan.	L. Sin.	, ,)

FOUR-PLACE LOGARITHMS (AUGMENTED) OF TRIGONOMETRIC FUNCTIONS.

·	,	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
18	00	9.4900	9.5118	0.4882	9.9782	00	72
	10	4939	5161	4839	9778	50	
	20 30	4977 5015	5203 5245	4797 4755	9774 9770	40 30	
	40	5052	5287	4713	9765	20	
	50	5090	5329	4671	9761	10	
19	00	9.5126	9.5370	0.4630	9.9757	00	71
	10 20	5163 5199	5411 5451	4589 4549	9752	50	
	30	5235	5491	4509	9748 9743	40 30	
ŀ	40	5270	5531	4469	9739	20	
	50	5306	5571	4429	9734	10	
20	00	9.5341	9.5611	0.4389	9.9730	00	70
	10 20	5375 5409	5650 5689	4350 4311	9725 9721	50 40	
	ão	5443	5727	4273	9716	30	
	40	5477	5766	4234	9711	20	
	50	5510	5804	4196	9706	10	
21	00	9.5543	9.5842	0.4158	9.9702	00	69
	10	5576	5879	4121	9697	50	Ì
	20 30	5609 5641	5917 5954	4083	9692	40 30	
	40	5673	5991	4046 4009	9687 9682	20	
	50	5704	6028	3972	9677	10	
22	00	9.5736	9.6064	0.3936	9.9672	00	68
	10	5767	6100	3900	9667	50	
	20	5798 5828	6136	3864	9661	40	
	30 40	5859	6172 6208	3828 3792	9656 9651	30 20	
	50	5889	6243	3757	9646	10	
28	00	9.5919	9.6279	0.3721	9.9640	00	67
	10 20	5948 5978	6314 6348	3686 3652	9635 9629	50	
ĺ	30	6007	6383	3617	9624	40 30	
	40	6036	6417	3583	9618	20	
	50	6065	6452	3548	9613	10	
24	00	9.6093	9.6486	0.3514	9.9607	00	66
l	10 20	6121 6149	6520 6553	3480 3447	9602 9596	50 40	
ŀ	30	6177	6587	3413	9590	30	
l	40 50	6205	6620	3380	9584	20	1
	50	6232	6654	3346	9579	10	
25	00	9.6259	9.6687	0.3313	9.9573	00	65
	10	6286	6720	3280	9567	50	
	20 30	6313 6340	6752 6785	3248 3215	9561 9555	40 30	
	40	6366	6817	3183	9549	20	i
	50	6392	6850	3150	9543	10 10	
26	00	9.6418	9.6882	0.3118	9.9537	00	64
	10	6444	6914	3086	9530	50	
	20 30	6470 8408	6946	3054	9524 0819	40	
	40	6495 6521	6977 7009	3023 2991	9518 9512	30 20	
	50	6546	7040	2960	9505	10	
27	00	9.6570	9.7072	0.2928	9.9499	00	68
		L. Cos.	L. Cot.	L. Tan.	L. Sin.	,	0

٥	,	L. Sin.	L. Tan.	L. Cot.	L. Cos.		
	00	9.6570	9.7072	0.2928	9.9499		68
	10	6595 6620	7103 7134	2897	9492	50	
	20 30	6644	7165	2866 2835	9486 9479	40 30	
1 4	io l	6668	7196	2804	9473	20	
	5Ö	6692	7226	2774	9466	10	
	00	9.6716	9.7257	0.2743	9.9459		62
	10	6740	7287	2713	9453	50	
	20 30	6763 6787	7317 7348	2683 2652	9446 9439	40 30	
	ũ	6810	7378	2622	9432	20	
	5Ö	6833	7408	2592	9425	10	
29 (00	9.6856	9.7438	0.2562	9.9418		61
	10	6878	7467	2533	9411	50	
	20 30	6901 6923	7497 7526	2503 2474	9404 9397	40 30	
	Ñ	6946	7556	2444	9390	20	
	ŠÕ	6968	7585	2415	9383	10	
	00	9.6990	9.7614	0.2386	9.9875		60
	10	7012	7644	2356	9368	50	
	20 30	7033 7055	7673 7701	2327 2299	9361 9353	40 30	
	ũΙ	7076	7730	2270	9346	20	
ě	50	7097	7759	2241	9338	10	
81 (00	9.7118	9.7788	0.2212	9.9331	00	59
	10	7139	7816	2184	9323	50	
	20 80	7160	7845	2155	9315	40	
	ũ	7181 7201	7873 7902	2127 2098	9308 9300	30 20	
	ŠÕ	7222	7930	2070	9292	10	
	00	9.7242	9.7958	0.2042	9.9284		58
	10	7262 7282	7986	2014	9276	50	
2	20 30	7302	8014 8042	1986 1958	9268 9260	40 30	
	io I	7322	8070	1930	9252	20	
8	ŠÕ	7342	8097	1903	9244	10	
	00	9.7361	9.8125	0.1875	9.9236		57
	10 20	7380 7400	8153	1847	9228	50	
	80 I	7419	8180 8208	1820 1792	9219 9211	40 30	
	$\widetilde{\mathfrak{o}}$	7438	8235	1765	9203	20	
	50	7457	8263	1737	9194	10	
	00	9.7476	9.8290	0.1710	9.9186		56
	10 20	7494 7819	8317	1683	9177	50	
	ا 20 30	7513 7531	8344 8371	1656 1629	9169 9160	40 30	
1 4	10	7550	8398	1602	9151	20	
8	50	7568	8425	1575	9142	10	
	00	9.7586	9.8452	0.1548	9.9134		55
	10	7604	8479	1521	9125	50	
	20 30	7622 7640	8506 8533	1494	9116	40 30	
	õ	7657	8559	1467 1441	9107 9098	20	
	50	7675	8586	1414	9089	10	
86 0	00	9.7692	9.8613	0.1387	9.9080	00	54
		L. Cos.	L. Cot.	L. Tan.	L. Sin.	1	0

٥	,	L. Sin.	L. Tan.	L. Cot.	L. Cos.	
86	00	9.7692	9.8613	0.1387	9.9080	00 54
"	10	7710	8639	1361	9070	50
ľ	20	7727	8666	1334	9061	40
ŀ	30	7744	8692	1308	9052	30
	40	7761	8718	1282	9042	20
	50	7778	8745	1255	9033	10
87	00	9.7795	9.8771	0.1229	9.9023	00 53
ŀ	10	7811	8797	1203	9014	50
ŀ	20 30	7828	8824	1176	9004	40
	40	7844 7861	8850 8876	1150 1124	8995	30
ł	50	7877	8902	1098	8985 8975	20 10
38	00	9.7893	9.8928	0.1072	9.8965	00 52
	10	7910	8954	1046	8955	50
l	20	7926	8980	1020	8945	40
ŀ	30	7941	9006	0994	8935	30
i	40	7957	9032	0968	8925	20
	50	7 973	9058	0942	8915	10
89	00	9.7989	9.9084	0.0916	9.8905	00 51
l	10	8004	9110	. 0890	8895	50
l	20	8020	9135	0865	8884	40
1	30 40	8035 8050	9161	0839 0813	8874	30
	50	8066	9187 9212	0788	8864 8853	20 10
40	00	9.8081	9.9238	0.0762	9.8843	00 50
₹∪	10	8096	9.9264	0.0102	8832	50
l	20	8111	9289	0711	8821	40
ı	30	8125	9315	0685	8810	3ŏ
l	40	8140	9341	0659	8800	20
ı	50	8155	9366	0634	8789	10
41	00	9.8169	9.9392	0.0608	9.8778	00 49
	10	8184	9417	0583	8767	50
	20	8198	9443	0557	8756	40
l	30	8213	9468	0532	8745	30
i	40	8227	9494	0506	8733	20
<u> </u>	50	8241	9519	0481	8722	10
42	00 10	9.8255 8269	9.9 544 9 570	0.0456 0430	9.8711 8699	00 48
l	20	8283	9570 9595	0405	8688	40
ı	30	8297	9621	0379	8676	30
ı	40	8311	9646	0354	8665	20
	50	8324	9671	0329	8653	10
48	00	9.8338	9.9697	0.0303	9.8641	00 47
i i	10	8351	9722	0278	8699	50
i	20	8365	9747	0253	8618	40
i	30	8378	9772	0228	8606	30
Ī	40 50	8391 8405	9798 9823	0202 0177	8594 8582	20 10
44	00	9.8418	9.9848	0.0152	9.8569	00 46
***	10	8431	9.9848	0.0152	9.8569 8557	50
I	20	8444	9899	0101	8545	40
i	30	8457	9924	0076	8532	3ŏ
1	40	8469	9949	0051	8520	20
	50	8482	9975	0025	8507	10
45	00	9.8495	10.0000	0.0000	9.8495	00 45
		L. Cos.	L. Cot.	L. Tan.	L. Sin.	1 0

0 00	٥	7	N. Sin.	N. Tan.	N. Cot.	N. Cos.		
20	0					1.0000		o
30								
\$\begin{array}{c c c c c c c c c c c c c c c c c c c								
50 .0145 .0145 68.750 .9999 10 1 00 .0175 .0175 57.290 .9998 50 10 .0204 .0204 .49.104 .9998 50 20 .0223 .0233 .42.964 .9997 40 30 .0262 .0262 .38.188 .9997 30 40 .0291 .0291 .34.368 .9994 00 20 50 .0320 .0320 .1242 .9995 10 20 .0407 .0407 .24.542 .9993 50 20 .0407 .0407 .24.542 .9992 40 30 .0436 .0437 .22.904 .9990 30 40 .0465 .0466 .21.470 .9988 10 3 00 .0523 .0524 19.081 .9985 50 40 .0465 .0582 17.169 .9983 40	l							
1 00 .0175 .0175 57.290 .9998 00 89 10 .0204 .0204 .49.104 .9998 50 89 20 .02233 .0233 .42.964 .9997 40 30 .0291 .0291 34.368 .9996 20 50 .0320 .0320 31.242 .9995 10 2 00 .0349 .0349 28.636 .9994 00 88 10 .0378 .0378 .24.32 .9993 50 20 .0407 .0407 .24.542 .9992 40 30 .0436 .0437 .22.904 .9980 30 40 .0465 .0466 21.470 .9989 30 40 .0494 .0495 20.206 .9988 10 3 00 .0523 .0524 19.081 .9986 00 87 40 .0640 .0641								
10 .0204 .0204 49.104 .9998 50 20 .02233 .0233 42.964 .9997 40 30 .0291 .0291 34.368 .9996 20 50 .0320 .0320 31.242 .9995 10 20 .0349 .0349 .28.636 .9994 00 88 10 .0378 .03432 .9993 50 00 30 40 .0407 .0407 24.542 .9992 40 40 .0436 .0437 22.904 .9903 30 40 .0465 .0447 .29.904 .9903 30 40 .0465 .0447 .9989 20 .06 .9988 10 80 .0494 .0495 20.206 .9988 10 80 .052 .0581 .80 .9988 10 80 .0898 10 80 .0898 10 80 .0898 10 80 .0898 10 .08<						.5555		_
20 .0233 .0233 42.964 .9997 40 30 .0262 .0262 .38.188 .9996 20 50 .0320 .0320 31.242 .9995 10 20 .0349 .0349 28.636 .9994 00 88 10 .0378 .0378 26.432 .9992 40 .0407 .04454 .9990 30 30 .0436 .0437 22.904 .9990 30 .9988 10 50 .0494 .0495 20.206 .9988 10 .9986 10 30 .0523 .0524 19.081 .9986 00 87 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 30 .0669 .0670 14.924 .9978 10 4 .00 .0698 .0699 14.301 .9976 0	1							9
30 .0262 .0262 38.188 .9997 30 40 .0291 .0291 34.368 .9996 20 50 .0320 .0320 31.242 .9995 10 20 .0407 .0407 24.542 .9993 50 30 .0436 .0437 22.904 .9990 30 40 .0465 .0466 21.470 .9989 20 50 .0494 .0495 20.206 .9988 10 30 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9981 30 40 .0640 .0641 15.605 .9980 20 50 .0756 .0758 13.197 .9971 40 40 .0814 .081								
40 .0291 .0291 34.368 .9996 20 8 00 .0349 .0349 28.636 .9994 00 88 10 .0378 .0378 26.432 .9993 50 20 .0407 .0407 24.542 .9992 40 30 .0436 .0437 22.904 .9990 30 40 .0465 .0466 21.470 .9989 20 50 .0494 .0495 20.206 .9988 10 8 00 .0523 .0524 19.081 .9986 00 87 20 .0581 .0582 17.169 .9983 40 .9610 .9881 30 .9610 .9612 16.350 .9980 20 .9881 30 .9669 .9980 20 .9881 30 .9869 20 .9881 30 .9869 20 .9881 30 .9881 30 .9881 30 .9881 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
50 .0320 .0320 31.242 .9995 10 2 00 .0349 .0349 28.636 .9994 00 88 20 .0407 .0407 .0407 .24.542 .9992 40 30 .0436 .0437 .22.904 .9990 30 40 .0465 .0466 .21.470 .9989 20 50 .0494 .0495 .20.206 .9988 10 3 00 .0523 .0524 19.081 .9986 00 87 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 40 .0649 .0659 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 20 .0758 .0787 12.706 </th <th></th> <th></th> <th></th> <th></th> <th>34 368</th> <th></th> <th></th> <th></th>					34 368			
10 .0378 .0378 26.432 .9993 50 20 .0407 .0407 24.542 .9992 40 30 .0436 .0437 22.904 .9990 30 40 .0465 .0466 21.470 .9989 20 50 .0494 .0495 20.206 .9988 10 8 00 .0523 .0524 19.081 .9986 00 10 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 40 .0640 .0641 16.350 .9981 30 40 .0640 .0670 14.924 .9978 10 40 .0669 .0670 14.924 .9978 10 40 .0727 .0729 13.727 .9974 50 30 .0785 .0787 12.706 .9969 30 40 .8814 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
10 .0378 .0378 26.432 .9993 50 20 .0407 .0407 24.542 .9992 40 30 .0436 .0437 22.904 .9990 30 40 .0465 .0466 21.470 .9989 20 50 .0494 .0495 20.206 .9988 10 3 00 .0523 .0524 19.081 .9986 00 10 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 40 .0640 .0641 16.350 .9981 30 40 .0640 .0670 14.924 .9978 10 40 .0669 .0670 14.924 .9978 10 40 .0727 .0729 13.727 .9974 50 30 .0785 .0787 12.706 .9969 30 40 .8814 <th>-</th> <th></th> <th>0240</th> <th>0340</th> <th>00 626</th> <th>0001</th> <th>00 8</th> <th></th>	-		0240	0340	00 626	0001	00 8	
20 .0407 .0407 24.842 .9992 40 30 .0436 .0436 .0436 21.470 .9989 20 50 .0494 .0495 20.206 .9988 10 3 00 .0523 .0524 19.081 .9986 00 87 10 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 .0640 .0641 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 .0669 .0670 14.924 .9978 10 40 .0669 .0670 14.924 .9978 10 40 .0698 .0699 14.301 .9976 00 86 80 80 20 .0756 .0758 13.197 .9971 40 .0814 .0816 12.251 .9967 20 .9694 10 1 .9967 20 .9929 .0934 10.71	•							۰,
30 .0436 .0465 .0466 21.470 .9980 30 40 .0465 .0466 21.470 .9988 10 30 .0494 .0495 20.206 .9988 10 30 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 60 86 20 .0756 .0758 13.197 .9971 40 .9869 30 40 .0814 .0816 12.251 .9967 20 50 .0843 .0846								
40 .0465 .0494 .0495 20.206 .9988 10 8 00 .0523 .0524 19.081 .9986 00 87 10 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 0 86 10 .0785 .0787 12.706 .9969 30 0 0 86 50 .0843 .0846 11.826 .9967 20 9967 20 20 .0929 .0934 10.712 .9957 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
50 .0494 .0495 20.206 .9988 10 3 00 .0523 .0824 19.081 .9986 00 87 10 .0552 .0553 18.075 .9985 50 20 .0581 .0582 17.169 .9983 40 30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 30 70786 .0758 13.197 .9971 40 30 .0756 .0758 13.197 .9971 40 9899 30 40 .0814 .0816 12.251 .9967 20 .9964 10 5 .00 .0872	ŀ			.0466			20	- 1
10 .0552 .0553 18.075 .9985 50 20 .0581 .0882 17.169 .9983 40 30 .0610 .0612 16.350 .9980 20 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 0 10 .90756 .0758 13.197 .9971 40 0 .9814 .0816 12.251 .9967 20 .964 10 .9843 .0846 11.826 .9969 30 40 .844 .9845 10 .9859 50 .9859 20 .9859 40 .9843 .0846 11.830 .9962 00 85 5 00 .0872 .0875 11.430 .9962 0	l	50		.0495		.9988		
10 .0552 .0553 18.075 .9985 50 20 .0581 .0882 17.169 .9983 40 30 .0610 .0612 16.350 .9980 20 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 0 10 .90756 .0758 13.197 .9971 40 0 .9814 .0816 12.251 .9967 20 .964 10 .9843 .0846 11.826 .9969 30 40 .844 .9845 10 .9859 50 .9859 20 .9859 40 .9843 .0846 11.830 .9962 00 85 5 00 .0872 .0875 11.430 .9962 0	8	00	.0523	.0524	19.081	.9986	00 8	7
30 .0610 .0612 16.350 .9981 30 40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 .9969 30 20 .0756 .0787 12.706 .9969 30 .9969 40 .9814 .0816 12.251 .9967 20 .9969 30 .986 40 .9814 .0816 12.251 .9967 20 .9964 10 .9967 20 .9964 10 .9967 20 .9929 .0934 10.712 .9957 40 .9967 40 .991 .990 .990 30 .9957 40 .9957 40 .9957 40 .9957 40 .9957 40 .9957 40 .9957 <td< th=""><th></th><th></th><th>.0552</th><th>.0553</th><th>18.075</th><th>.9985</th><th></th><th></th></td<>			.0552	.0553	18.075	.9985		
40 .0640 .0641 15.605 .9980 20 50 .0669 .0670 14.924 .9978 10 4 00 .0688 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 20 20 .0756 .0758 13.197 .9971 40 .9969 30 .0756 .0787 12.706 .9969 30 .9961 40 .0814 .0816 12.251 .9967 20 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9964 10 .9969 30 .9964 10 .9964 10 .9964 10 .9969 30 .9969 30 .9969 30 .9959 50 .9959 50 .9959 50 .9959 50 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
50 .0669 .0670 14.924 .9978 10 4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 .962 20 .0756 .0758 13.197 .9971 40 .962 20 .0785 .0787 12.706 .9969 30 .962 40 .9843 .0846 11.826 .9964 10 .9967 20 50 .0843 .0846 11.826 .9964 10 .9967 20 50 .0843 .0846 11.826 .9962 00 85 10 .0901 .0904 11.059 .9962 00 85 20 .0921 .0904 11.0712 .9957 40 20 .9957 40 30 .0958 .0963 10.385 .9954 30 .9951 20 40 .1045 .1051 9.51								
4 00 .0698 .0699 14.301 .9976 00 86 10 .0727 .0729 13.727 .9974 50 .9971 40 20 .0756 .0788 13.197 .9971 40 .9969 30 .9969 30 .9969 30 .9969 30 .9969 30 .9969 30 .9969 40 .9964 10 .9969 30 .9869 30 .9869 30 .9869 30 .9869 30 .9869 30 .9869 10 .9964 10 .9964 10 .9964 10 .9962 .00 82 .9964 10 .9962 .00 82 .9964 10 .9962 20 .9299 .9934 10.712 .9957 40 .9962 20 .9299 .9934 10 .112 .9957 40 .9957 40 .9957 40 .9957 40 .9957 .9962 10 .7882 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
10 .0727 .0729 13.727 .9974 50 20 .0756 .0758 13.197 .9971 40 30 .0785 .0787 12.706 .9969 30 40 .0814 .0816 12.251 .9967 20 50 .0843 .0846 11.826 .9964 10 50 .0843 .0846 11.826 .9964 10 50 .0843 .0846 11.826 .9964 10 10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10								_
20 .0756 .0758 13.197 .9971 40 30 .0785 .0787 12.706 .9969 30 40 .0814 .0816 12.251 .9967 20 50 .0843 .0846 11.826 .9964 10 5 00 .0872 .0875 11.430 .9962 00 85 10 .0901 .0904 11.059 .9959 50 20 .9299 .0934 10.712 .9957 40 30 .9058 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 .9988 10 .9063 10.385 .9948 10 .9063 10.385 .9948 10 .9063 10.385 .9948 10 .9081 20 .9081 20 .9084 20 .9084 20 .9084 20 .9084 20 .9094 .9094 90 84 .9084 20	4							6
30 .0785 .0787 12.706 .9969 30 40 .0814 .0816 12.251 .9967 20 50 .0843 .0846 11.826 .9964 10 5 00 .0872 .0875 11.430 .9962 00 85 10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.778 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 84 20 .1103 .1110 9.0998 .9939 40 .1161 .1169 8.5555 .9932 20								- 1
40 .0814 .0816 12.251 .9967 20 50 .0843 .0846 11.826 .9964 10 5 00 .0872 .0875 11.430 .9962 00 85 10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 .97882 .9948 10 6 .00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 84 20 .1103 .1110 9.0098 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1190 .1198 8.3450 .9929								- 1
50 .0843 .0846 11.826 .9964 10 5 00 .0872 .0875 11.430 .9962 00 85 10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2583 .9942 50 20 .1103 .1110 9.0098 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 10 .1248 .1257 7.9530 .9925 00								- 1
10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 20 1103 .1110 9.0098 .9939 40 20 .1132 .1139 8.7769 .9936 30 30 30 30 .1322 .1198 8.5555 .9932 20 20 10 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 63 10 .1248 .1257 7.7704 .9918 40 20	l							
10 .0901 .0904 11.059 .9959 50 20 .0929 .0934 10.712 .9957 40 30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 20 1103 .1110 9.0098 .9939 40 20 .1132 .1139 8.7769 .9936 30 30 30 30 .1322 .1198 8.5555 .9932 20 20 10 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 63 10 .1248 .1257 7.7704 .9918 40 20	5	00	.0872	.0875	11.430	.9962	00 8	5
30 .0958 .0963 10.385 .9954 30 40 .0987 .0992 10.078 .9951 20 50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 20 .1103 .1110 9.0098 .9939 40 .1132 .1139 8.7769 .9936 30 .1132 .1139 8.7769 .9936 30 .1190 .1198 8.3450 .9929 10 .9929 10 .9929 10 .9929 10 .9929 10 .9929 10 .9929 10 .9929 10 .9939 40 .11219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.7504 .9918 40 .991 40 .1363 .1317 7.5958 .9914 30 <th>ľ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>٠ ا</th>	ľ							٠ ا
40 .0987 .0992 10.078 .9948 10 6 00 .1045 .1051 9.7882 .9948 10 10 .1074 .1080 9.2553 .9942 50 20 .1103 .1110 9.0098 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 63 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 40 .1334 .1346 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 <th>ł</th> <th></th> <th>.0929</th> <th>.0934</th> <th>10.712</th> <th>.9957</th> <th>40</th> <th>1</th>	ł		.0929	.0934	10.712	.9957	40	1
50 .1016 .1022 9.7882 .9948 10 6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 20 .1103 .1110 9.0998 .9939 40 .9936 30 .9939 40 .1161 .1169 8.5555 .9932 20 .9936 30 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82								1
6 00 .1045 .1051 9.5144 .9945 00 84 10 .1074 .1080 9.2553 .9942 50 20 .1103 .1110 9.0098 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 50 20 .1276 .1287 7.77704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1363 .1376 7.2687 .9911 20 .9907 10 8 00 .1363 .1405 7.1154 .9903 0 82 20 .1449 .1465	l							1
10 .1074 .1080 9.2853 .9942 50 20 .1103 .1110 9.0998 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50		<i>5</i> 0	.1016	.1022	9.7882	.9948	10	
20 .1103 .1110 9.0098 .9939 40 30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 20 .276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 .9911 20 .1363 .1376 7.2687 .9907 10 .9907 10 8 00 .1363 .1405 7.1154 .9903 0 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40	6							4
30 .1132 .1139 8.7769 .9936 30 40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1288 8.1443 .9925 00 83 10 .1248 .1257 7.78530 .9922 50 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30								
40 .1161 .1169 8.5555 .9932 20 50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 30 1478 .1495 6.6912 .9890 30 30 40 .1507 .1524 6.6612 .9890 30 30 40 .1536 .1554 6.4348 .9881 10								
50 .1190 .1198 8.3450 .9929 10 7 00 .1219 .1228 8.1443 .9925 00 83 10 .1248 .1257 7.9530 .9922 50 20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10								
10 1248 1.257 7.9530 .9922 50 20 1.276 1.287 7.7704 .9918 40 30 1.305 1.317 7.5958 .9914 30 40 1.334 1.346 7.4287 .9911 20 50 1.363 1.376 7.2687 .9907 10 8 00 1.392 1.405 7.1154 .9903 00 82 10 1.421 1.435 6.9682 .9899 50 20 1.449 1.465 6.8269 .9894 40 30 1.478 1.495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81								
10 1248 1.257 7.9530 .9922 50 20 1.276 1.287 7.7704 .9918 40 30 1.305 1.317 7.5958 .9914 30 40 1.334 1.346 7.4287 .9911 20 50 1.363 1.376 7.2687 .9907 10 8 00 1.392 1.405 7.1154 .9903 00 82 10 1.421 1.435 6.9682 .9899 50 20 1.449 1.465 6.8269 .9894 40 30 1.478 1.495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81	7	00	.1219	1228	8 1443	.9925	00 8	3
20 .1276 .1287 7.7704 .9918 40 30 .1305 .1317 7.5958 .9914 30 40 .1334 .1346 7.4287 .9911 20 50 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81	•							٦
30 1305 1317 7.5958 .9914 30 40 .1334 1.346 7.4287 .9911 20 80 .1363 .1376 7.2687 .9907 10 8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81								
40 .1334 .1346 7.4287 .9911 20 80 .1363 .1376 7.2687 .9907 10 8 00 .1321 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81							30	
8 00 .1392 .1405 7.1154 .9903 00 82 10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81					7.4287			
10 .1421 .1435 6.9682 .9899 50 20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81		50	.1363	.1376	7.2687	.9907	10	
20 .1449 .1465 6.8269 .9894 40 30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81	8				7.1154			2
30 .1478 .1495 6.6912 .9890 30 40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81								
40 .1507 .1524 6.5606 .9886 20 50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81								
50 .1536 .1554 6.4348 .9881 10 9 00 .1564 .1584 6.3138 .9877 00 81								
9 00 .1564 .1584 6.3138 .9877 00 81	ı							
	9							1
		-					1 0	<u>, </u>

°	,	N. Sin.	N. Tan.	N. Cot.	N. Cos.		
9	00	.1564	.1584	6.3138	.9877	00	81
ı	10	.1593	.1614	6.1970	.9872	50	
	20 30	.1622 .1650	.1644 .1673	6.0844 5.9758	.9868 .9863	40 30	
	40	.1679	.1703	5.8708	.9858	20	
	50	.1708	.1733	5.7694	.9853	10	
10	00	.1736	.1763	5.6713	.9848	00	80
1	10	.1765	.1793	5.5764	.9843	50	
	20 30	.1794 .1822	.1823 .1853	5.4845 5.3955	.9838 .9833	40	
1	40	.1851	.1883	5.3093	.9827	30 20	
ł	50	.1880	.1914	5.2257	.9822	10	
11	00	.1908	.1944	5.1446	.9816	00	79
ŀ	10	.1937	.1974	5.0658	.9811	50	
	20 30	.1965 .1994	.2004 .2035	4.9894	.9805	40	
	40	.2022	.2065	4.9152 4.8430	.9799 .9793	30 20	
	50	.2051	.2095	4.7729	.9787	10	
12	00	.2079	.2126	4.7046	.9781	00	78
ľ	10	.2108	.2156	4.6382	.9775	50	
	20 30	.2136 .2164	.2186 .2217	4.5736 4.5107	.9769 .9763	40 30	
	40	.2193	.2247	4.4494	.9757	20	
l	50	.2221	.2278	4.3897	.9750	10	
18	00	.2250	.2309	4.3315	9744	00	77
	10 20	.2278 .2306	.2339 .2370	4.2747	.9737	50	
	30	.2334	.2370 .2401	4.2193 4.1653	.9730 .9724	40 30	
1	40	.2363	.2432	4.1126	.9717	20	
ł	50	.2391	.2462	4.0611	.9710	10	
14	00	.2419	.2493	4.0108	.9703	00	76
ŀ	10 20	.2447 .2476	.2524	3.9617	.9696	50	
	30	.2504	.2555 .2586	3.9136 3.8667	.9689 .9681	40 30	
	40	.2532	.2617	3.8208	.9674	20	
	50	.2560	.2648	3.7760	.9667	10	
15	00	.2588	.2679	3.7321	.9659	00	75
	10 20	.2616 .2644	.2711 .2742	3.6891 3.6470	.9652 .9644	50 40	
	30	.2672	.2773	3.6059	.9636	30	
	40	.2700	2805	3.5656	.9628	20	
	50	.2728	.2836	3.5261	.9621	10	
16	00	.2756	.2867	3.4874	.9613	00	74
	10 20	.2784 .2812	.2899 .2931	3.4495 3.4124	.9605 .9596	50 40	
	30	.2840	.2962	3.4124 3.3759	.9588	30	
I	40	.2868	.2994	3.3402	.9580	20	
	50	.2896	.3026	3.3052	.9572	10	
17	00	.2924	.3057	3.2709	.9563	00	73
	10	.2952	.3089	3.2371	.9555	50	
	20 30	.2979	.3121	3.2041	.9546	40	
	40	.3007 .3035	.3153 .3185	3.1716 3.1397	.9537 .9528	30 20	
	50	.3062	.3217	3.1084	9520	10	
18	00	.3090	.3249	3.0777	.9511	00	72
		N. Cos.	N. Cot.	N. Tan.	N. Sin.	7	٥

0 1	N. Sin.	N. Tan.	N. Cot.	N. Cos.		
18 00	.3090	.3249	3.0777	.9511	00	72
10	.3118	.3281	3.0475	.9502	50	
20	.3145	.3314	3.0178	.9492	40	
30 40	.3173 .3201	.3346 .3378	2.9887 2.9600	.9483 .9474	30 20	
50	.3228	.3411	2.9319	.9465	10	
	.0220	.0111	2.3013	.5100	10	
19 00	.3256	.3443	2.9042	.9455	00	71
10	.3283	.3476	2.8770	.9446	50	
20	.3311	.3508	2.8502	.9436	40	
30	.3338	.3541	2.8239	.9426	30	
40 50	.3365 .3393	.3574 .3607	2.7980 2.7725	.9417 .9407	20 10	
20 00	.3420	.3640	2.7475	.9397	00	70
10	.3448	.3673	2.7228	.9387	50	
20 30	.3475 .3502	.3706 .3739	2.6985	.9377 .9367	40	
40	.3529	.3772	2.6746 2.6511	.9356	30 20	
50	.3557	.3805	2.6279	.9346	10	
			2.0213			
21 00	.3584	.3839	2.6051	.9336	00	69
10	.3611	.3872	2.5826	.9325	50	
20	.3638	.3906	2.5605	.9315	40	
30 40	.3665 .3692	.3939 .3973	2.5386	.9304 .9293	30 20	
50	.3719	.4006	2.5172 2.4960	.9283	10	
22 00	.3746	.4040	2.4751	9272	00	68
10	.3773	.4074	2.4545	.9261	50	
20 30	.3800 .3827	.4108	2.4342	.9250 .9239	40 30	
40	.3854	.4142 .4176	2.4142 2.3945	.9239	20	
50	.3881	.4210	2.3750	.9216	10	
00 00	0007	4048				
28 00	.3907 .3934	.4245	2.3559	.9205 .9194	00	67
10 20	.3961	.4279 .4314	2.3369 2.3183	.9182	50 40	
30	.3987	.4348	2.2998	.9171	30	
40	.4014	.4383	2.2817	.9159	20	
50	.4041	.4417	2.2637	.9147	10	
24 00	.4067	.4452	2.2460	.9135	00	66
10	4094	.4487	2.2286	.9124	50	"
2ŏ	.4120	.4522	2.2113	.9112	40	
30	.4147	.4557	2.1943	.9100	30	
40	.4173	.4592	2.1775	.9088	20	
50	.4200	.4628	2.1609	.9075	10	
25 00	.4226	.4663	2.1445	.9063	00	65
10	.4253	.4699	2.1283	.9051	50	
20	.4279	.4734	2.1123	.9038	40	
30	.4305	.4770	2.0965	.9026	30	
40 50	.4331 .4358	.4806 .4841	2.0809 2.0655	.9013 .9001	20 10	
		.1011	2.0000			
26 00	.4384	.4877	2.0503	.8988	00	64
10	.4410	.4913	2.0353	.8975	50	
20 30	.4436 .4462	.4950	2.0204	.8962	40 30	
40	.4488	.4986 .5022	2.0057 1.9912	.8949 .8936	20	
5 0	.4514	.5059	1.9768	8923	10	
27 00	.4540	.5095	1.9626	.8910	00	68
	N. Cos.	N. Cot.	N. Tan.	N. Sin.	7	٥

_			T				_
°		N. Sin.	N. Tan.	N. Cot.	N. Cos.	<u> </u>	
27	00	.4540	.5095	1.9626	.8910	00	68
	10 20	.4566 .4592	.5132 .51 6 9	1.9486 1.9347	.8897 .8884	50 40	
	30	.4617	.5206	1.9210	.8870	30	ı
l	40	.4643	.5243	1.9074	.8857	20	
l	50	.4669	.5280	1.8940	.8843	10	- 1
28	00	.4695	.5317	1.8807	.8829	00	62
	10	.4720	.5354	1.8676	.8816	50	
ŀ	20	.4746	.5392	1.8546	.8802	40	
	30 40	.4772 .4797	.5430 .5467	1.8418 1.8291	.8788 .8774	30 20	
	50	4823	.5505	1.8165	.8760	ĩõ	
29	00	.4848	.5543	1.8040	.8746	00	61
	10	.4874	.5581	1.7917	.8732	50	~
	20	.4899	.5619	1.7796	.8718	40	
	30 40	.4924	.5658	1.7675	.8704	30 20	
	50	.4950 .4975	.5696 .5735	1.7556 1.7437	.8689 .8675	10	
80	00 10	.5000 .5025	.5774 .5812	1.7321 1.7205	.8660	00 50	60
	20	.5050	.5851	1.7090	.8646 .8631	40	
	30	.5075	.5890	1.6977	.8616	30	
	40	.5100	.5930	1.6864	.8601	20	
	50	.5125	.5969	1.6753	.8587	10	
81	00	.5150	.6009	1.6643	8572	00	59
1	10	.5175	.6048	1.6534	.8557	50	
ı	20 30	.5200 .5225	.6088 .6128	1.6426 1.6319	.8542 .8526	40 30	
1	40	.5250	.6168	1.6212	.8511	20	
j	50	.5275	.6208	1.6107	.8496	10	
82	00	.5299	.6249	1.6003	.8480	00	58
1	10	.5324	.6289	1.5900	.8465	50	
l	20 80	.5348 .5373	.6330 .6371	1.5798 1.5697	.8450 .8434	40 30	
	40	.5398	.6412	1.5597	.8418	20	ı
	50	.5422	.6453	1.5497	.8403	īŏ	- 1
88	00	.5446	.6494	1.5399	.8387	00	57
1	10	.5471	.6536	1.5301	.8371	50	•
•	20	.5495	.6577	1.5204	.8355	40	
	30 40	.5519 .5544	.6619 .6661	1.5108 1.5013	.8339 .8323	30 20	- 1
	50	.5568	.6703	1.4919	.8307	10	
34	00	.5592	.6745	1.4826	.8290	00	56
l ~-	10	.5616	.6787	1.4733	.8274	50	
	20	.5640	.6830	1.4641	.8258	40	- 1
	30 40	.5664 .5688	.6873 .6916	1.4550 1.4460	.8241 .8225	30 20	ł
	50	.5712	.6959	1.4400 1.4370	.8225 .8208	10	
35	00	.5736	.7002	1.4281	.8192	00	55
l ""	10	.5760	.7046	1.4281	.8175	50	J
I	20	.5783	.7089	1.4106	.8158	40	
•	30	.5807	.7133	1.4019	.8141	30	
	40 50	.5831 .5854	.7177 .7221	1.3934 1.3848	.812 4 ·8107	20 10	- 1
86	00	.5878	.7265	1.3764	.8090	00	54
		N. Cos.	N. Cot.	N. Tan.	N. Sin.	7	0

0	,	N. Sin.	N. Tan.	N. Cot.	N. Cos.		
36	00	.5878	.7265	1.3764	.8090		54
ł	10	.5901	.7310	1.3680	.8073	50	
ľ	20 30	.5925 .5948	.7355 .7400	1.3597 1.3514	.8056 .8039	40 30	
	40	.5972	.7445	1.3432	.8021	20	
	50	.5995	.7490	1.3351	.8004	10	
87	00	.6018	.7536	1.3270	.7986		58
	10 20	.6041 .6065	.7581 .7627	1.3190 1.3111	.7969 .7951	50 40	
	30	.6088	.7673	1.3032	.7934	30	
	40	.6111	.7720	1.2954	.7916	20	
	50	.6134	.7766	1.2876	.7898	10	
88	00	.6157	.7813	1.2799	.7880		52
	10 20	.6180 .6202	.7860 .7907	1.2723 1.2647	.7862 .7844	50 40	
ļ	ãŏ	.6225	7954	1.2572	.7826	30	
1	40	.6248	.8002	1.2497	.7808	20	
L	50	.6271	,8050	1.2423	.7790	10	
89	00	.6293	.8098	1.2349	.7771		51
1	10 20	.6316 .6338	.8146	1.2276	.7753 .7735	50 40	
l	30	.6361	.8195 .8243	1.2203 1.2131	.7716	30	
•	40	.6383	.8292	1.2059	.7698	20	
	50	.6406	.8342	1.1988	.7679	10	
40	00	.6428	.8391	1.1918	.7660		50
1	10	.6450	.8441	1.1847	.7642	50	
	20 30	.6472 .6494	.8491 .8541	1.1778 1.1708	.7623 .7604	40 30	
l	40	.6517	.8591	1.1640	.7585	20	
	50	.6539	.8642	1.1571	.7566	1ŏ	
41	00	.6561	.8693	1.1504	.7547		19
l	10	.6583	.8744	1.1436	.7528	50	
ŀ	20 30	.6604 .6626	.8796 .8847	1.1369 1.1303	.7509 .7490	40 30	
	40	.6648	.8899	1.1237	.7470	20	
	50	.6670	.8952	1.1171	.7451	10	
42	00	.6691	.9004	1.1106	.7431		48
ı	10 20	.6713 .6734	.9057 .9110	1.1041 1.0977	.7412 .7392	50 40	
1	30	.6756	.9163	1.0913	.7373	30	
i	40	.6777	.9217	1.0850	.7353	20	
	50	.6799	.9271	1.0786	.7333	10	
48	00	.6820	.9325	1.0724	.7314		47
i	10 20	.6841 .6862	.9380	1.0661	.7294 .7274	50 40	
l	30	.6884	.9435 .9490	1.0599 1.0538	.7274 .7254	30	
ı	40	.6905	.9545	1.0477	.7234	20	
	50	.6926	.9601	1.0416	.7214	10	
44	00	.6947	.9657	1.0355	.7193		46
l	10	.6967	.9713	1.0295	.7173	50	
l	20 30	.6988 .7009	.9770 .9827	1.0235 1.0176	.7153 .7133	40 30	
ľ	40	.7030	.9884	1.0117	.7112	20	
	50	.7050	.9942	1.0058	·7092	10	
45	00	.7071	1.0000	1.0000	.7071	00 4	45
		N. Cos.	N. Cot.	N. Tan.	N. Sin.	1	0

. .

Gore—Plane and Solid Geometry.

By James Howard Gore, Ph.D., Professor of Mathematics, Columbian University. Author of "Elements of Geodesy," "History of Geodesy," "Bibliography of Geodesy," etc., etc. Crown 8vo. 220 pages. \$1.10*

"The study of Geometry is pursued with a threefold purpose.

I. To aid in the development of logical reasoning.

2. To stimulate the use of accurate and precise forms of expression.

To acquire facts and principles that may be of practical value in subsequent life.

The first two purposes are advocated because of their disciplinary importance; and when mathematics, because of its exactness, was the only science which furthered to a high degree these purposes, it was necessary for the student to devote a large part of his time to their study. But now other sciences, and even the languages and philosophy, claim disciplinary merit equal to that possessed by mathematics, although differing somewhat in the character of the training.

Hence it appears that the time has come when we can afford to hearken to the demands of the utilitarians, and give up those refinements in mathematics which have been retained for the mental discipline they bring about, but

which are wholly lacking in practical application.

I have, therefore, out of an experience as a computer and worker in applied mathematics, as well as a teacher, eliminated from this treatise all propositions that are not of practical value or needed in the demonstration of such propositions. This exclusion leaves out about one-half of the matter usually included in our fext-books on geometry. However, instructors will not entirely miss those familiar and interesting theorems which helped to swell the books they studied,—such theorems as fall below the practical standard as here given as exercises or as corollaries,

I have sought to use symbols and equations only in those cases where I

could see no gain in spelling out their meaning.

The practical teacher may rest assured that in this treatise there are no breaks in the continuity of reasoning, nor need he fear that there is any lack

of training in demonstrative processes.

Fitting schools will naturally be solicitous to know if the class using such a text would be prepared to pass such college entrance examinations as may be tried. Of course it is impossible to predict the questions that may be asked in future; but an actual test has been made of all available college entrance examination papers and only one theorem was discovered that has been omitted from the present work, and that one might be called an 'original' since none of the three texts recommended by this particular University contained that theorem.

Attention is called to the solution of problems. Ordinarily the problem is presumed to be solved, and then a demonstration is given to show that the solution was correct. This does not appear to me to be in the line of discovery. I have in all cases started with a statement of those known facts which plainly suggest the first step in the solution, then introduced the next step, giving the construction in connection with each stated fact, so that with the completed construction goes its own demonstration and the student sees the road along which he travelled, and understands from the beginning why he started upon it."—AUTHOR'S NOTE.

Murray-An Introductory Course in Differential Equations for Students in Classical and Engineering Colleges.

New and Revised Edition. By DANIEL A. MURRAY, B.A., Ph.D., Formerly Scholar and Fellow of Johns Hopkins University; Instructor in Mathematics in Cornell University. 12mo. 250 pages. \$1.90*

Murray's "Differential Equations" is in use as a text-book in Johns Hopkins University, Baltimore, Md.; Vanderbilt University, Nashville, Tenn.; University of Missouri, Columbia, Mo.; Purdue University, La Fayette, Ind.; Wesleyan University, Middletown, Conn.; University of Toronto, Toronto, Canada; Cornell University, Ithaca, N. Y.; Armour Institute, Chicago, Ill.; University of Denver, Denver, Col.; University of Michigan; and other leading institutions.

Prof. E. H. Moore, University of Chicago: - "It is admirably adapted to its central purpose as expressed by its title and cannot fail to meet a cordial reception at the hands of teachers and students."

Prof. Geo. D. Olds, Amherst College, Amherst, Mass.:—"As an elementary text-book on the subject I do not know its equal. It is systematic, clear and suggestive from beginning to end. There is | the hands of the average student."

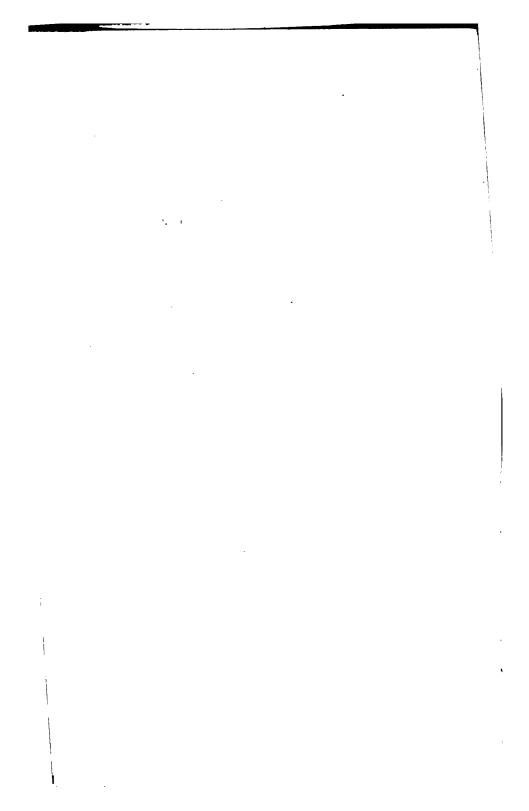
hardly a chapter that does not mean a distinct gain for the teacher."

Prof. J. P. Naylor, De Pauw University, Greencastle, Ind.: -"The prominence given to practical applications is an especially commendable feature."

Prof. John A. Reed, University of Michigan, Ann Arbor, Mich .:-"I regard it as one of the few books on that subject that are fit to put in

Proctor—Easy Lessons in the Differential Calculus.

Indicating from the Outset the Utility of the Processes called Differentiation and Integration. By R. A. PROCTOR. Third edition.


12mo. 122 pages. \$0.90
"I have striven in this little work to show at once how and why we want a method of calculation dealing with quantities which vary in value under various conditions, and how such a method of calculation is to be used in practice."—Author's Preface.

Williamson—An Elementary Treatise on the Differential Calculus.

Containing the Theory of Plane Curves, and also a Chapter on the Calculus of Variations. By BENJAMIN WILLIAMSON, D.Sc., F.R.S. With numerous Examples. Crown 8vo. \$3.50

Williamson—An Elementary Treatise on the Integral Calculus.

Containing applications to Plane Curves and Surfaces. With numerous Examples. By BENJAMIN WILLIAMSON, D.Sc., F.R.S. Crown 8vo. **\$**3.50

•

.