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BOOK X.

INTRODUCTORY NOTE.

We have seen (Vol. 1., p. 351 etc.) that the discovery of the irrational is
due to the Pythagoreans. The first scholium on Book x. of the Elements
states that the Pythagoreans were the first to address themselves to the in-
vestigation of commensurability, having discovered it by means of their obser-
vation of numbers. They discovered, the scholium continues, that not all
magnitudes have a common measure. “ They called all magnitudes measure-
able by the same measure commensurable, but those which are not subject to
the same measure incommensurable, and again such of these as are measured
by some other common measure commensurable with one another, and such
as are not, incommensurable with the others. And thus by assuming their
measures they referred everything to different commensurabilities, but, though
they were different, even so (they proved that) not all magnitudes are com-
mensurable with any. (They showed that) all magnitudes can be rational
(fyrd) and all irrational (@Xoya) in a relative sense (ds wpds Td); hence the
commensurable and the incommensurable would be for them nafural (kinds)
(¢pvoe), while the rational and irrational would rest on assumption or con-
vention (Oéoe).” The scholium quotes further the legend according to which
“the first of the Pythagoreans who made public the investigation of these
matters perished in a shipwreck,” conjecturing that the authors of this story
“ perhaps spoke allegorically, hinting that everything irrational and formless
is properly concealed, and, if any soul should rashly invade this region of life
and lay it open, it would be carried away into the sea of becoming and be over-
whelmed by its unresting currents.” There would be a reason also for keeping
the discovery of irrationals secret for the time in the fact that it rendered un-
stable so much of the groundwork of geometry as the Pythagoreans had based
upon the imperfect theory of proportions which applied only to numbers. We
have already, after Tannery, referred to the probability that the discovery
of incommensurability must have necessitated a great recasting of the whole
fabric of elementary geometry, pending the discovery of the general theory
of proportion applicable to incommensurable as well as to commensurable
magnitudes.

It seems certain that it was with reference to the length of the diagonal of
a square or the hypotenuse of an isosceles right-angled triangle that the irra-
tional was discovered. Plato (Zheaetetus, 147 D) tells us that Theodorus of
Cyrene wrote about square roots (8vvdues), proving that the square roots of
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three square feet and five square feet are not commensurable with that of one
square foot, and so on, selecting each such square root up to that of 17 square
feet, at which for some reason he stopped. No mention is here made of ,/z,
doubtless for the reason that its incommensurability had been proved before.
Now we are told that Pythagoras invented a formula for finding right-angled
triangles in rational numbers, and in connexion with this it was inevitable that
the Pythagoreans should investigate the relations between sides and hypo-
tenuse in other right-angled triangles. They would naturally give special
attention to the isosceles right-angled triangle ; they would try to measure the
diagonal, would arrive at successive approximations, in rational fractions, to
the value of ,/2, and would find that successive efforts to obtain an exact
expression for it failed. It was however an enormous step to conclude that
such exact expression was smpossidle, and it was this step which the Pytha-
goreans made. We now know that the formation of the side- and diagonal-
numbers explained by Theon of Smyrna and others was Pythagorean, and
also that the theorems of Eucl. 11. g, 10 were used by the Pythagoreans in
direct connexion with this method of approximating to the value of ,/2. The
very method by which Euclid proves these propositions is itself an indication
of their connexion with the investigation of .};, since he uses a figure made
up of two isosceles right-angled triangles.

The actual method by which the Pythagoreans proved the incommensura-
bility of ./2 with unity was no doubt that referred to by Aristotle (A nal. prior.
1. 23, 418 26—7), a reductio ad absurdum by which it is proved that, if the
diagonal is commensurable with the side, it will follow that the same number
is both odd and even. The proof formerly appeared in the texts of Euclid as
X. 117, but it is undoubtedly an interpolation, and August and Heiberg
accordingly relegate it to an Appendix. It is in substance as follows.

Suppose AC, the diagonal of a square, to be commen- 4 B
surable with 4.8, its side. Let a : 8 be their ratio expressed
in the smallest numbers.

Then a > 8 and therefore necessarily > 1.

Now AC*: AB*=d*: 3,
and, since AC*'=245, [Eucl. 1. 47]
al= 28, D [+

Therefore a® is even, and therefore a is even.
Since a : 8 is in its lowest terms, it follows that 8 must be odd.

Put a=2y;
therefore 4y =2,
or B =2y,
so that 82, and therefore 8, must be even.

But 8 was also odd :

which is impossible.

This proof only enables us to prove the incommensurability of the
diagonal of a square with its side, or of ,/z with unity. In order to prove
the incommensurability of the sides of squares, one of which has #kree times
the area of another, an entirely different procedure is necessary ; and we find
in fact that, even a century after Pythagoras’ time, it was still necessary to use
separate proofs (as the passage of the Zheaetetus shows that Theodorus did)
to establish the incommensurability with unity of /3, 4/5, ... up to ,/17.
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This fact indicates clearly that the general theorem in Eucl. X. 9 that sguares
which have not to one another the ratio of a square number to a square number
have their sides incommensurable in length was not arrived at all at once, but
was, in the manner of the time, developed out of the separate consideration
of special cases (Hankel, p. 103).

The proposition x. g of Euclid is definitely ascribed by the scholiast to
Theaetetus. Theaetetus was a pupil of Theodorus, and it would seem clear
that the theorem was not known to Theodorus. Moreover the Platonic
passage itself (Zheaet. 147D sqq.) represents the young Theaetetus as striving
after a general conception of what we call a surd. “The idea occurred to
me, seeing that sguare roots (Svvdpas) appeared to be unlimited in multitude,
to try to arrive at one collective term by which we could designate all these
square roots. ... I divided number in general into two classes. The number
which can be expressed as equal multiplied by equal (ioov lodxis) I likened
to a square in form, and I called it square and equilateral....The intermediate
number, such as three, five, and any number which cannot be expressed as
equal multiplied by equal, but is either less times more or more times less, so
that it is always contained by a greater and less side, I likened to an obiong
figure and called an oblong number. ...Such straight lines then as square the
equilateral and plane number I defined as length (uixes), and such as square
the oblong sguare roofs (Suvdpess), as not being commensurable with the
others in length but only in the plane areas to which their squares are
equal.”

There is further evidence of the contributions of Theaetetus to the theory
of incommensurables in a commentary on Eucl. x. discovered, in an Arabic
translation, by Woepcke (Mémoires présentés & I Académie des Sciences, xv.,
1856, pp. 658—720). It is certain that this commentary is of Greek origin.
Woepcke conjectures that it was by Vettius Valens, an astronomer, apparently
of Antioch, and a contemporary of Claudius Ptolemy (2nd cent. A.p.),
Heiberg, with ter probability, thinks that we have here a fragment of the
commentary of Pappus (Euk/id-studien, pp. 16g—71), and this is rendered
practically certain Ey Suter (Die Mathematiker und Astronomen der Araber
und ithre Werke, pp. 49 and 211). This commentary states that the theory
of irrational magnitudes * had its origin in the school of Pythagoras. It was
considerably developed by Theaetetus the Athenian, who gave proof, in this
part of mathematics, as in others, of ability which has been justly admired.
He was one of the most happily endowed of men, and gave himself up, with a
fine enthusiasm, to the investigation of the truths contained in these sciences,
as Plato bears witness for him in the work which he called after his name. As
for the exact distinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives rise, I believe
that they were chiefly established by this mathematician; and, later, the
great Apollonius, whose genius touched the highest point of excellence in
mathematics, added to these discoveries a number of remarkable theories
after many efforts and much labour.

“For Theaetetus had distinguished square roots [puissances must be the
Suvdpas of the Platonic passage] commensurable in length from those which
are incommensurable, and had divided the well-known species of irrational
lines after the different means, assigning the media/ to geometry, the dinomial
to arithmetic, and the apofome to harmony, as is stated by Eudemus the
Peripatetic. :

“ As for Euclid, he set himself to give rigorous rules, which he established,



" BOOK X

relative to commensurability and incommensurability in general; he made
precise the definitions and the distinctions between rational and irrational
magnitudes, he set out a great number of orders of irrational magnitudes, and
finally he clearly showed their whole extent.”

The allusion in the last words must apparently be to X. 115, where it is
proved that from the medial straight line an unlimited number of other
irrationals can be derived, all different from it and from one another.

‘The connexion between the medial straight line and the geometric mean
is obvious, because it is in fact the mean proportlonal between two rational
straight lines ““commensurable in square only.” Since §(x +y) is the arithmetic
mean between x, y, the reference to it of the binomial can be understood.
The connexion between the apotome and the harmonic mean is explained by
some propositions in the second book of the Arabic commentary. The

harmonic mean between x, y is x_z.%) and propositions of which Woepcke
quotes the enunciations prove that, if a rational or a medial area has for one
of its sides a dinomial straight line, the other side will be an agotome of corre-
sponding order (these propositions are generalised from Eucl. x. 111—4); the

fact is that “yy ot o Ax—y).

One other predeoasor of Euclid appears to have written on irrationals,
though we know no more of the work than its title as handed down by
Diogenes Laertius'. According to this tradition, Democritus wrote wepi
dAoywy ypappdv xai vagrav [8, two Books on irrational straight lines and
solids (or atoms). Hultsch (Newe Jakrbiicker fiir Philologie und Pidagogik,
1881, PP 578—g) conjectures that the true readmg may be wepi dAdyar
ypappdy xAaordy, “‘on irrational broken lines.” Hultsch seems to have
in mind straight lines divided into two parts one of which is rational
and the other irrational (“ Aus einer Art von Umkehr des Pythagoreischen
Lehrsatzes iiber das rechtwinklige Dreieck gieng zunichst mit Leichtigkeit
hervor, dass man eine Linie construiren kionne, welche als irrational zu
bezeichnen ist, aber durch Brechung sich darstellen’ ldsst als die Summe
einer rationalen und einer irrationalen Linie”). But I doubt the use of xAaords
in the sense of breaking one straight line into parts ; it should properly mean
a bent line, i.e. two straight lines forming an angle or droken short off at their
point of meeting. It is also to be observed that vaordv is quoted as a
Democritean word (opposite to xevdv) in a fragment of Aristotle (202). I see
therefore no reason for questioning the correctness of the title of Democritus’
book as above quoted®

I will here quote a valuable remark of Zeuthen’s relating to the classifi-
cation of irrationals. He says (Geschichte der Mathematik im Altertum und
Mittelalter, p. 56) “Since such roots of equations of the second degree as are
incommensurable with the given magnitudes cannot be expressed by means
of the latter and of numbers, it is conceivable that the Greeks, in exact
investigations, introduced no approximate values but worked on with tie
magnitudes they had found, which were represented by straight lines obtained
by the construction corresponding to the solution of the equation. That is
exactly the same thing which happens when we do not evaluate roots but content
ourselves with expressing them by radical signs and other algebraical symbols.
But, inasmuch as one straight line looks like another, the Greeks did not get

1 Diog. Laert. IX. 47, p- 239 (ed. Cobet).
2 Cf. ante, Vol. 1., p. 413.
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the same clear view of what they denoted (i.e. by simple inspection) as our
system of symbols assures to us, For this reason it was necessary to under-
take a classification of the irrational magnitudes which had been arrived at by
successive solution of equations of the second degree.” To much the same
effect Tannery wrote in 1882 (De la solution géoméirique des problemes du
second degré avant Euclide in Mémoires de la Société des sciences physigues et
naturelles de Bordeaux, 2° Série, 1v. pp. 395—416). Accordingly Book x.
formed a repository of results to which could be referred problems which
depended on the solution of certain types of equations, quadratic and biquad-
ratic but reducible to quadratics.
Consider the quadratic equations
¥tzax.ptf.p'=0,
where p is a rational straight line, and a, B are coefficients. Our quadratic
equations in algebra leave out the p; but I put it in, because it has always to
be remembered that Euclid’s x is a straight /ine, not an algebraical quantity,
and is therefore to be found in terms of, or in relation to, a certain assumed
rational straight line, and also because with Euclid p may be not only of the
form a, where a represents @ units of length, but also of the form %.a,
which represents a length “commensurable in square only” with the unit of
length, or /4 where 4 represents a number (not square) of units of area.
The use therefore of p in our equations makes it unnecessary to multiply
different cases according to the relation of p to the unit of length, and has the
further advantage that, e.g., the expression p + ,/£.p is just as general as the
expression /£.p#+ \/A.p, since p covers the form ,/£.p, both expressions
covering a length either commensurable in length, or “commensurable in
square only,” with the unit of length.
Now the positive roots of the quadratic equations

x'+2ex.ptf.p'=0
can only have the following forms
#=p(a+Va'=B), %' =p(a—Va'=B) }
xy=p(Va'+B+a), 2 =p(Va'+ B -a) .

The negative roots do not come in, since x must be a straight line. The
omission however to bring in negative roots constitutes no loss of generality,
since the Greeks would write the equation leading to negative roots in another
form so as to make them positive, 1.e. they would change the sign of x in the
equation. 3 :

Now the positive roots x,, &, ¥,, x; may be classified according to the
character of the coefficents a, B and their relation to one another.

I. Suppose that a, 8 do not contain any surds, i.e. are either integers or
of the form m/n, where m, n are integers.
Now in the expressions for x;, x," it may be that
2
(1) B is of the form %a'.

Euclid expresses this by saying that the square on ap exceeds the square
on pva®— B by the square on a straight line commensurable in length with ap.
In this case x, is, in Euclid’s terminology, a first béinomial straight line,

and x,’ a first apolome.
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m
n

(2) In general, B not being of the form — o,
x, is a fourth binomial,
x," a fourth apotome.
Next, in the expressions for x,, x4, it may be that
3
(1) B is equal to % (a® + B), where m, n are integers, i.e. 8 is of the form
”" ;]
wem
Euclid expresses this by saying that the square on p-Jn'+_B exceeds the
square on ap by the square on a straight line commensurable in length with

pNa*+B. : Linig
In this case x, is, in Euclid’s terminology, a second binomial,

x; a second apofome.

(2) In general, 8 not being of the form
x, is a fifth binomial,
x, a fifth apotome.

II. Now suppose that a is of the form J g, where m, n are integers, and

let us denote it by /A
Then in this case
H=p(JA+VA=B), x'=p(JA-VA-p),
xy=p (VA+ B+ A), 2 =p (VA+ B JN).
Thus x,, ;" are of the same form as x,, ;. il
If VX=8in x,, ;' is not surd but of the form m/n, and if JAX+B in g, 2,
is not surd but of the form m/n, the roots are comprised among the forms
already shown, the first, second, fourth and fifth binomials and apotomes.

If VA= B in x,, x, is surd, then

3
1 we may have of the form — and 1n this case
( have B of the fi ’::,x, d in thi

2
e

x, is a third binomial straight line,
x, a third apotome;

(2) in general, 8 not being of the form % A,

x, is a sixth binomial straight line,
a a sixth apolome.
. With the expressions for x,, x," the distinction between the third and sixth
binomials and apotomes is of course the distinction between the cases
(1) in which 8= %’ (A + B), or B is of the form 2

- m‘k’
and (2) in which B is not of this form.
If we take the square root of the product of p and each of the six
binomials and six apotomes just classified, i.e.

P et ‘J“T‘Tﬁ)! p*(Va'+ Bta),
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in the six different forms that each may take, we find six new irrationals with
a positive sign separating the two terms, and six corresponding irrationals with
a negative sign. These are of course roots of the equations
2+ z2ax’.p'+B.p'=0.
These irrationals really come before the others in Euclid’s order (x. 36—
41 for the positive sign and x. 73—78 for the negative sign). As we shall
see in due course, the straight lines actually found by Euclid are

I. p+ Jk. p, the binomial (7} éx 8o dvopdrwy)
and the apofome (dworopsj),
which are the positive roots of the biquadratic (reducible to a quadratic)
A—z2(1+k)p*. 2+ (1- &) p*=0.
2. #p + #p, the first bimedial (ix 8o péowy mpdrn)
and the first apotome of a medial (péons dworops) mpury),
which are the positive roots of
-2, fk(1+R)p .2+ k(1-4)p'=0.

3. Aoy %& py the second bimedial (éx Bo péowy devrépa)

and the second apotome of a medial (péoys dworopy devrépa),
which are the positive roots of the equation

k4 A (£— ,\}
x—2 Jk Pt +

& J2 ~/ JH» Jn/ J: Jiie

the major (irrational straight line) (,u.u&uv)
and the minor (irrational straight line) (éAdoowr),
which are the positive roots of the equation

=0,

.‘r'—zp’..;l"-l» é‘p‘=°.
____ — P o = e
5 :Jz(l+§’)JJI+B+&+J£F:}|)JZ+P_'E’

the “side” of a rational plus a medial (area) (pyrov xai péoov hvmérq}

and the “side” of a medial minus a rational area (in the Greek 7 perd pryrod
péoov 70 SAov wowoboa),

which are the positive roots of the equation

et
J:+PP *

&ip
6. o0
V2 J1+.&’ \/ Jr + A2

the “side” of the sum of two med:a! areas (1 8o péoa Suvapdim)
and the “side” of a medial minus a medial area (in the Greek 7 perd péoov
péoov 10 GAov mowodoa),
which are the positive roots of the equation

I3
oz PN

E 4 _
(1 vapf =

pt=o.
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‘The above facts and formulae admit of being stated in a great variety of
ways according to the notation and the particular letters used. Consequently
the summaries which have been given of Eucl. x. by various writers differ
much in appearance while expressing the same thing in substance. The first
summary in algebraical form (and a very elaborate one) seems to have been
that of Cossali (Origine, trasporto in [talia, primi progressi in essa del-
P Algebra, Vol. 1L, pp. 242—065) who takes credit accordingly (p. 265). In
1794 Meier Hirsch published at Berlin an Adlgebraischer Commentar iiber das
sehente Buck der Elemente des Euklides which gives the contfents in algebraical
form but fails to give any indication of Euclid’s methods, using modern forms
of proof only. In 1834 Poselger wrote a paper, Ueber das sehnte Buch der
Elemente des Euklides, in which he pointed out the defects of Hirsch’s repro-
duction and gave a summary of his own, which however, though nearer to
Euclid’s form, is difficult to follow in consequence of an elaborate system of
abbreviations, and is open to the objection that it is not algebraical enough
to enable the character of Euclid’s irrationals to be seen at a glance. Other
summaries will be found (1) in Nesselmann, Die Aigebra der Griechen,
pp- 165—84; (2) in Loria, Le scienze esatte nell' antica Greda, 1914,
pp- 221—34; (3) in Christensen’s article “ Ueber Gleichungen vierten Grades
im zehnten Buch der Elemente Euklids” in the Zetschrift fiir Math. u.
Physik (Historisch-litterarische Abtheilung), Xxx1v. (1889), pp. z01—17. The
only summary in English that I know is that in the Penny Cyclopaedia, under
“Irrational quantity,” by De Morgan, who yielded to none in his admiration of
Book x. “Euclid investigates,” says De Morgan, ““every possible variety of
lines which can be represented by ./(./a +./¢), @ and & representing two
commensurable lines....This book has a completeness which none of the
others (not even the fifth) can boast of: and we could almost suspect that
Euclid, having arranged his materials in his own mind, and having completely
elaborated the roth Book, wrote the preceding books after it and did not live
to revise them thoroughly.”

Much attention was given to Book X. by the early algebraists. Thus
Leonardo of Pisa (fl. about 1200 A.D.) wrote in the 14th section of his Liber
Abaci on the theory of irrationalities (de Zractatu binomiorum et recisorum),
without however (except in treating of irrational trinomials and cubic irra-
tionalities) adding much to the substance of Book X.; and, in investigating
the equation

a*+ 22% + 102 = 20,

propounded by Johannes of Palermo, he proved that none of the irrationals
in Eucl. x. would satisfy it (Hankel, pp. 344—6, Cantor, 11,, p. 43). Luca
Paciuolo (about 1445—1514 A.D.) in his algebra based himself largely, as he
himself expressly says, on Euclid x. (Cantor, 1, p. 293). Michael Stifel
(1486 or 1487 to 1567) wrote on irrational numbers in the second Book of
his Arithmetica integra, which Book may be regarded, says Cantor (11,, p. 402),
as an elucidation of Eucl. x. The works of Cardano (1501—76) abound in
speculations regarding the irrationals of Euclid, as may be seen by reference to
Cossali (Vol. 11, especially pp. 268—78 and 382—99); the character of
the various odd and even powers of the binomials and apotomes is therein
investigated, and Cardano considers in detail of what particular forms of equa-
tions, quadratic, cubic, and biquadratic, each class of Euclidean irrationals can
be roots. Simon Stevin (1548—1620) gave an Appendice des incommensurables
grandeurs en laquelle est sommaivement déclaré le contenu du Dixiesme Livre
d' Euclide (Oeuvres mathématiques, Leyde, 1634, pp. 218-22) ; he speaks thus



INTRODUCTORY NOTE 9

of the book: “La difficulté du dixiesme Livre d’Euclide est & plusieurs
devenue en horreur, voire jusque A l'appeler la croix des mathématiciens,
matiére trop dure 2 digérer, et en la quelle n'apergoivent aucune utilité,” a
passage quoted by Loria (op. iz, p. 222).

It will naturally be asked, what use did the Greek geometers actually
make of the theory of irrationals developed at such length in Book x.? The
answer is that Euclid himself, in Book xi11., makes considerable use of the
second portion of Book x. dealing with the irrationals affected with a negative
sign, the apofomes etc. One object of Book xi11. is to investigate the relation
of the sides of a pentagon inscribed in a circle and of an icosahedron and
dodecahedron inscribed in a sphere to the diameter of the circle or sphere
respectively, supposed rational. The connexion with the regular pentagon of
a straight line cut in extreme and mean ratio is well known, and Euclid first
proves (x111. 6) that, if a raffonal straight line is so divided, the parts are the
irrationals called apotomes, the lesser part being a jfirst apotome. Then, on
the assumption that the diameters of a circle and sphere respectively are
rational, he proves (x111. 11) that the side of the inscribed regular pentagon is
the irrational straight line called minor, as is also the side of the inscribed
icosahedron (x11. 16), while the side of the inscribed dodecahedron is the
irrational called an agofome (X111 17).

Of course the investigation in Book X. would not have been complete if
it had dealt only with the irrationals affected with a negafive sign. Those
affected with the positive sign, the dinomials etc., had also to be discussed,
and we find both portions of Book X., with its nomenclature, made use of by
Pappus in two propositions, of which it may be of interest to give the enun-
ciations here.

If, says Pappus (1v. p. 178), 4.8 be the rational diameter of a semicircle, and
if A8 be produced to C so that BC is equal to the radius, if C.D be a tangent,

D

A F B [+]

if £ be the middle point of the arc £, and if CE be joined, then CZ is the
irrational straight line called minor. As a matter of fact, if p is the radius,

CE=p*(5-24/3) and CE=,\/.5_+_,::I_3_\/5___:{§

If, again (p. 182), CD be equal to the radius of a semicircle supposed
B

F

A H [+} D

rational, and if the tangent D5 be drawn and the angle 408 be bisected by
DF meeting the circumference in #, then DF is the excess by which the
binomial exceeds the straight line whick produces with a rational area a medial
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whole (see Eucl. x. 77). (In the figure DX is the binomial and KF the other
irrational straight line.) As a matter of fact, if p be the radius,

KD=p. —i‘},—;,andKF=p.Jj:3_~—:=p (\/'-"3:*_,\/4/3;4’).

Proclus tells us that Euclid left out, as alien to a selection of elements, the
discussion of the more complicated irrationals, “the unordered irrationals which
Apollonius worked out more fully” (Proclus, p. 74, 23), while the scholiast
to Book x. remarks that Euclid does not deal with all rationals and irrationals
but only the simplest kinds by the combination of which an infinite number
of irrationals are obtained, of which Apollonius also gave some. The author
of the commentary on Book X. found by Woepcke in an Arabic translation,
and above alluded to, also says that ‘““it was Apollonius who, beside the
ordered irrational magnitudes, showed the existence of the wnordered and by
accurate methods set forth a great number of them.” It can only be vaguely
gathered, from such hints as the commentator proceeds to give, what the
character of the extension of the subject given by Apollonius may have been.
See note at end of Book.

DEFINITIONS.

1. Those magnitudes are said to be commensurable
which are measured by the same measure, and those incom-
mensurable which cannot have any common measure.

2. Straight lines are commensurable in square when
the squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist
straight lines infinite in multitude which are commensurable
and incommensurable respectively, some in length only, and
others in square also, with an assigned straight line. Let
then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in
length and in square or in square only, rational, but those
which are incommensurable with it irrational.

4. And let the square on the assigned straight line be
called rational and those areas which are commensurable
with it rational, but those which are incommensurable with
it irrational, and the straight lines which produce them
irrational, that is, in case the areas are squares, the sides
themselves, but in case they are any other rectilineal figures,
the straight lines on which are described squares equal to
them,
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DEFINITION 1.

Sipperpa peyélly Aéyerar 1d 14 alrg pérpy perpovpeva, dovpperpo 8¢, dv
pndev dvéyerar xowdv pérpov yevéolw

DEFINITION 2.

Edfeia Suvdpe prwpcu (ww, mv T8 &7 alrav Terpdywva -r?? abrg xwply

;.l.t'rpy;rm, dodpperpot 8¢, dtav Tols dr' abrdv Terpayvvois ,u-r;&v dvéxnrar xwplov
Kowdv pérpov yevéofar.

Commensurable in square is in the Greek dwdpew ovpperpos. In earlier
translations (e.g. Williamson's) 8urape: has been translated “in power,” but,
as the pa.mcu]ar power represented by Sdvems in Greek geometry is sguare,
I have thought it best to use the latter word throughout. It will be observed
that Euclid’s expression commensurable in square only (used in Def. 3 and
constantly) corresponds to what Plato makes Theaetetus call a sguare root
(Svvapis) in the sense of a surd. 1If a is any straight line, a and a,/m, or
a./m and a,/n (where m, n are integers or arithmetical fractions in their
lowest terms, proper or improper, but not square) are commensurable in square
only. Of course (as explained in the Porism to Xx. 10) all straight lines
commensurable in length (pixe), in Euclid’s phrase, are commensurable in
square also ; but not all straight lines which are commensurable i# sguare are
commensurable i length as well.  On the other hand, straight lines #ncom-
mensurable in square are necessarily incommensurable iz length also ; but not
all straight lines which are incommensurable ## /ength are incommensurable
in square. In fact, straight lines which are commensurable in square only are
incommensurable i /ength, but obviously not incommensurable in square.

DEFINITION 3.

Twmw ﬁwmtmww &wwmt, Sn 5l rponﬁtwq euﬂwg. wapxmw ebfeiar
whijfe & drepo o'umurpm Te kai Mvp;.u‘rpot al pw p.‘t}xu ,u.cwov, ai 8¢ xul Bum,pm
mhwﬂw obv 7 piv rpmtﬂ(wu ebfeia p pm, kai ai TavTy oUppETpoL €iTe pijKer Kai
Swdpe eire Suvdper povov pyrai, al 8¢ radry dovpperpor dhoyor kakeloBwoar.

The first sentence of the definition is decidedly elliptical. It should,
strictly speaking, assert that “with a given straight line there are an infinite
number of straight lines which are (1) commensurable either (2) in square
only or (4) in square and in length also, and (2) incommensurable, either
(@) in length only or (4) in length and in square also.”

The relativity of the terms rational and irrational is well brought out in
this definition. We may set out any straight line and call it rational, and it
is then with reference to this assumed rational straight line that others are
called rational or irrational.

We should carefully note that the signification of raziona/in Euclid is wider
than in our terminology. With him, not only is a straight line commensurable in
Jength with a rational straight line rational, but a straight line is rational which
is commensurable with a rational stralght hne in square only. That is,if pis a

rational straight line, not only is —';p rational, where =, » are integers and
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m[n in its lowest terms is not square, but ,\/ E. p is rational also. We should

in this case call g.p irrational. It would appear that Euclid’s termino-

logy here differed as much from that of his predecessors as it does from
ours. We are familiar with the phrase dppnros Swiperpos Tijs meprddos by
which Plato (evidently after the Pythagoreans) describes the diagonal of a
square on a straight line containing 5 units of length. This “inexpressible
diameter of five (squared)” means +/50, in contrast to the pmr) uduerpos, the
“expressible diameter” of the same square, by which is meant the approxi-

e ) m
mation «/s0—1, or 7. Thus for Euclid's predecessors 7P would

apparently not have been rational but appyros, ““inexpressible,” i.e. irrational.

I shall throughout my notes on this Book denote a rational straight line in
Euclid’s sense by p, and by p and o when two different rational straight lines are
required. Wherever then I use p or o, it must be remembered that p, ¢ may
have either of the forms a, /4. a, where a represents a units of length, a being
either an integer or of the form m/n, where m, n are both integers, and 4 is an
integer or of the form m/n (where both m, n are integers) but not square. In
other words, p, & may have either of the forms @ or /4, where A4 represents
A units of area and A is integral or of the form m/n, where m, n are both
integers. It has been the habit of writers to give @ and +/a as the alternative
forms of p, but I shall always use JA4 for the second in order to keep the
dimensions right, because it must be borne in mind throughout that p is an
irrational straight line.

As Euclid extends the signification of rational (pyros, literally expressible),
so he limits the scope of the term dXoyos (literally Aaving no ratio) as applied
to straight lines. That this limitation was started by himself may perhaps be
inferred from the form of words “/e straight lines incommensurable with it
be called irrational.” Irrational straight lines then are with Euclid straight lines
commensurable neither in length nor in square with the assumed rational
straight line. /4. a where £ is not square is not irrational; /4. a is irrational,
and so (as we shall see later on) is (sjk-b JA)a.

DEFINITION 4.

Kai 10 pév mru rr'js #poﬂﬂtwm ebfelas ﬂrpuymvw ;’am‘ov, kai Ta 'rmmy
wwufpa. ﬁnrrq., T 8: -ml.mp ﬂ.wm.r.ﬂpn dAoya xm\(wom, m:u al duvapevar tw'm
w\wyor., € piv Tﬂ'ptl]m!m €y, adrai ai wAevpal, el 8¢ Erepd Twa fvypappa, ai
loa alrois Terpdywve dvaypdgovoar.

As applied to areas, the terms rational and irrational have, on the other
hand, the same sense with Euclid as we should attach to them. According
to Euclid, if p is a rational straight line in /s sense, p* is rational and any
area commensurable with it, i.e. of the form £p® (where £ is an integer, or of
the form m/n, where m, n are integers), is rational ; but any area of the form
N#.p* is irrational. Euclid's rational area thus contains A units of area,
where 4 is an mteger or of the form m/n, where m, n are integers ; and his
irrational area is of the form ,/#. 4. His irrational area is then connected
with his irrational straight l/ine by making the latter the square root of the



X. DEF. 4] NOTES ON DEFINITIONS 3, 4 13

former. This would give us for the irrational strasght line Y%. /A, which of
course includes /4. a.

al Suvdpevar abrd are the straight lines the squares on which are equal to
the areas, in accordance with the regular meaning of 8ivacfar, It is scarcely
possible, in a book written in geometrical language, to translate Suvapévy as
the sguare root (of an area) and Svvaclfar as fo be the square root (of an area),
although I can use the term “square root” when in my notes I am using an
algebraical expression to represent an area ; I shall therefore hereafter use the
word “side” for Swapévy and “to be the side of” for &vvacfa:, so that
“side” will in such expressions be a short way of expressing the “side of
a square equal to (an area).” In this particular passage it is not quite practi-
cable to use the words *side of ” or “straight line the square on which is equal
to,” for these expressions occur just afterwards for two alternatives which the
word Svvapém covers. I have therefore exceptionally translated *the straight
lines which produce them ” (i.e. if squares are described upon them as sides).

al {ga abrols Terpdywva dvaypidovray, literally “ the (straight lines) which
describe squares equal to them”: a peculiar use of the active of dvaypddew,
the meaning being of course “the straight lines on which are described the
squares” which are equal to the rectilineal figures.



BOOK X. PROPOSITIONS.

ProrosiTION 1.

Two unequal magnitudes being set out, if from the greater
there be subtracted a magnitude greater than its half, and from
that which is left a magnitude greater than its half, and if
this process be vepeated continually, there will be left some
magnitude which will be less than the lesser magnitude set out.

Let AB, C be two unequal magnitudes of which 42 is

the greater: K %
I say that, if from 425 there be A—F— 8 2
subtracted a magnitude greater o e E

than its half, and from that which
is left a magnitude greater than its half, and if this process be

repeated continually, there will be left some magnitude which
will be less than the magnitude C.

For C if multiplied will sometime be greater than 45.
[cf. v. Def. 4

Let it be multiplied, and let DE be a multiple of C, an
greater than A5 ;
let DE be divided into the parts DF, FG, GE equal to C,
from AR let there be subtracted B/ greater than its half,
and, from AH, HK greater than its half,
and let this process be repeated continually until the divisions
in AB are equal in multitude with the divisions in DE.

Let, then, AKX, KH, HPB be divisions which are equal in
multitude with DF, FG, GE.

Now, since DE is greater than 45,
and from DE there has been subtracted E£G less than its
half,
and, from A5, BH greater than its half,
therefore the remainder GO is greater than the remainder /7 4.
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And, since GD is greater than FA4,
and there has been subtracted, from GO, the half GF,
and, from H A, HK greater than its half,
therefore the remainder D F'is greater than the remainder 4 X.
But DF is equal to C;
therefore C is also greater than AKX
Therefore AKX is less than C.
Therefore there is left of the magnitude 4.5 the magnitude
AK which is less than the lesser magnitude set out, namely C.
Q. E. D.

And the theorem can be similarly proved even if the parts
subtracted be halves.

This proposition will be remembered because it is the lemma required in
Euclid’s proof of xi1. 2 to the effect that circles are to one another as the
squares on their diameters. Some writers appear to be under the impression
that xi1. 2 and the other propositions in Book X11. in which the method of
exhaustion is used are the only places where Euclid makes use of X. 1; and it
is commonly remarked that X. 1 might just as well have been deferred till the
beginning of Book x11. Even Cantor (Gesch. d. Math. 15, p. 269) remarks
that “ Euclid draws no inference from it [x. 1}, not even that which we should
more than anything else expect, namely that, if two magnitudes are incom-
mensurable, we can always form a magnitude commensurable with the first
which shall differ from the second magnitude by as little as we please.” But,
so far from making no use of X. 1 before xi1. 2, Euclid actually uses it in the
very next proposition, X. 2. This béing so, as the next note will show, it
follows that, since x. z gives the criterion for the incommensurability of two
magnitudes (a very necessary preliminary to the study of incommensurables),
X: 1 comes exactly where it should be.

Euclid uses X. 1 to prove not only XiI. 2 but X1t 5 (that pyramids with the
same height and triangular bases are to one another as their bases), by means
of which he proves (x11. 7 and Por.) that any pyramid is a third part of the
prism which has the same base and equal height, and x11. 10 (that any cone
is a third part of the cylinder which has the same base and equal height),
besides other similar propositions. Now x11. 7 Por. and Xi1. 1o are theorems
specifically attributed to Eudoxus by Archimedes (On the Sphere and Cylinder,
Preface), who says in another place (Quadrature of the Parabola, Preface) that
the first of the two, and the theorem that circles are to one another as the
squares on their diameters, were proved by means of a certain lemma which
he states as follows : “Of unequal lines, unequal surfaces, or unequal solids,
the greater exceeds the less by such a magnitude as is capable, if added
[continually] to itself, of exceeding any magnitude of those which are
comparable with one another,” i.e. of magnitudes of the same kind as the
original magnitudes. Archimedes also says (%c «?) that the second of
the two theorems which he attributes to Eudoxus (Eucl xi. 10) was

oved by means of ‘“a lemma similar to the aforesaid.” The lemma
stated thus by Archimedes is decidedly different from Xx. 1, which, however,
Archimedes himself uses several times, while he refers to the use of it
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in X1, 2 (On the Sphere and Cylinder, 1. 6). As I have before suggested
(The Works of Archimedes, p. xlviii), the apparent difficulty caused by the
mention of Zzwe lemmas in connexion with the theorem of Eucl. x11. 2 may be
explained by reference to the proof of x. 1. Euclid there takes the lesser
magnitude and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th definition of
Book v., to the effect that “magnitudes are said to bear a ratio to one another
which can, if multiplied, exceed one another.” Since then the smaller
magnitude in X. 1 may be regarded as the difference between some two
unequal magnitudes, it 1s clear that the lemma stated by Archimedes is in
substance used to prove the lemma in x. 1, which appears to play so much
larger a part in the investigations of quadrature and cubature which have come
down to us.

Besides being employed in Eucl. x. 1, the “ Axiom of Archimedes” appears
in Aristotle, who also practically quotes the result of x. 1 itself. Thus he
says, Physics vl 10, 266 b 2, “ By continually adding to a finite (magnitude)
I shall exceed any definite (magnitude), and similarly by ‘continually subtract-
ing from it I shall arrive at something less than it,” and #:d. n1. 7, 207 b 10
“ For bisections of a magnitude are endless.” It is thus somewhat misleading
to use the term “ Archimedes’ Axiom” for the “lemma” quoted by him,
since he makes no claim to be the discoverer of it, and it was obviously much
earlier.

Stolz (see G. Vitali in Questioni riguardanti le matematiche elementari, 1.,
pp- 129—30) showed how to prove the so-called Axiom or Postulate of Archi-
medes by means of the Postulate of Dedekind, thus. Suppose the two magni-
tudes to be straight lines. It is required to prove that, given fwo straight lines,
there always exists a multiple of the smaller which is greater than the other.

Let the straight lines be so placed that they have a common extremity and
the smaller lies along the other on the same side of the common extremity.

If AC be the greater and 4B the smaller, we have to prove that there
exists an integral number # such that #. 48> AC.

Suppose that this is not true but that there are some points, like B, not
coincident with the extremity 4, and such that, » being any integer however
great, . AB<AC; and we have to prove that this assumption leads to an
absurdity.

H M K
A X Y B [+

The points of 4 C may be regarded as distributed into two “parts,” namely
(1) points A for which there exists no integer » such that n. 44> AC,

(z) points & for which an integer » does exist such that n, AKX > AC.

This division into parts satisfies the conditions for the application of
Dedekind’s Postulate, and therefore there exists a point A such that the
points of 4. belong to the first part and those of MC to the second part.

Take now a point ¥ on MC such that ¥ < AM. The middle point (X)
of AV will fall between 4 and M and will therefore belong to the first part;
but, since there exists an integer # such that #. 4¥> A4C, it follows that
2n. AX > AC: which is contrary to the hypothesis.
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ProrosiTiON 2.

1f, when the less of two unequal magnitudes is continually
subtracted in turn from the greater, that whick is left never
measures the one before it, the magnitudes will be incom-
mensurable.

For, there being two unequal magnitudes A8, CD, and
AB being the less, when the less is continually subtracted
in turn from the greater, let that which is left over never
measure the one before it ;

I say that the magnitudes 428, CD are incommensurable.

M ACuHUL G oy

c é. D

For, if they are commensurable, some magnitude will
measure them.
Let a magnitude measure them, if possible, and let it be £;
let 48, measuring /D, leave CF less than itself,
let CF measuring BG, leave AG less than itself,
and let this process be repeated continually, until there is left
some magnitude which is less than £.
Suppose this done, and let there be left 4G less than £.
Then, since £ measures A5,
while A8 measures DF,
therefore £ will also measure FD.
But it measures the whole CD also ;
therefore it will also measure the remainder CF.
But CF measures BG ;
therefore £ also measures BG.
But it measures the whole 42 also;
therefore it will also measure the remainder 4G, the greater
the less:
which is impossible.
- Therefore no magnitude will measure the magnitudes 4 5B,
D;
therefore the magnitudes 425, CD are incommensurable.
[x. Def. 1]

Therefore etc.
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This proposition states the test for incommensurable magnitudes, founded
on the usual operation for finding the greatest common measure. The sign
of the incommensurability of two magnitudes is that this operation never
comes to an end, while the successive remainders become smaller and smaller
until they are less than any assigned magnitude.

Observe that Euclid says “let this process be repeated continually until
there is left some magnitude which is less than £.” Here he evidently
assumes that the process w#// some time produce a remainder less than any
assxiened magnitude £Z. Now this is by no means self-evident, and yet
Heiberg (though so careful to supply references) and Lorenz do not refer to
the basis of the assumption, which is in reality x. 1, as Billingsley and
Williamson were shrewd enough to see. The fact is that, if we set off a
smaller magnitude once or oftener along a greater which it does not exactly
measure, until the remainder is less than the smaller magnitude, we take away
from the greater more than its kalf. Thus, in the figure, 0 is more than the
half of CD, and BG more than the half of 45. If we continued the process,
AG marked off along CF as many times as possible would cut off more than
its half; next, more than half 4G would be cut off, and so on. Hence along
CD, AB alternately the process would cut off more than half, then more than
half the remainder and so on, so that on do#k lines we should ultimately
arrive at a remainder less than any assigned length.

The method of finding the greatest common measure exhibited in this
proposition and the next is of course again the same as that which we use and
which may be shown thus:

b)a(p
26

)b(g
gc
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The proof too is the same as ours, taking just the same form, as shown in the
notes to the similar propositions vir. 1, 2 above. In the present case the
hypothesis is that the process never stops, and it is required to prove that a, &
cannot in that case have any common measure, as /. For suppose that f is a
common measure, and suppose the process to be continued until the remainder
¢, say, is less than £,

Then, since f measures g, 4, it measures a — 24, or ¢.

Since f measures &, ¢, it measures é—g¢¢, or 4; and, since / measures ¢, d,
it measures ¢ — »d, or ¢: which is impossible, since ¢ < f.

Euclid assumes as axiomatic that, if / measures a, 4, it measures ma + né.

In practice, of course, it is often unnecessary to carry the process far in
order to see that it will never stop, and consequently that the magnitudes are
incommensurable. A good instance is pointed out by Allman (Greek Geometry
JSfrom Thales to Euclid, pp. 42, 137—8). Euclid proves in X 5 that, if 48
be cut in extreme and mean ratio at C, and if
DA equal to 4C be added, then DB isalso cut D A cC B
in extreme and mean ratio at 4. This is indeed * '
obvious from the proof of 11. 11. It follows conversely that, if B.D is cut into
extreme and mean ratio at 4, and 4C, equal to the lesser segment 4.0, be
subtracted from the greater 4.8, 4B is similarly divided at C. We can then
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mark off from 4C a portion equal to CB, and AC will then be similarly
divided, and so on. Now the greater segment in a line thus divided is greater
than half the line, but it follows from x111. 3 that it is less than twice the
lesser segment, i.e. the lesser segment can never be marked off more than
once from the greater. Our process of marking off the lesser segment from the
greater continually is thus exactly that of finding the greatest common measure.
If, therefore, the segments were commensurable, the process would stop. But
it clearly does not ; therefore the segments are incommensurable.

Allman expresses the opinion that it was rather in connexion with the line
cut in extreme and mean ratio than with reference to the diagonal and side
of a square that the Pythagoreans discovered the incommensurable. But the
evidence seems to put it beyond doubt that the Pythagoreans did discover
the incommensurability of j; and devoted much attention to this particular
case. The view of Allman does not therefore commend itself to me, though
it is likely enough that the Pythagoreans were aware of the incommensura-
bility of the segments of a line cut in extreme and mean ratio. At all events
the Pythagoreans could hardly have carried their investigations into the in-
commensurability of the segments of this line very far, since Theaetetus is
said to have made the first classification of irrationals, and to him is also, with
reasonable probability, attributed the substance of the first part of Eucl. xu1.,
in the sixth proposition of which occurs the proof that the segments of a
rational straight line cut in extreme and mean ratio are agofomes.

Again, the incommensurability of ./2 can be proved by a method
practically equivalent to that of x. 2, and without carrying the process very
far. This method is given in Chrystal’s Zzx#-
book of Algebra (L p. 270). Let d, a be the B

s . A a A

diagonal and side respectively of a square

ABCD. Mark off 47 along AC equal to a.

_Dra;' FE at right angles to 4C meeting BC &

in E. ;

It is easily proved that i d
BE = EF= FC, o
CF=AC-AB=d-a......... (1).
CE=CB-CF=a-(d-a) ¥
=2a—d......... (2)

Suppose, if possible, that 4, @ are commensurable. If 4, a are both
commensurably expressible in terms of any finite unit, each must be an
integral multiple of a certain finite unit.

But from (1) it follows that C# and from (2) it follows that CZ, is an
integral multiple of the same unit.

And CF, CE are the side and diagonal of a square CFEG, the side of
which is less than half the side of the original square. If a,, d, are the side and
diagonal of this square,

a=d-a }
dy=2a~-d |’

Similarly we can form a square with side 2, and diagonal 4, which are less
than half a,, 4, respectively, and a,, 4, must be integral multiples of the same
unit, where

a,=d, —
dy=2a,—d,;
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and this process may be continued indefinitely until (x. 1) we have a square
as small as we please, the side and diagonal of which are integral multiples of
a finite unit: which is absurd.

Therefore a, 4 are incommensurable.

It will be observed that this method is the opposite of that shown in the
Pythagorean series of side- and diagonal-numbers, the squares being
successively smaller instead of larger.

ProrosITION 3.

Given two commensurable magnitudes, to find their greatest
common measure.

Let the two given commensurable magnitudes be 48, CD
of which A2 is the less;
thus it is required to find the greatest common measure of
AB, CD.

Now the magnitude 423 either measures CD or it does

not.

If then it measures it—and it measures itself also—AZB is
a common measure of A8, CD.

And it is manifest that it is also the greatest ;

for a greater magnitude than the magnitude 45 will not
measure A4B5.
< A8

C—¢ (>}

Next, let A8 not measure CD.

Then, if the less be continually subtracted in turn from
the greater, that which is left over will sometime measure
the one before it, because A8, CD are not incommensurable;

[ef. x. 2]

let AB, measuring £D, leave EC less than itself,
let £C, measuring FB, leave AF less than itself,
and let 4F measure CE.

Since, then, 47 measures CZ,
while CE£ measures 75,
therefore AF will also measure 75,

But it measures itself also ;
therefore AF will also measure the whole 4.5.
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But A8 measures DE ;
therefore AF will also measure £D.
But it measures CE£ also;
therefore it also measures the whole CD.
Therefore AF is a common measure of A8, CD.

I say next that it is also the greatest.
For, if not, there will be some magnitude greater than 4F
which will measure 458, CD.
Let it be G.
Since then G measures A5,
while 4 B measures ED,
therefore G will also measure ED.
But it measures the whole CD also;
therefore G will also measure the remainder CE.
But CE measures FB;
therefore G will also measure FB5.
But it measures the whole 48 also,
and it will therefore measure the remainder AF, the greater
the less:
which is impossible.
Therefore no magnitude greater than AF will measure
AB, CD;
therefore 4 is the greatest common measure of A8, CD.

Therefore the greatest common measure of the two given
commensurable magnitudes 4.8, CD has been found.
Q. E. D.

Porism. From this it is manifest that, if a magnitude
measure two magnitudes, it will also measure their greatest
common measure.

This proposition for two commensurable magnitudes is, mutatis mutandis,
exactly the same as viI. 2 for numbers. We have the process

ba(p
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where ¢ is equal to #d and therefore there is no remainder,
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It is then proved that 4 is a common measure of a, &; and next, by a
reductio ad absurdum, that it is the greafest common measure, since any
common measure must measure 4, and no magnitude greater than 4 can
measure d. The reductio ad absurdum is of course one of form only.

The Porism corresponds exactly to the Porism to viI. 2.

The process of finding the greatest common measure is probably given in
this Book, not only for the sake of completeness, but because in x. 5 a
common measure of two magnitudes 4, B is assumed and used, and therefore
it is important to show that such a measure can be found if not already
known.

ProrosITION 4.

Given three commensurable magnitudes, to find their greatest
common measure.

Let A4, B, C be the three given commensurable magnitudes;
thus it is required to find the greatest
common measure of A, B, C. A

Let the greatest common measure 8
of the two magnitudes A4, B be taken, c—
and let it be g; [x. 3] Do i P
then D either measures C, or does
not measure it.

First, let it measure it.
Since then D measures C,

while it also measures 4, B,

therefore D is a common measure of 4, B, C.
And it is manifest that it is also the greatest ;

for a greater magnitude than the magnitude D does not
measure A, 5.

Next, let 2 not measure C,
I say first that C, D are commensurable.
For, since A4, B, C are commensurable,

some magnitude will measure them,

and this will of course measure A4, B also;

so that it will also measure the greatest common measure of

A, B, namely D, [x. 3, Por.]
But it also measures C;

so that the said magnitude will measure C, D;

therefore C, D are commensurable.
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Now let their greatest common measure be taken, and let
it be E. (x. 3]
Since then £ measures [,

while D measures 4, B,
therefore £ will also measure 4, 5.
But it measures C also ;
therefore £ measures 4, B, C;
therefore £ is a common measure of 4, 5, C.

I say next that it is also the greatest.

For, if possible, let there be some magnitude 7 greater than
E, and let it measure 4, B, C.

Now, since # measures 4, B, C,

it will also measure 4, 5,

and will measure the greatest common measure of 4, B.
] [x. 3, Por.]
But the greatest common measure of 4, B is D;

therefore / measures D,
But it measures C also;
therefore / measures C, D ;
therefore 7 will also measure the greatest common measure
of C, D. [x. 3, Por.]
But that is £ ;
therefore /7 will measure £, the greater the less :
which is impossible.
Therefore no magnitude greater than the magnitude £
will measure A4, B,

therefore £ is the greatest common measure of 4, B, C if D
do not measure C,

and, if it measure it, D is itself the greatest common measure.

Therefore the greatest common measure of the three given
commensurable magnitudes has been found.

Porism. From this it is manifest that, if a magnitude
measure three magnitudes, it will also measure their greatest
common measure.

Similarly too, with more magnitudes, the greatest common
measure can be found, and the porism can be extended.

Q E. D,
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This proposition again corresponds exactly to vii. 3 for numbers. As
there Euclid thinks it necessary to prove that, 4, 4, ¢ not being prime to one
another, 4 and ¢ are also not prime to one another, so here he thinks it
necessary to prove that 4, ¢ are commensurable, as they must be since any
common measure of @, & must be a measure of their greatest common
measure 4 (x. 3, Por.). L

The argument in the proof that ¢, the greatest common measure of 4, ¢ is
the greatest common measure of a, 4, 4 is the same as that in vir. 3 and X. 3.

The Porism contains the extension of the process to the case of four
or more magnitudes, corresponding to Heron’s remark with regard to the
similar extension of viI. 3 to the case of four or more numbers.

ProrosITION §.

Commensurable magnitudes have to one another the vatio
which a number has to a number.

Let A4, B be commensurable magnitudes ;
I say that 4 has to B the ratio which a number has to a
number.

For, since 4, B are commensurable, some magnitude will
measure them,

Let it measure them, and let it be C.

A B c
D
E

And, as many times as C measures 4, so many units let
there be in D ;

and, as many times as C measures B, so many units let there

be in £.

Since then C measures A4 according to the units in D,
while the unit also measures D according to the units in it,

therefore the unit measures the number 2 the same number
of times as the magnitude C measures 4 ;

therefore, as C is to A4, so is the unit to D ; [vir. Def. 20]

therefore, inversely, as 4 is to C, so is D to the unit.
[ef. v. 7, Por.]

Again, since C measures B according to the units in £,
while the unit also measures £ according to the units in it,
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therefore the unit measures £ the same number of times as C
measures 5 ;

therefore, as C is to B, so is the unit to £,
But it was also proved that,
as A is to C, so is D to the unit ;
therefore, ex aequali,
as A is to B, so is the number D to £, [v. 22]

Therefore the commensurable magnitudes 4, B have to
one another the ratio which the number 2 has to the number £.
Q. E. D.

The argument is as follows. If @, 4 be commensurable magnitudes, they
have some common measure ¢, and

a = me,
b = ne,
where m, n are integers.
It follows that ol 3t s IR S T N | UL f: 1 )
or, inversely, a:c=m:1;
and also that c:b=1:m,
so that, ex aequali, a:b=m:n.

It will be observed that, in stating the proportion (1), Euclid is merely
expressing the fact that a is the same multiple of ¢ that m is of 1. In other
words, he rests the statement on the definition of proportion in viL Def. zo.
This, however, is applicable only to four #umbers, and ¢, a are not numbers but
magnitudes. Hence the statement of the proportion is not legitimate unless
it is proved that it is true in the sense of v. Det. 5 with regard to magnitudes
in general, the numbers 1, m being magnitudes. Similarly with regard to the
other proportions in the proposition.

There is, therefore, a E'ams Euclid ought to have proved that magnitudes
which are proportional in the sense of vi1. Def. 20 are also propownonal in the
sense of v. Def. 5, or that the proportion of numbers is included in the
proportion of magnitudes as a particular case. Simson has proved this in his
Proposition C inserted in Book v. (see Vol. 11. pp. 126—8). The portion of
that proposition which is required here is the proof that,

if a=mb
c=md
then a:b=c:d, in the sense of v. Def. s.
Take any equimultiples ga, ¢ of &, ¢ and any equimultiples ¢3, ¢4 of &, d.
Now pa=pmb }
pe=pmd)’

But, according as pmbd > = < gb, pmd > = < ¢d.
Therefore, according as pa > =< gb, pm > =< ¢d.
! 5A3d 2a, pc are any equimultiples of 4, ¢ and ¢4, ¢gd any equimultiples
of 4, d.
Therefore aib=c¢:d. [v. Def. 5.]
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ProrosiTION 6.
If two magnitudes have to one another the ratio which a
number has to a number, the magnitudes will be commensurable.
For let the two magnitudes 4, 5 have to one another the
ratio which the number D has to the number £ ;
s | say that the magnitudes 4, B are commensurable.
A + - B c
0
E— F
For let 4 be divided into as many equal parts as there
are units in D,
and let C be equal to one of them ;
and let 7 be made up of as many magnitudes equal to C as
10 there are units in £,
Since then there are in 4 as many magnitudes equal to C
as there are units in D,
whatever part the unit is of 2, the same part is C of 4 also;
therefore, as C is to A, so is the unit to D. [vi1. Def. 20]
15 But the unit measures the number D ;
therefore C also measures A4.
And since, as C is to A, so is the unit to D,
therefore, inversely, as 4 is to C, so is the number D to the
unit, [cf. v. 7, Por.]
20  Again, since there are in # as many magnitudes equal
to C as there are units in £,
therefore, as C is to F, so is the unit to £. [vir. Def. 20]
But it was also proved that,
as A is to C, so is D to the unit;

25 therefore, ex aeguali, as A is to F, so is D to E. [v. 22]
But,as Disto £, sois A to B;
therefore also, as A4 is to B, so is it to F also. [v. 11]

Therefore A has the same ratio to each of the magnitudes
B, F;
o therefore B is equal to 7. [v. 9]
But C measures /;
therefore it measures 7 also.
Further it measures 4 also ;
therefore C measures A4, 5.
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35 Therefore 4 is commensurable with 5.
Therefore etc.

Porism. From this it is manifest that, if there be two
numbers, as D, £, and a straight line, as 4, it is possible to
make a straight line [#] such that the given straight line is to

40 it as the number D is to the number £,

And, if a mean proportional be also taken between 4, 7,
as B,

as A is to 7, so will the square on A be to the square on 5,
that is, as the first is to the third, so is the figure on the first

45 to that which is similar and similarly described on the second.
[v1. 19, Por.]

But, as 4 is to 7, so is the number 2 to the number £;
therefore it has been contrived that, as the number D is to
the number £, so also is the figure on the straight line 4 to
the figure on the straight line 5. Q. E. D.

15. But the unit measures the number D; therefore C also measures A.
These words are redundant, though they are apparently found in all the Mss.

The same link to connect the proportion of numbers with the proportion
of magnitudes as was necessary in the last proposition is necessary here. This
being premised, the argument is as follows.

Suppose aib=m:n,
where m, n are (integral) numbers.

Divide a into m parts, each equal to ¢, say,

so that a=mec.
Now take 4 such that d=ne.
Therefore we have aic=m:1,

and c:d=1:n,

so that, ex aequali, a:d=m:n

= a : 4, by hypothesis.
Therefore & = d = ne,
so that ¢ measures 4 » times, and @, 4 are commensurable.
The Porism is often used in the later propositions. It follows (1) that, if
a be a given straight line, and m, # any numbers, a straight line x can be
found such that
a:x=m:n.
(2) We can find a straight line y such that
a:y=m:n
For we have only to take y, a mean proportional between @ and x, as
reviously found, in which case a, y, x are in continued proportion and
f"— Def. 9]
a’:y’=a:ix
=m:.n
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ProrosiTION 7.
Incommensurable magnitudes have not to ome another the
ratio which a number has to a number.
Let A4, B be incommensurable magnitudes ;

I say that A4 has not to B the ratio which a number has to a
number.

For, if 4 has to B the ratio which a number has to a

number, 4 will be commensurable with 5. [x. 6]
But it is not ; .
therefore 4 has not to B the ratio which a =

number has to a number.
Therefore etc.

ProrosiTion 8.

If two magnitudes have not to one another the ratio whickh
a number has to a number, the magnitudes will be incom-
mensurable,

For let the two magnitudes 4, B not have to one another
the ratio which a number has to a number ;
I say that the magnitudes A4, B are incom-
mensurable.
For, if they are commensurable, 4 will have to B the
ratio which a number has to a number. [x. 5]
But it has not ;
therefore the magnitudes 4, A& are incommensurable.
Therefore etc.

= e
i

ProrosiTION 9.

The squares on stvaight lines commensurable in length have
to one another the vatio whick a square number has lo a square
number; and squares whick have to one another the ratio
whick a square number has to a square number will also have
their sides commensurable in length. But the squares on
straight lines incommensurable in length have not to one
another the rvatio which a squave number has to a square
number ; and squares whick have not to one another the ratio
which a square number has to a square number will not have
their sides commensurable in length either,
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For let 4, B be commensurable in length ;
I say that the square on 4 n "
has to the square on B the =
ratio which a square number o
has to a square number.
For, since 4 is commensurable in length with 5,
therefore 4 has to B the ratio which a number has to a
number. (x. 5]
Let it have to it the ratio which C has to D.
Since then, as 4 is to B, so is C to D,
while the ratio of the square on 4 to the square on A is
duplicate of the ratio of 4 to B,
for similar figures are in the duplicate ratio of their corre-
sponding sides; [v1. 20, Por.]
and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,
for between two square numbers there is one mean proportional
number, and the square number has to the square number the
ratio duplicate of that which the side has to the side ; [vi 11]
therefore also, as the square on A4 is to the square on B, so
is the square on C to the square on D.

Next, as the square on A4 is to the square on 2, so let
the square on C be to the square on D ;
I say that 4 is commensurable in length with 5.

For since, as the square on A is to the square on B, so is
the square on C to the square on 2,
while the ratio of the square on 4 to the square on B is
duplicate of the ratio of 4 to 5,
and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,
therefore also, as 4 is to B, sois C to D.

Therefore 4 has to B the ratio which the number C has
to the number D ;
therefore A4 is commensurable in length with 5. [x. 6]

Next, let 4 be incommensurable in length with 2 ;

I say that the square on 4 has not to the square on B the
ratio which a square number has to a square number.
For, if the square on A has to the square on 2 the ratio



30 BOOK X [x. 9

which a square number has to a square number, 4 will be
commensurable with 2.

But it is not ;
therefore the square on 4 has not to the square on 5 the
ratio which a square number has to a square number.

Again, let the square on A4 not have to the square on 58
the ratio which a square number has to a square number ;
[ say that 4 is incommensurable in length with 5.

For, if A is commensurable with 2, the square on .1 will
have to the square on A the ratio which a square number has
to a square number.

But it has not ;
therefore A4 is not commensurable in length with 5.

Therefore etc.

Porrsm. And it is manifest from what has been proved
that strai%ht lines commensurable in length are always com-
mensurable in square also, but those commensurable in square
are not always commensurable in length also.

[Lemma. It has been proved in the arithmetical books
that similar plane numbers have to one another the ratio
which a square number has to a square number, [V 26]

and that, if two numbers have to one another the ratio which
a square number has to a square number, they are similar
plane numbers. [Converse of viis. 26]

And it is manifest from these propositions that numbers
which are not similar plane numbers, that is, those which
have not their sides proportional, have not to one another
the ratio which a square number has to a square number.

For, if they have, they will be similar plane numbers :
which is contrary to the hypothesis.

Therefore numbers which are not similar plane numbers
have not to one another the ratio which a square number has
to a square number. ]

A scholium to this proposition (Schol. x. No. 62) says categorically that
the theorem proved in it was the discovery of Theaetetus.

If @, & be straight lines, and

a:b=m:n,
where m, n are numbers,
then @b =mtint;
and conversely.
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This inference, which looks so easy when thus symbolically expressed, was
by no means so easy for Euclid owing to the fact that @, & are straight lines,
and m, n numbers. He has to pass from a : & to a* : 4* by means of vi. zo, Por.
through the duplicate ratio; the square on a is to the square on 4 in the
duplicate ratio of the corresponding sides @, &. On the other hand, m, n
being numbers, it is viil. 11 which has to be used to show that m*: »* is the
ratio duplicate of » : n.

Then, in order to establish his result, Euclid assumes that, if #wo ratios are
equal, the ratios which are their duplicates are also egual. This is nowhere
proved in Euclid, but it is an easy inference from v. 22, as shown in my note
on VL 22,

The converse has to be established in the same careful way, and Euclid
assumes that ratios the duplicates of which are equal are themselves equal.
This is much more troublesome to prove than the converse; for proofs I refer
to the same note on VI. 22.

The second part of the theorem, deduced by reductio ad absurdum from
the first, requires no remark.

In the Greek text there is an addition to the Porism which Heiberg
brackets as superfluous and not in Euclid’s manner. It consists (1) of a sort
of proof, or rather explanation, of the Porism and (2) of a statement and
explanation to the effect that straight lines incommensurable in length are
not necessarily incommensurable in square also, and that straight lines
incommensurable in square are, on the other hand, always incommensurable
in length also.

The Lemma gives expressions for two numbers which have to one another
the ratio of a square number to a square number. Similar plane numbers
are of the form pm . pn and gm . gn, or mnp® and mng®, the ratio of which is
of course the ratio of #* to ¢*

The converse theorem that, if two numbers have to one another the ratio
of a square number to a square number, the numbers are similar plane
numbers is not, as a matter of fact, proved in the arithmetical Books. It is
the converse of viii. 26 and is used in 1x. 10. Heron gave it (see note on
viiL. 27 above).

Heiberg however gives strong reason for supposing the Lemma to be an
interpolation. It has reference to the next proposition, x. 10, and, as we shall
see, there are so many objections to X. 10 that it can ha.rdly be accepted as
genuine. Moreover there is no reason why, in the Lemma itself, numbers
which are nof similar plane numbers should be brought in as they are.

[ProrosiTION 10.

To find two straight lines incommensurable, the one in
length only, and the other in square also, with an assigned
straight line.

Let A4 be the assigned straight line ;
thus it is required to find two straight lines incommensurable,
the one in length only, and the other in square also, with 4.

Let two numbers B, C be set out which have not to one
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another the ratio which a square number has to a square
number, that is, which are not similar plane
numbers ;
and let it be contrived that, D
as B is to C, so is the square on .4 to E
the square on D

c
—for we have learnt how to do this—
[x. 6, Por.]
therefore the square on A is commensurable with the square
on D, [x. 6]

And, since B has not to C the ratio which a square number
has to a square number,

therefore neither has the square on 4 to the square on D the
ratio which a square number has to a square number ;

therefore A4 is incommensurable in length with D. [x. 9]
Let £ be taken a mean proportional between A4, D ;

therefore, as A is to D, so is the square on 4 to the square
on £, [v. Def. 9]

But 4 is incommensurable in length with D ;

therefore the square on A is alsv incommensurable with the
square on £ ; [x. 11]
therefore A4 is incommensurable in square with Z.

Therefore two straight lines D, £ have been found in-
commensurable, 2 in length only, and £ in square and of
course in length also, with the assigned straight line 4.]

It would appear as though this proposition was intended to supply a
justification for the statement in X. Def. 3 that i is proved that there are an
infinite number of straight lines (2) incommensurable in length only, or
commensurable in square only, and (#) incommensurable in square, with any
given straight line.

But in truth the proposition could well be dispensed with; and the
positive objections to its genuineness are considerable.

In the first place, it depends on the following proposition, x. 11 ; for the
last step concludes that, since

a*:y*=a:2%,
and a, x are incommensurable in length, therefore 4?, y* are incommensurable.
But Euclid never commits the irregularity of proving a theorem by means of
a later one. Gregory sought to get over the difficulty by putting X. 1o after
X. 11; but of course, if the order were so inverted, the Lemma would still be
in the wrong place. 1

Further, the expression éudflopev ydp, “for we have learnt (how to do this),”
is not in Euclid’s manner and betrays the hand of a learner (though the same
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expression is found in the Sectio Canonis of Euclid, where the reference is
to the Elements).

Lastly the manuscript P has the number 10, in the first hand, at the top
of x. b; 1, from which it may perhaps be concluded that x. 10 had at first no
number.

It seems best therefore to reject as spurious both the Lemma and x. 1o0.

The argument of x. 10 is simple. If a be a given straight line and m, »
nuﬁbers which have not to one another the ratio of square to square, take x
such that

a’:x'=m:n, [x. 6, Por.]
whence a, x are incommensurable in length. [x. 9]
Then take y a mean proportional between a, x, whence
a’:y'=a:x [v. Def. 9]
= Jm s o n),

and x is incommensurable in length only, while y is incommensurable in
square as well as in length, with a.

ProprosITION 11.

If four magnitudes be proportional, and the first be com-
mensurable with the second, the thivd will also be commensurable
with the fourth; and, if the first be incommensurable with the
second, the thivd will also be incommensurable with the fourth.

Let A, B, C, D be four magnitudes in proportion, so
that, as 4 is to B, so is C

to D, A B
and let 4 be commensurable cC——— D
with 5 ;

I say that C will also be commensurable with D.
For, since 4 is commensurable with 5,
therefore 4 has to B the ratio which a number has to a
number, [x. 5]
And, as 4 isto B, sois Cto D;
therefore C also has to D the ratio which a number has to a
number ;
therefore C is commensurable with D, [x. 6]

Next, let 4 be incommensurable with 7 ;
I say that C will also be incommensurable with D.

For, since 4 is incommensurable with 7,
therefore 4 has not to B the ratio which a number has to a
number. [x. 7]



34 BOOK X [x. 11, 12

And, as A isto B,sois Cto D;

therefore neither has C to D the ratio which a number has to
a number ;

therefore C is incommensurable with D, [x. 8]
Therefore etc.

I shall henceforth, for the sake of brevity, use symbols for the terms
“ commensurable (with)” and “incommensurable (with)” according to the
varieties described in X. Deff. 1—4. The symbols are taken from Lorenz
and seem convenient.

Commensurable and commensurable with, in relation to areas, and com-
mensurable in length and commensurable in length 1with, in relation to straight
lines, will be denoted by ~,

Commensurable in square only or commensurable in square only with (terms
applicable only to straight lines) will be denoted by ~.

Incommensurable (with), of areas, and incommensurable (with), of straight
lines will be denoted by <.

Incommensurable in square (with) (a term applicable to straight lines only)
will be denoted by «—.

Suppose a, &, ¢, d to be four magnitudes such that

a:b=c:d.
Then (1), if @ ~ &, a:¥=m:n where m, n are integers, [x. 5]

whence c:d=m:n,
and therefore cnd. [x. 6]
(2) Ifavy, a:bsm:n, [x. 7]

so that c:d$m:n,
whence cud. [x. 8]

ProrosiTiON 12.

Magnitudes commensurable with the same magnitude ave
commensurable with one another also.

For let each of the magnitudes 4, B be commensurable
with C;

I say that A is also commensurable with 5.

A c B

—F

For, #ince A4 is commensurable with C,

therefore 4 has to C the ratio which a number has to a
number. [x. 5]
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Let it have the ratio which 2 has to £.
Again, since C is commensurable with 5,

therefore C has to B the ratio which a number has to a
number. [x. 5]

Let it have the ratio which & has to G.

And, given any number of ratios we please, namely the
ratio which 0 has to £ and that which # has to G,

let the numbers /7, X, L be taken continuously in the given
ratios ; [cf. v 4]

so that, as D is to £, so is A to X,
and, as Fis to G, sois K to L.
Since, then, as 4 isto C, so is D to £,
while, as D is to £, so is H to X,
therefore also, as A4 is to C, sois A to K. [v. 11]
Again, since, as C is to B, so is F to G,
while, as Fis to G, sois K to L, :

therefore also, as Cis to B, so is K to L. [v. 11]
But also, as 4 is to C, so is A to K';
therefore, ex aequali, as A is to B, so is A to L. [v. 22]

Therefore 4 has to B the ratio which a number has to a
number ;

therefore A4 is commensurable with 2. (x. 6]

Therefore etc.
Q. E. D.

We have merely to go through the process of compounding two ratios in
numbers.

Suppose a, b each ~¢c.
Therefore @:c=m:un say, [x. 5]
c:b=p: g, say.
Now min=mp: np,
and pig=np:ng
Therefore a:c=mp: np,
ci1b=mnp:ng,
whence, ex aeguall, a:b=mp:ny,

so that an~b [x. 6]
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PROPOSITION 13.

If two magnitudes be commensurable, and the one of them
be incommensurable with any magnitude, the remaining ome
will also be incommensurable with the same.

Let A4, B be two commensurable magnitudes, and let one
of them, A4, be incommensurable with

any other magnitude C; A
I say that the remaining one, 5, will c
also be incommensurable with C. B

For, if B is commensurable with C,
while A is also commensurable with 5,
A is also commensurable with C. [x. 12]
But it is also incommensurable with it :
which is impossible.
Therefore B is not commensurable with C;
therefore it is incommensurable with it,
Therefore etc.

LeEmMMA.

Given two unequal straight lines, to find by what square the
square on the greater is greater than the square on the less.

Let A8, C be the given two unequal straight lines, and
let AB be the greater of them;
thus it is required to find by what
square the square on A28 is greater o
than the square on C.

Let the semicircle AD2B be de- B
scribed on 45,
and let 4D be fitted into it equal to C; [v. 1]
let DB be joined.

It is then manifest that the angle AD2B is right, [ 31]
and that the square on 427 is greater than the square on
AD, that is, C, by the square on D25. [v 47]

Similarly also, if two straight lines be given, the straight
line the square on which is equal to the sum of the squares
on them is found in this manner.
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Let AD, DB be the given two straight lines, and let it be
required to find the straight line the square on which is equal
to the sum of the squares on them.

Let them be placed so as to contain a right angle, that
formed by AD, DB ;
and let 4.3 be joined.

It is again manifest that the straight line the square on
which is equal to the sum of the squares on 4D, DB is AB.

[r. 47]
Q. E. D,

The lemma gives an obvious method of finding a straight line (¢) equal to
W@ = 5, where a, b are given straight lines of which a is the greater.

ProPosITION 14.

If four straight lines be proportional, and the square on
the first be greater than the square on the second by the square
on a straight line commensurable with the first, the square on
the third will also be greater than the square on the fourth by

5 the square on a straight line commensurable with the third.

And, if the square on the first be greater than the square
on the second by the square on a straight line incommensurable
with the first, the square on the third will also be greater than
the square on the fourth by the square on a straght line in-

10 commensurable with the third.

Let 4, B, C, D be four straight lines in proportion, so
that, as 4 is to B, sois C to D ; ]

and let the square on A4 be greater than |
the square on B by the square on £, and

15 let the square on C be greater than the [
square on £ by the square on ;

I say that, if 4 is commensurable with £,
C is also commensurable with 7,

and, if A4 is incommensurable with £, C is
20 also incommensurable with .

For since, as A is to B,sois Cto D,

therefore also, as the square on A is to the square on 7, so is
the square on C to the square on D, [vr. 22]

But the squares on £, B are equal to the square on A4,
25 and the squares on 0, F are equal to the square on C.

E F

A B c o
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Therefore, as the squares on £, B are to the square on
B, so are the squares on [, F to the square on D ;

therefore, separando, as the square on £ is to the square on
B, so is the square on # to the square on D ; [v. 17]

30 therefore also, as £ is to B, sois /7 to D ; [vr. 22]
therefore, inversely, as B is to £, so is D to F.
But, as 4 is to B, so also is C to [ ;
therefore, ex aequali, as A is to £, so is C to 7. [v. 22]

Therefore, if A is commensurable with £, C is also com-
35 mensurable with 7,

and, if 4 is incommensurable with Z, C is also incommen-
surable with Z. [x. 11]

Therefore etc.

3, 5 8, 10. Euclid speaks of the square on the first (third) being ter than the square
on the second (fourth) by the square on a straight line commensurable incommensnrnblc!
“ with itself (éavrg),” and similarly in all like phrases throughout the . For clearness'
sake I substitute ‘' the first,”” * the third,” or whatever it may be, for *“itself” in these cases.

Suppose g, 4, ¢, 4 to be straight lines such that
BEE =LA i i e T
It follows [vi. 22] that @Rl i Rl ahe(@)
In order to prove that, convertendo,
a:(@—0)=c: (-d?

Euclid has to use a somewhat roundabout method owing to the absence of a
convertendo proposition in his Book v. (which omission Simson supplied by
his Prop. E).

It follows from (2) that

@ —8) + 8} B = {(E—a?) + a% : ',

whence, s¢parando, (@=8): 8= (- : @, [v. 17]
and, inversely, B (at—8)=d*: (¢*-d?).
From this and (2), ex aequali,
a:(a*— ) =c: (e —d?). [v. 22]
Hence a:Na'=F=c: e an [vi. 22]
According therefore as @~ or v Afa* — &,
croruEZ g0, [x. 11]
If a ~ \H'rr?_—_ﬁ’_, we may put Vo~ = ka, where % is of the form m/n

and m, n are integers. And if ~/a* =& =/a, it follows in this case that

N - dt=ke.
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PROPOSITION 15.

If two commensurable magnitudes be added together, the
whole will also be commensurable with eack of them ; and, if
the whole be commensurable with one of them, the original
magnitudes will also be commensurable.

For let the two commensurable magnitudes 48, BC be
added together; "
I say that the whole AC is also A - c
commensurable with each of the 5
magnitudes 45, BC.

For, since A5, BC are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then 2 measures 43, BC, it will also measure the
whole AC.

But it measures A8, BC also;

therefore /) measures AB, BC, AC;

therefore A4 C is commensurable with each of the magnitudes

AB, BC. [x. Def. 1]
Next, let AC be commensurable with A5 ;

I say that AB, BC are also commensurable.

For, since AC, AB are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures CA, AB, it will also measure the
remainder BC.

But it measures A7 also ;
therefore D will measure A5, BC;
therefore A8, BC are commensurable, [x. Def. 1]

Therefore etc.

(1) If a, & be any two commensurable magnitudes, they are of the form
me, ne, where ¢ is a common measure of @, & and m, # some integers.

It follows that a+b=(m+n)c;
therefore (a + &), being measured by ¢, is commensurable with both & and 4.

(2) If a + 4 is commensurable with either @ or 4, say a, we may put
a+ b =me, a=ne, where ¢ is a common measure of (a+4), @, and m, n are
integers.

Subtracting, we have b= (m—n)e¢
whence & ~ a:
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PRrOPOSITION 16.

If two incommensurable magnitudes be added together, the
whole will also be incommensurable with each of them ; and, if
the whole be incommensurable with one of them, the original
magnitudes will also be incommensurable.

For let the two incommensurable magnitudes A8, BC be
added together ;

I say that the whole AC is also incommensurable A
with each of the magnitudes 458, BC.

For, if CA, AB are not incommensurable, some
magnitude will measure them.

Let it measure them, if possible, and letitbe . gl

Since then 2 measures CA, AB,

therefore it will also measure the remainder BC.

But it measures 423 also; c
therefore [ measures A8, BC.

Therefore A8, BC are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.

Therefore no magnitude will measure CA4, AB ;
therefore CA, AB are incommensurable. [x. Def. 1]

Similarly we can prove that 4C, CB are also jncom-
mensurable,

Therefore AC is incommensurable with each of the magni-
tudes AR, BC.

Next, let 4C be incommensurable with one of the magni-
tudes A5, BC.
First, let it be incommensurable with 4.5 ;

[ say that AB, BC are also incommensurable,

For, if they are commensurable, some magnitude will
measure them.

Let it measure them, and let it be D,

Since then D measures 48, BC,
therefore it will also measure the whole 4C.

But it measures 425 also;

therefore D measures CA, AB.
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Therefore CA, AB are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.

Therefore no magnitude will measure A5, BC;
therefore 458, BC are incommensurable. [x. Def. 1]

Therefore etc.

LEMMA.

If to any straight line there be applied a parallelogram
deficient by a square figure, the applied parallelogram is equal
to the rectangle contained by the segments of the straight line
resulting from the application.

For let there be applied to the straight line A2 the
parallelogram 42D deficient by the
square figure DB ;

I say that 4D is equal to the rectangle
contained by AC, C5.

This is indeed at once manifest ;
for, since DB is a square,

DC is equal to CB;
?13 AD is the rectangle AC, CD, that is, the rectangle AC,

Therefore etc.

If a be the given straight line, and x the side of the square by which the
applied rectangle is to be deficient, the rectangle is equal to ax — x% which is
of course equal to x(a—=x). The rectangle may be written xy, where
x+y=a. Given the area x(a- x), or xy (where x +y=a), two different
applications will give rectangles equal to this area, the sides of the defect

being x or @ —x (x or y) respectively ; but the second mode of expression
shows that the rectangles do not differ in form but only in position.

ProrosiTION 17.

If theve be two unequal stvaight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and if
it divide it into parts whick are commensurable in length, then

s the square on the greater will be greater than the square on
the less by the squave on a straight line commensurable with
the greater.

And, if the square on the greater be greater than the square
on the less by the square on a straight line commensurable with
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10 the greater, and if theve be applied to the greater a parallelogram
equal lo the fourth part of the square on the less and deficient
by a square figure, it will divide it into parts whick are com-
mensurable in length.

Let A, BC be two unequal straight lines, of which BC is

15 the greater,
and let there be applied to BC a parallel- A
ogram equal to the fourth part of the
square on the less, A, that is, equal to ="y
the square on the half of 4, and deficient !

o by a square figure. Let this be the Fi 6%
rectangle 8D, DC, [cf. Lemma]
and let 20D be commensurable in length with DC;

I say that the square on BC is greater than the square on 4
by the square on a straight line commensurable with BC.
25 For let BC be bisected at the point £,
and let £/ be made equal to DE.
Therefore the remainder DC is equal to BF.
And, since the straight line BC has been cut into equal
parts at £, and into unequal parts at D,
3o therefore the rectangle contained by 8D, DC, together with
the square on £D, is equal to the square on £C; (1. 5)
And the same is true of their quadruples ;
therefore four times the rectangle BD, DC, together with
four times the square on DZ, is equal to four times the square
sson EC.
But the square on A4 is equal to four times the rectangle
BD, DC;
and the square on DF is equal to four times the square on
DE, for DF is double of DE.
4  And the square on BC is equal to four times the square
on EC, for again BC is double of CE.
Therefore the squares on A4, DF are equal to the square
on BC,
so that the square on BC is greater than the square on 4 by
45 the square on D F.

It is to be proved that ZC is also commensurable with D
Since BD is commensurable in length with DC,

therefore BC is also commensurable in length with CD. [x.15]
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But CD is commensurable in length with CD, BF, for

50 CD is equal to BF. [x. 6]

Therefore BC is also commensurable in length with BF,

CD, [x. 12]

so that BC is also commensurable in length with the remainder

FD; [x. 15]

ss therefore the square on BC is greater than the square on A4
by the square on a straight line commensurable with BC.

Next, let the square on BC be greater than the square on
A by the square on a straight line commensurable with ZC,
let a parallelogram be applied to BC equal to the fourth part
6o of the square on A4 and deficient by a square figure, and let
it be the rectangle D, DC.
It is to be proved that BD is commensurable in length
with DC.
With the same construction, we can prove similarly that
6s the square on BC is greater than the square on A by the
square on FD.
But the square on BC is greater than the square on 4
by the square on a straight line commensurable with BC.
Therefore BC is commensurable in length with #D,

70 so that ZC is also commensurable in length with the remainder,
the sum of BF, DC. [x. 15]

Bat the sum of BF, DC is commensurable with DC, [x.6]
so that BC is also commensurable in length with CD; [x. 12]

and therefore, sgparando, BD is commensurable in length
7s with DC. [x. 15]
Therefore etc.

45.  Alter saying litemlir that *the square on BC is greater than the square on 4 by the
square on DF,” Euclid adds the equivalent expression with dwara: in its technical sense,
# BI' dpa riis A weifor Siwarar v AZ. As this is untranslatable in English except by a
paraphrase in practically the same words as have preceded, I have not attempted to
reproduce it.

This proposition gives the condition that the roots of the equation in x,
ax—x’=,8(=-i—*, say),
are commensurable with , or that x is expressible in terms of a and integral
numbers, i.e. is of the form %’a. No better proof can be found for the fact

that Euclid and the Greeks used their solutions of quadratic equations for
numerical problems. On no other assumption could an elaborate discussion
of the conditions of incommensurability of the roots with given lengths or
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with a given number of units of length be explained. In a purely geometrical
solution the distinction between commensurable and incommensurable roots
has no point, because each can equally easily be represented by straight lines.
On the other hand, on the assumption that the numerical solution of quadratic
equations was an important part of the system of the Greek geometers,
the distinction between the cases where the roots are commensurable and
incommensurable respectively with a given length or unit becomes of great
importance. Since the Greeks had no means of expressing what we call an
irrational number, the case of an equation with incommensurable roots could
only be represented by them geometrically; and the geometrical representations
had to serve instead of what we can express by formulae involving surds.

Euclid proves in this proposition and the next that, x being determined
from the equation

x(a—x)= %' PPy | 9 1

x, (a - x) are commensurable in length when ~/a®*—#, a are so, and incom-
mensurable in length when ~a* =&, a are incommensurable ; and conversely.

Observe the similarity of his proof to our algebraical method of solving
the equation. a being represented in the figure by BC, and x by CD,

EF=ED=%-zx
and x(a-x)+(§_ )':“:', by Eucl. 1. 5.
If we multiply throughout by 4,
4x(a—x)+4 (Eﬂx ‘=at,

whence, by (1), #+(a—2x)=a',
or a®— P =(a—2x),
and N =P =a-2x

We have to prove in this proposition
(1) that, if %, (¢— %) ure commensurable in length, so are g, Ny
(2) that, if @, /a* - & are commensurable in length, so are x, (a — x).

(1) To prove that a, a— 2x are commensurable in length Euclid employs
several successive steps, thus.

Since (@ — x) ~ =, anx. [x. 15]
But x A 2x. [x. 6]
Therefore an~ax [x. 12]
~ (a - 2x). [x. 15]
That is, anJa-p.
(2) Since a ~ Ja'— &, an~a-ax,
whence a~ ax. [x. 15]
But 22~ X; [x. 6]
therefore anx [x. 12]

and hence (@-2)~a [x. 15]
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It is often more convenient to use the symmetrical form of aquation’ in
this and similar cases, viz.

g
-"3"—4 .
x+y=a
The result with this mode of expression is that
(1) if x ~y, then a ~ W/a—#; and
(2) if @ ~ Na'= &, then x ~ y.

The truth of the proposition is even easier to see in this case, since
@-yP=(a'- )

ProrosiTiON 18.

If there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the squarve on the less and deficient by a square figure, and
if it divide it into parts whick arve incommensurable, the square
on the greater will be grealer than the square on the less by
the square on a straight line incommensurable with the greater.

Aund, tf the square on the greater be greater than the square
on the less by the square on a straight line incommensurable
with the grealer, and if there be applied to the greater a
parallelogram equal to the fourth part of the square on the
less and deficient by a square figure, it divides it inlo parts
which ave incommensurable.

Let A, BC be two unequal straight lines, of which BC is
the greater,
and to BC let there be applied a parallelogram equal  ®
to the fourth part of the square on the less, 4, and _|
deficient by a square figure. Let this be the rect- ©
angle 8D, DC, [cf. Lemma before X. 17] gl A
and let BD be incommensurable in length with DC;
I say that the square on BC is greater than the
square on A4 by the square on a straight line incom-
mensurable with BC.

For, with the same construction as before, we can prove
similarly that the square on BC is greater than the square on
A by the square on #D.

It is to be proved that BC is incommensurable in length
with DF.

D1

c
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Since BD is incommensurable in length with DC,

therefore BC is also incommensurable in length with CD.
[x. 16]

But DC is commensurable with the sum of BF, DC ; [x. 6]
therefore BC is also incommensurable with the sum of BF,

BC; (x. 13]
so that BC is also incommensurable in length with the remainder
FD. [x. 16]

And the square on BC is greater than the square on 4
by the square on D ;
therefore the square on BC is greater than the square on A4
by the square on a straight line incommensurable with ZC.

Again, let the square on BC be greater than the square on
A by the square on a straight line incommensurable with BC,
and let there be applied to BC a parallelogram equal to the
fourth part of the square on 4 and deficient by a square figure.
Let this be the rectangle B0, DC.

It is to be proved that B0 is incommensurable in length
with DC.

For, with the same construction, we can prove similarly
that the square on BC is greater than the square on 4 by
the square on FD.

But the square on BC is greater than the square on 4 by
the square on a straight line incommensurable with ZC;

therefore BC is incommensurable in length with 7D,

so that BC is also incommensurable with the remainder, the

sum of BF, DC. [x. 16]
But the sum of BF, DC is commensurable in length with

DC; [x. 6]

therefore ZC is also incommensurable in length with D%‘, ]

X. 13

so that, separando, BD is also incommensurable in length with

DC. [x. 16]
Therefore etc.

With the same notation as before, we have to prove in this proposition that
(1) if (a - x), x are incommensurable in length, so are a, »/a* - #, and
(2) if a, Na*— & are incommensurable in length, so are (2 — x), x.

Or, with the equations

X _b_’
J’—‘4 |
xt+y=a
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(1) if x vy, then a v Ja®—#, and

The steps are exactly the same as shown under (1) and (2) of the last
note, with < instead of ~, except only in the lines “x ~ 2x” and “2x ~ 2"
which are unaltered, while, in the references, x. 13, 16 take the place of x.
12, 15 respectively.

[LeMMA.

Since it has been proved that straight lines commen-
surable in length are always commensurable in square also,
while those commensurable in square are not always com-
mensurable in length also, but can of course be either
commensurable or incommensurable in length, it is manifest
that, if any straight line be commensurable in length with a
given rational straight line, it is called rational and commen-
surable with the other not only in length but in square also,
since straight lines commensurable in length are always
commensurable in square also.

But, if any straight line be commensurable in square with
a given rational straight line, then, if it is also commensurable
in length with it, it is called in this case also rational and
commensurable with it both in length and in square; but, if
again any straight line, being commensurable in square with a
given rational straight line, be incommensurable in length
with it, it is called in this case also rational but commensurable
in square only.]

ProrosiTiON 19,

The rectangle contained by rational straight lines commen-
surable in length is rational,

For let the rectangle 4C be contained by the rational
straight lines A8, BC commensurable in

length ; D
I say that AC is rational. e
For on AZ let the square 4D be de-
scribed ;
therefore 4D is rational. [x. Def. 4]
And, since A8 is commensurable in A B

length with BC,
while A28 is equal to BD,
therefore B0 is commensurable in length with BC.
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And, as BD is to BC, sois DA to AC. [v. 1]
Therefore DA is commensurable with 4C. [x. 11]
But DA is rational ;

therefore AC is also rational. [x. Def. 4]

Therefore etc.

There is a difficulty in the text of the enunciation of this proposition.
The Greek runs 7o vmo ﬁr}‘r\;v F‘lfxu o'upr.p('rpwv xatd TG TGOV w'poﬂpq.ut'wnv
rpémuy fady wepiexopevor opfoyuviov purov éorw, where the rectangle is
said to be contained by ‘rational straight lines commensurable in length /»
any of the aforesaid ways.” Now straight lines can only be commensurable
in length in one way, the degrees of commensurability being commensurability
in length and commensurability in square only. But a straight line may be
rational in two ways in relation to a given rational straight line, since it may
be either commensurable i length, or commensurable ¢n sguare only, with the
latter. Hence Billingsley takes xard rwa Tdv mpoeipmuévwr {pérnw with pyrav,
translating “ straight lines commensurable in length and rational in any of the
aforesaid ways,” and this agrees with the expression in the next proposition
“a straight line once more rational in any of the aforesaid ways”; but the
order of words in the Greek seems to be fatal to this way of translating
the passage.

The best solution of the difficulty seems to be to reject the words “in
any of the aforesaid ways” altogether. They have reference to the Lemma
which immediately precedes and which is itself open to the gravest suspicion.
It is very prolix, and cannot be called necessary; it appears moreover in
connexion with an addition clearly spurious and therefore relegated b
Heiberg to the Appendix. The addition does not even pretend to be Euclid’s,
for it begins with the words “for /e calls rational straight lines those....”
Hence we should no doubt relegate the Lemma itself to the Appendix.
August does so and leaves out the suspected words in the enunciation, as I
have done.

Exactly the same arguments apply to the Lemma added (without the
heading “ Lemma”) to X. 23 and the same words “in any of the aforesaid
ways ” used with “medial straight lines commensurable in length” in the
enunciation of X. 24. The said Lemma must stand or fall with that now in
question, since it refers to it in terms: “And in the same way as was explained
in the case of rationals....”

Hence I have bracketed the Lemma added to x. 23 and left out the
objectionable words in the enunciation of x. 24.

If p be one of the given rational straight lines (rational of course in the
sense of x. Def. 3), the other can be denoted by &p, where % is, as usual, of
the form m/n (where m, n are integers). Thus the rectangle is &p? which is
obviously rational since it is commensurable with p%.  [x. Def. 4.]

A rational rectangle may have any of the forms a4, £a*, 24 or A, where
a, b are commensurable with the unit of length, and 4 with the unit of area.

Since Euclid is not able to use #p as a symbol for a straight line
commensurable in length with p, he has to put his proof in a form corre-
sponding to

Pl kpt=p " kp,
whence, p, £p being commensurable, p?, £p* are so also. [x. 11]
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ProrosiTION 20.

If a rational area be applied to a rational straight line, it
produces as breadth a straight line vational and commensurable
in length with the stvaight line to whick it is applied.

For let the rational area 4C be applied to 45, a straight
line once more rational in any of the aforesaid
ways, producing ZC as breadth ;

I say that BC is rational and commensurable in
length with B4.

For on A28 let the square 4D be described ; = A
therefore 4D is rational. [x. Def. 4]
But AC is also rational ;

therefore 2.4 is commensurable with 4C.
And, as DA isto AC, so is DB to BC. c

VI I
Therefore DA is also commensurable with 5C; [x. 11]

and DA is equal to B4 ;
therefore A8 is also commensurable with AC.
But A 2B is rational ;

therefore BC is also rational and commensurable in length
with 4 5.

Therefore etc.

The converse of the last. If p is a rational straight line, any rational area
is of the form Zp% If this be “applied” to p, the breadth is £p commensurable
in length with p and therefore rational. We should reach the same result if
we applied the area to another rational straight line 0. The breadth is then
kp®  Fpt
et o

=§k.cork‘u, say.
T o n

ProprosITION 21.

The rectangle contained by rational straight lines commen-
surable in square only is irvational, and the side of the square
equal to it is irrational. Let the latter be called medial.

For let the rectangle 4C be contained by the rational
straight lines 43, BC commensurable in square only ;
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I say that AC is irrational, and the side of the square equal
to it is irrational ;

and let the latter be called medial. D
For on AR let the square 4.0 be described ;
therefore 4D is rational. [x. Def. 4] 8 A

And, since A8 is incommensurable in length
with BC,
for by hypothesis they are commensurable in ¢
square only,
while 42 is equal to 8D,
therefore D2 is also incommensurable in length with ZC.
And, as DB is to BC, sois AD to AC; [vr. 1]
therefore DA is incommensurable with 4C. [x. 11]
But DA is rational ;
therefore 4 C is irrational,

so that the side of the square equal to AC is also irrational.
[x. Def. 4]

And let the latter be called medial.
Q. E. D.

A medial straight line, now defined for the first time, is so called because
it is a mean proportional between two rational straight lines commensurable
in square only. Such straight lines can he denoted by p, p /& A medial

straight line is therefore of the form JotJk or #o. Euclid’s proof that this is
irrational is equivalent to the following. Take p, p,/4 ¢ommensurable in
square only, so that they are incommensurable in length.

Now pipJR=p" 'k
whence [x. 11] p*,/k is incommensurable with p? and therefore irrational
[x. Def. 4], so that \/p*./% is also irrational [ibid.}.

A medial straight line may evidently take either of the forms /a,/B or
Y AB, where of course B is not of the form 4'4.

LEMMA,

If there be two straight lines, then, as the first is to the
second, so is the square on the first
to the rectangle contained by the
two straight lines.

Let #E, EG be two straight
lines.

I say that, as F£ is to £G, so is the square on FE to
the rectangle FE, EG.

E G
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For on FE let the square D/ be described,
and let GD be completed.

Since then, as FE is to EG, so is FD to DG, [ve. 1]
and FD is the square on FE,
and DG the rectangle DE, EG, that is, the rectangle FE, EG,
therefore, as /£ is to £G, so is the square on FE to the
rectangle FE, EG.

Similarly also, as the rectangle G£, £F is to the square
on £F, that is, as GD is to FD, so is GE to EF.

Q. E. D.

If @, & be two straight lines,
a:b=a:ab.

ProrosiTION 22.

The square on a medial straight line, if applied to a
rational straight line, produces as breadth a straight line
rvational and incommensurable in length with that to which it
is applied.

Let A4 be medial and C2 rational,

and let a rectangular area B0 equal to the square on A be
applied to BC, producing CD as
breadth ; 8
I say that CD is rational and incom-
mensurable in length with CB. 9
For,since 4 is medial, the square
on it is equal to a rectangular area
contained by rational straight lines
commensurable in square only. 6 EF
X. 21
Let the square on it be eqt[zal tc]> GF.
But the square on it is also equal to BD ;
therefore BD is equal to GF.
But it is also equiangular with it ;
and in equal and equiangular parallelograms the sides about
the equal angles are reciprocally proportional ; [vt. 14)
therefore, propertionally, as BC is to £G, so is EF to CD.
Therefore also, as the square on BC is to the square on
EG, so is the square on £F to the square on CD. [vL 22]
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But the square on CB is commensurable with the square
on EG, for each of these straight lines is rational ;

therefore the square on Z£F is also commensurable with the

square on CD. (x. 11]
But the square on £F is rational ;
therefore the square on CD is also rational ; [x. Def. 4]

therefore CD is rational.

And, since £F is incommensurable in length with £G,
for they are commensurable in square only,
and, as £Fis to EG, so is the square on £/ to the rectangle

FE, EG, [Lemmal
therefore the square on E£F is incommensurable with the
rectangle FE, EG. [x. 11]

But the square on CD is commensurable with the square
on EF, for the straight lines are rational in square ;

and the rectangle DC, CB is commensurable with the rect-
angle FE, EG, for they are equal to the square on A4 ;
therefore the square on CD is also incommensurable with the

rectangle DC, CB. [x. 13]
But, as the square on CD is to the rectangle DC, CB, so
is DC to CB; [Lemma]

therefore DC is incommensurable in length with CB.  [x. 11]

Therefore CD is rational and incommensurable in length
with CB.
Q. E. D.

Our algebraical notation makes the resull of this proposition almost self-
evident. We have seen that the square of a medial straight line is of the form
J&.p%. If we “apply” this area to another rational straight line o, the

breadth is

2
This is equal to 'Ji; P o= k. %’ o, where m, n are integers. The latter

straight line, which we may express, if we please, in the form ,/# . o, is clearly
commensurable with ¢ in square only, and therefore rational but incom-
mensurable in length with o.

Euclid’s proof, necessarily longer, is in two parts.

Suppose that the rectangle /4. p*=c.x.

Then (1) cip=.Jk.p:x, [v. 14]
whence a:pt=Aptiat, [v. 22]

But ¢* ~ p*, and therefore £p* ~ 2 [x. 11]
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And #4p? is rational ,

therefore x%, and therefore x, is rational. [x. Def. 4]
(2) Since JE.p~p, JE.pvp.
But [Lemma] JE.pip=rtpt: Sk P

whence kot v JE . P [x. 11]
But /4. p* = ox, and %p® ~ 24* (from above) ;

therefore Boox; [x. 13]

and, since 2’ :ox =x:0, [Lemma]

X v,

ProrosiTION 23.

A straight line commensurable with a medial straight line
s medial.

Let 4 be medial, and let B be commensurable with 4 ;
[ say that 2 is also medial.

For let a rational straight line CD

A 8

be set out,
and to CD let the rectangular area CZ£ 2
equal to the square on 4 be applied, "
producing ZD as breadth ;
therefore £ is rational and incommen-
surable in length with CD. [x. 22]

And let the rectangular area CF g D

equal to the square on 5 be applied to
CD, producing DF as breadth.
Since then A4 is commensurable with 2,

the square on A is also commensurable with the square on B.
But £C is equal to the square on A4,
and CF is equal to the square on B;
therefore £C is commensurable with CZ.
And, as £C is to CF,sois £D to DF; [vt. 1]
therefore £/ is commensurable in length with DF  [x. 11]
But £D is rational and incommensurable in length with
DC;
therefore DF is also rational [x. Def. 3] and incommensurable
in length with DC. [x. 13]

Therefore CD, DF are rational and commensurable in
square only.
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But the straight line the square on which is equal to the
rectangle contained by rational straight lines commensurable
in square only is medial ; [x. 21]
therefore the side of the square equal to the rectangle CD,
DF is medial.

And B is the side of the square equal to the rectangle
CD, DF;
therefore 2 is medial.

Porism. From this it is manifest that an area commen-
surable with a medial area is medial,

[And in the same way as was explained in the case of
rationals [Lemma following x. 18] it follows, as regards medials,
that a straight line commensurable in length with a medial
straight line is called medial and commensurable with it not
only in length but in square also, since, in general, straight
lines commensurable in length are always commensurable in
square alsc.

But, if any straight line be commensurable in square with
a medial straight line, then, if it is also commensurable in
length with it, the straight lines are called, in this case too,
medial and commensurable in length and in square, but, if in
square only, they are called medial straight lines commen-
surable in square only. ]

As explained in the bracketed passage following this proposition, a straight
line commensurable with a medial straight line in square only, as well as a

straight line commensurable with it in length, is medial.

Algebraical notation shows this easily.

If #p be the given straight line, M*p is a straight line commensurable
in length with it and /A. é*p a straight line commensurable with it in square
only.

But Ap and ./A.p are both rational [x. Def. 3] and therefore can be
expressed by p’, and we thus arrive at #p', which is clearly medial.

Euclid’s proof amounts to the following.

Apply both the areas ./Z.p* and A%/Jk.p* (or A Jk.p") to a rational
straight line o

2 2 2
The breadths Jé.% and A* /& . :— (or AJk % are in the ratio of the

areas ,/4.p* and A, /k&.p* (or A J%.p") themselves and are therefore com-
mensurable. :

Now [x. 22] /4 .%. is rational but incommensurable with o.

Therefore A./k . ‘; (or AJE. "') is so also;

o



X. 23, 24] PROPOSITIONS 23, 24 55

whence the area A J&.p* (or A /. p%) is contained by two rational straight

lines commensurable in square only, so that Ré‘ip (or JAX. k*p) is a medial
straight line.

It is in the Porism that we have the first mention of a medial area. Itis
the area which is equal to the square on a medial straight line, an area, there-

fore, of the form A'zip’, which is, as a matter of fact, arrived at, though not
named, before the medial straight line itself (x. 21).

The Porism states that Ak‘p’ is a medial area, which is indeed obvious.

ProrosiTion 24.

The rectangle contained by medial straight lines commen-
surable in length is medial.

For let the rectangle 4C be contained by the medial
straight lines 4.8, BC which are commensurable
in length ; o
I say that AC is medial.

For on AR let the square 4D be described ;
therefore A0 is medial.

And, since A8 is commensurable in length
with BC,

while A2 is equal to BD, D

therefore DB is also commensurable in length
with BC;

so that DA is also commensurable with 4C. [vi. 1, x. 11]
But DA is medial ;
therefore AC is also medial. [x. 23, Por.]
Q E. D.

There is the same difficulty in the text of this enunciation as in that of
X. 19. The Greek says “ med:s.l stralghl lines commensurable in length in
any of the aforesaid ways”; but straight lines can only be commesisurable in
length in one way, though they can be medial in two ways, as explained in the
addition to the preceding proposition, i.e. they can be either commensurable
in length or commensurable in square only with a given medial straight line.
For the same reason as that explained in the note on x. 19 I have omitted
“in any of the aforesaid ways” in the enunciation and bracketed the addition
to X. 23 to which it refers.

#p and Mtp are medial straight lines commensurable in length. The
rectangle contained by them is Mip',_ which may be written bip" and is there-
fore clearly medial.

Euclid’s Eroof proceeds thus. Let x, Ax be the two medial straight lines
commensurable in length,

Therefore aix.Ax=x: 0
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But x.~ Ax, so that 2*~x. Ax. [x. 11]
Now 2* is medial [x. 21];
therefore x « Ax is also medial. [x. 23, Por.]

We may of course write two medial straight lines commensurable in length
in the forms mdp, nkp; and these may either be ma /B, nja B, or
mYAB, n¥ AB.

ProrosiTION 25.

The rectangle contained by medial straight lines commen-
surable in square only is either rational or medial.

For let the rectangle AC be contained by the medial
straight lines 48, BC which are

commensurable in square only ; a F a
I say that AC is either rational i
or medial.
For on AB, BC let the 5 5 c o
squares 40, BE be described;
therefore each of the squares &
AD, BE is medial, R N
Let a rational straight line L

FG be set out,

to FG let there be applied the rectangular parallelogram GH
equal to 4D, producing F/ as breadth,

to /M let there be applied the rectangular parallelogram M
equal to AC, producing /7K as breadth,

and further to AV let there be similarly applied /L equal to
BE, producing KL as breadth ;

therefore FH, HK, KL are in a straight line.
Since then each of the squares 4D, BE is medial,
and AD is equal to GH, and BE to NL,
therefore each of the rectangles GA, N L is also medial.
And they are applied to the rational straight line 7G ;

therefore each of the straight lines 7/, KL is rational and
incommensurable in length with 7G. [x. 22]

And, since 4D is commensurable with BZ,
therefore G/ is also commensurable with VL.

And, as GH isto NL, sois FH to KL : [vr. 1]
therefore 7/ is commensurable in length with KZ.  [x. 1(]
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Therefore FH, KL are rational straight lines commen-
surable in length ;
therefore the rectangle F/, KL is rational. [x. 19]

And, since DB is equal to B4, and OB to BC,
therefore, as DB is to BC, so is AB to BO.

But, as DB is to BC, so is DA to AC, [vr. 1]
and, as 4B is to BO, sois ACto CO; [7d.]
therefore, as DA is to AC, so is AC to CO.

But 4D is equal to GH, AC to MK and CO to NL;
therefore, as GH is to MK, sois MA to NL ;
therefore also, as FH is to HK, so is HK to KL ; [vi.1,v. 11]
therefore the rectangle #/A, K'L is equal to the square on /7K.

VL. 1

But the rectangle /4, KL is rational ; i
therefore the square on K is also rational.

Therefore AKX is rational.

And, if it is commensurable in length with 7,

HN is rational ; [x. 19]
but, if it is incommensurable in length with ~¢,

KH, HM are rational straight lines commensurable in square
only, and therefore ANV is medial. [x. 21]

Therefore AN is either rational or medial.
But AN is equal to AC;

therefore AC is either rational or medial,
Therefore etc.

Two medial straight lines commensurable in square only are of the form

k* Py 'J A, k*ﬂ

The rectangle contained by rthem is /A. #t  Now this is in general
medial ; but, if JX=2#&" /% the rectangle is £%'p*, which is rational.

Euclid’s argument is as follows. Let us, for convenience, put x for ﬁip, sC
that the medial straight lines are x, J/A. 2.

Form the areas a*, x. ,/A. x, A2®,

and let these be respectively equal to ou, ov, ocw, where o is a rational
straight line.

Since x% Ax* are medial areas,
S0 are ou, o,
whence w, 7o are respectively rational and ~ o.
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But x? At

so that au ~ aw,

or WA Goiisveiaeerivins s veRss iR essALs (1)
Therefore, u, 2 being both rational, #m is rational .. ..................(2).
Now 2t JA 2t = AL 2t At

or ou oV =00 : oW,

so that HIV=0:W,

and uw =10
Hence, by (2), 7% and therefore o, is rational ....................ceeis (3):

Now (a) if # ~ 0, ov or /A . &* is rational;
(B) if v v o, so that 2 ~ o, ov or /. a* is medial.

ProrosiTiON 26.

4 medial area does not exceed a medial area by a rational
area.

For, if possible, let the medial area 45 exceed the medial
area AC by the rational area

DB’ A F E
and let a rational straight line

EF be set out; 5 "

to £F let there be applied the : K a
rectangular parallelogram F/ =

equal to A8, producing £/ as H

breadth,

and let the rectangle /G ¢qual to A C be subtracted ;

therefore the remainder B// is equal to the remainder X'/.
But D2 is rational ;

therefore K/ is also rational.
Since, then, each of the rectangles 458, AC is medial,

and .18 is equal to 7/, and AC to FG,

therefore each of the rectangles 7/, FG is also medial.
And they are applied to the rational straight line £F;

therefore each of the straight lines Z £, EG is rational and
incommensurable in length with £F. [x. 22]

And, since [ D2 is rational and is equal to X'/,
therefore] K/ is [also] rational ;
and it is applied to the rational straight line £F;
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therefore G/ is rational and commensurable in length with
EF. [x. 20] -

But £G is also rational, and is incommensurable in length
with £F;

therefore £G is incommensurable in length with GA. [ 13]

And, as £G is to GH, so is the square on £G to the
rectangle £G, GH ;

therefore the square on ZG is incommensurable with the
rectangle £G, GH. [x. 11]

But the squares on £G, GH are commensurable with the
square on £, for both are rational ;

and twice the rectangle £G, GH is commensurable with the

rectangle £G, GH, for it is double of it; [x. 6]
therefore the squares on £G, G/ are incommensurable with
twice the rectangle £G, GH ; [x. 13]

therefore also the sum of the squares on £G, GA and twice
the rectangle £G, GH, that is, the square on £/ [ 4), is

incommensurable with the squares on £G, GH. [x 16]
But the squares on £G, GH are rational ;
therefore the square on £/ is irrational. [x. Def. 4]

Therefore £H is irrational.
But it is also rational :
which is impossible.

Therefore etc.
Q. E. D.

“ Apply ” the two given medial areas to one and the same rational straight

line p. They can then be written in the form p: o, p. 2k,

The difference is then (,/# — ./A) p*; and the proposition asserts that this
cannot be rational, i.e. (,/#— /A) cannot be equal to #. Cf. the proposition
corresponding to this in algebraical text-books.

To make Euclid’s proof clear we will put x for 2% and y for Alp.
Suppose p(x=y)=ps

and, if possible, let pz be rational, so that z must be rational and ~ p ...(1).
Since px, py are medial,

x and y are respectively rational and v p .....oevnennn (2).
From (1) and (2), Yoz
Now y:z=3"yz,

so that Yoz
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But P +stny
and 2yz ~ ys.
Therefore V+to s,
whence (y+2)° v (O +2%,
or xt o () + 2.

And (»* + 2 is rational ;

therefore 2* and consequently z, is irrational.
But, by (2), x is rational :

which is impossible.
Therefore pz is nof rational.

ProrosiTiON 27.

7o find medial straight lines commensurable in square only
whick contain a rational rectangle.

Let two rational straight lines 4, B commensurable in
square only be set out ;
let C be taken a mean proportional between
A, B, [vr. 13] 9
and let it he contrived that, o
as 4 isto B,sois Cto D. [vi1z] B

Then, since 4, B are rational and com- !
mensurable in square only, I

the rectangle 4, B, that is, the square on C

[vt 17), is medial. [x. 21]
Therefore C is medial. [x. 21]
And since, as 4 is to B, so is C to D,

and A4, B are commensurable in square only,

therefore C, D are also commensurable in square only. [x. 11]
And C is medial ;

therefore D is also medial. [x. 23, addition]

Therefore C, D are medial and commensurable in square
only.

I say that they also contain a rational rectangle.
For since, as A is to B, sois C to D,

therefore, alternately, as 4 is to C, so is B to D. [v. 16]
But,as A isto C,sois Cto B ;

therefore also, as Cis to B, sois B to D;

therefore the rectangle C, D is equal to the square on B.
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But the square on A is rational ;
therefore the rectangle C, D is also rational.

Therefore medial straight lines commensurable in square
only have been found which contain a rational rectangle.
Q. E. D.

Euclid takes two rational straight lines commensurable in square only, say
p, #p.

‘ind the mean proportional, i.e. #p.

Take x such that p: k*p = le*p F, T L N e A S (1)

This gives x = k*p,
and the lines required are Hop, éip.

For (a) #p is medial.

And (B), by (1), since p ~ A¥p,

Hp ~ 2,
whence [addition to x. 23], since #p is media),
&ip is also medial.
The medial straight lines thus found may take either of the forms

—  [BJB v=5 [ pdB
(1) JaJB, == or (2) V4B, J Bﬁ.

Prorosirion 28.

7o find medzal straight lines commensurable in square only
whick contain a medial rectangle.

Let the rational straight lines 4, B, C commensurable in
square only be set out ;
let D be taken a mean proportional between 4, B, [vi. 13)
and let it be contrived that,
as Bisto C, sois D to E. [v1. 12]

A
o D—
c E

Since A4, B are rational straight lines commensurable in
square only,
therefore the rectangle 4, B, that is, the square on D [vi. 17],
is medial. [x. 21]



62 BOOK X [x 28

Therefore D is medial. [x. 21]
And since B, C are commensurable in square only,

and, as Bisto C,sois D to E,

therefore D, £ are also commensurable in square only. [x. 11]
But 2 is medial ;

therefore £ is also medial. [x. 23, addition]

Therefore D, £ are medial straight lines commensurable
in square only.

I say next that they also contain a medial rectangle.
For since, as B is to C, so is D to £,

therefore, alternately, as 5 is to D, so is C to £. [v. 16]
But, as Bisto D, sois D to A;

therefore also, as D isto A4, sois C to £;

therefore the rectangle 4, C is equal to the rectangle D, £.

VI 16

But the rectangle A4, C is medial ; [[x. zr%

therefore the rectangle 2, £ is also medial.
Therefore medial straight lines commensurable in square

only have been found which contain a medial rectangle.
Q. E. D.

Euclid takes three straight lines commensurable in square only, i.e. of the
form p, k"p. :\*p, and proceeds as follows.

Take the mean proportional to p, kip, i.e k*p.
Then take x such that

é*p 3 A.*p = k*p % Sl R A A S (r),
so that x = Abp/&t,
i, .\*p,fk* are the required medial straight lines.
For kip is medial.
Now, by (1), since tp ~ Alp,
p e

whence # is also medial [X. 23, addition], while ~ 4%p.

Next, by (1), Apx= kip :é*p
=2 PPy
whence Fo k*p = A‘p’, which is medial.

The straight lines k*p, A‘p{k* of course take different forms according as
the original straight lines are of the forms (1) a, J/B, JC, (2) J4, JB, JC,
(3) V4, 4, JC, and (4) V4, JB, .
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E.g in case (1) they are Ja./B, ,\/%,

. —= C.JAa
in case (2) they are ¥ AB, —:,‘%,
and so on.
LeMMA 1.

To find two square numbers suck that their sum is also
square.

Let two numbers 45, BC be set out, and let them be
either both even or both odd.

Then since, whether an even 4 B s B
number is subtracted from an
even number, or an odd number from an odd number, the
remainder is even, [1x. 24, 26]
therefore the remainder 4 C is even.

Let AC be bisected at D.

Let A8, BC also be either similar plan. numbers, or
square numbers, which are themselves also similar plane
numbers.

Now the product of A8, BC together with the square on
CD is equal to the square on BD. [11. 6]

And the product of 45, BC is square, inasmuch as it
was proved that, if two similar plane numbers by multiplying
one another make some number the product is square. [ix. 1]

Therefore two square numbers, the product of 45, BC,
and the square on CD, have been found which, when added
together, make the square on BD.

And it is manifest that two square numbers, the square
on 5D and the square on CD, have again been found such
that their difference, the product of 45, BC, is a square,
whenever A8, BC are similar plane numbers.

But when they are not similar plane numbers, two square
numbers, the square on B0 and the square on DC, have been
found such that their difference, the product of 48, BC, is
not square.

Q. E. D.

Euclid’s method of forming right-angled triangles in integral numbers,
already alluded to in the note on 1. 47, is as follows.

Take two similar plane numbers, e.g. mnp?, mng’, whick are either both even
or both odd, so that their difference is divisible by 2.
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Now the product of the two numbers, or »*#*%", is square, [1x. 1]
and, by 1. 6,

gt mngt s ("TET LN (LAY,

so that the numbers maupg, § (mnp* — mng*) satisfy the condition that the sum
of their squares is also a square number.

It is also clear that } (mnp*+mng®), mnpg are numbers such that the
difference of their squares is also square.

LEMMA 2.

To find two square numbers such that thetr sum is not
square.

For let the product of 458, BC, as we said, be square,
and CA even,
and let CA be bisected by 2.

E
A & Ho F G 8
It is then manifest that the square product of 45, BC

together with the square on CD is equal to the square on BD.
[See Lemma 1]

Let the unit DZ be subrtracted ;
therefore the product of 48, BC together with the square on
CE is less than the square on BD.

I say then that the square product of A2, BC together
with the square on CZ will not be square.

For, if it is square, it is either equal to the square on BE,
or less than the square on BZ, but cannot any more be
greater, lest the unit be divided.

First, if possible, let the product of 4B, BC together
with the square on CZ be equal to the square on BE,
and let GA be double of the unit DE.

Since then the whole 4C is double of the whole CD,
and in them A G is double of DE,
therefore the remainder G C is also double of the remainder £C;
therefore C is bisected by Z£.

‘Therefore the product of GB, BC together with the square
on CE is equal to the square on BE. [11. 6]

But the product of A5, BC together with the square on
CE is also, by hypothesis, equal to the square on BE;
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therefore the product of GB, BC together with the square on
CE is equal to the product of 45, BC together with the
square on CE.

And, if the common square on CZ be subtracted,
it follows that 45 is equal to G5 :
which is absurd.

Therefore the product of 4B, BC together with the square
on CE is not equal to the square on BE.

I say next that neither is it less than the square on BZ,

For, if possible, let it be equal to the square on BF,
and let /74 be double of DF.

Now it will again follow that /ZC is double of CF;
so that CAH has also been bisected at 7,
and for this reason the product of ZB, BC together with the
square on #C is equal to the square on BF. [1. 6]

But, by hypothesis, the product of 4.8, BC together with
the square on CEZ is also equal to the square on BF.

Thus the product of A58, BC together with the square
on CF will also be equal to the product of 4258, BC together
with the square on CE :
which is absurd.

Therefore the product of 425, BC together with the square
on CE is not less than the square on BZ.

And it was proved that neither is it equal to the square
on BE.

Therefore the product of 4B, BC together with the square
on CE is not square.

Q. E. D.

We can, of course, write the identity in the note on Lemma 1 above (p. 64)
in the simpler form

i 2 m? + t
mf'"f'b(vzur) =( fa’w.)’
where, as before, mg?®, mg* are both odd or both even.
Now, says Euclid, X
mp* . mg* + (’”}":_W" - 1) is not a square number.

This is proved by reductio ad absurdum.
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The number is clearly less than mp®. mg® + (i;—"i.)', i.e. less than
(ﬁf;_ﬂ’)',
Ifzthen the number is square, its side must be greater than, equal to, or
less than (mp’ e r) the number next less than M: ’M’.

eimt-)

But (1) the side canno. be >

mp’ + mg*

~hiaswelty since they are consecutive numbers.

(2) (mp®— z) mg* + (3’32—’@-’ - 1)’ = (ﬂ&:ﬂf - 1)'. [11. 6]
If then mp* . mg* + (W—“;ﬁ- - 1)2 is also equal to (’3—#"'-’-:—”’?’ - :)',
we must have (mg? = 2) mg* = mp* . mg®,

or mp — 2 = mp*:
which is impossible.

O mpmes (£S5 (2,
suppose it equal to (”Lp.’%.’f‘f X ,.)'_

But [11. 6] (mp*—27) mg* + (M— r)’ = (”f—:——ﬁ-f-r)’.
Therefore
(mp® — 27) mg® + (mf_:mg’_r) = mp®. mg* + (!!f__:lf'_ 1)':
which is impossible.
Hence all three hypotheses are false, and the sum of the squares

mp*. mg* and (’Q’—E—ﬂ’— 1)1I is not square.

without being equal to

ProrosiTiON 29.

7o find two rational straight lines commensurable in square
only and suck that the squave on the greater is greater than
the square on the less by the square on a straight line commen-
surable in length with the greater.

For let there be set out any rational straight line 45,
and two square numbers CD, DE such that their difference
CE is not square ; [Lemma 1]

let there be described on 425 the semicircle 4 FB,
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and let it be contrived that,
as DC is to CE, so is the square on B4 to the square
on AF. [x. 6, Por.]

Let /B be joined. .2
Since, as the square on B4 is to
the square on AF, so is DC to CE,

therefore the square on BA has to

the square on AF the ratio which the 4 B8

number DC has to the number C£'; & 5

therefore the square on BA4 is com-

mensurable with the square on AF [x. 6]
But the square on 42 is rational ; [x. Def. 4]

therefore the square on A is also rational ; [7a.)

therefore AF is also rational.

And, since DC has not to CE the ratio which a square
number has to a square number,
neither has the square on B4 to the square on 4F the ratio
which a square number has to a square number ;
therefore A8 is incommensurable in length with 47, [x. ]

Therefore BA, AF are rational straight lines commen-
surable in square only.

And since, as DC is to CE, so is the square on B4 to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AR to the square on BF. [v. 19, Por., nr 31, 1. 47]

But CD has to DE the ratio which a square number has
to a square number :
therefore also the square on 42 has to the square on BF
the ratio which a square number has to a square number ;
therefore A8 is commensurable in length with B7. [x. 9]

And the square on 42 is equal to the squares on AF, FB;
therefore the square on A2 is greater than the square on 47
by the square on B commensurable with 45.

Therefore there have been found two rational straight
lines BA, AF commensurable in square only and such that
the square on the greater 45 is greater than the square on
the less A7 by the square on B/ commensurable in length
with 45.
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Take a rational straight line p and two numbers =, #* such that (m* - »°)
is not a square.
Take a straight line « such that

M -t At (T
whence P
Bz ¢ mt P
and x=pN1-A, wherek:%.
Ther. p, pa/1 = 2 are the straight lines required.
It follows from (r) that 2~ ph
and x is rational, but xvp.

By (1), convertendo, mint=p':pt - at,
so that »/p* — 2* ~ p, and in fact = £p.

According as p is of the form @ or ,/4, the straight lines are (1) , V/a* - &
or (2) JA, NA-F4.

ProrosiTION 30.

7o find two rational straight lines commensurable in square
only and suckh that the square on the grealer is greater than
the square on the less by the square on a straight line incom-
mensurable in length with the greater.

Let there be set out a rational straight line 4.5,
and two square numbers CE, £D
such that their sum CJD is not
square ; [Lemma 2]
let there be described on A B the
semicircle 4AF5,
let it be contrived that,

as DC is to CE, so is the square A 8
on BA to the square on AF, Py

[x. 6, Por.]
and let 7B be joined.

Then, in a similar manner to the preceding, we can prove
that BA, AF are rational straight lines commensurable in
square only.

And since, as DC is to CE, so is the square on BA4 to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
ARB to the square on BF. [v. x9, Por., mL 31, 1. 47]

But CD has not to DE the ratio which a square number
has to a square number;

F
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therefore neither has the square on 4.5 to the square on BF
the ratio which a square number has to a square number ;

therefore 47 is incommensurable in length with BF.  [x. 9]

And the square on A28 is greater than the square on AF#
by the square on #B incommensurable with 45.

Therefore AB, AF are rational straight lines commen-
surable in square only, and the square on 42 is greater than
the square on AF by the square on B incommensurable in
length with 45.

Q. E. D.
In this case we take m? #° such that »* + »* is not square.
Find x such that m+ ntmt =p? &,
3
whence e P,
p n
or =, where 2= —.
Jit# i
Then p, _erﬁ satisfy the condition.
The cFrcn:nf is after the manner of the proof of the preceding proposition
and need not be repeated.

According as p is of the form a or ,/4, the straight lines take the

2 i SRS
L, that is, a, VA= B, or (z) J4, VA~ B and

form (1) a, ~/a’—
J4, JA-8.

ProrosiTiON 31.

To find two medial straight lines commensurable in square
only, containing a rational rectangle, and suck that the square
on the greater is greater than the square on the less by the
square on a straight line commensurable in length with the
grealer.

Let there be set out two rational straight lines 4, B
commensurable in square only and such that the
square on A, being the greater, is greater than
the square on A the less by the square on a
straight line commensurable in length with 4.
X. 2
And let the square on C be equal tc[) thge]
rectangle 4, A. xsTs! b
Now the rectangle 4, B is medial ; [x. 21]

therefore the square on C is also medial ;
therefore C is also medial. [x. 21]
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Let the rectangle C, D be equal to the square on 5.
Now the square on 2 is rational ;
therefore the rectangle C, D is also rational.
And since, as A4 is to B, so is the rectangle 4, B to the
square on 5,
while the square on C is equal to the rectangle 4, 5,
and the rectangle C, D is equal to the square on B,
tcl‘legfore, as A is to B, so is the square on C to the rectangle
But, as the square on C is to the rectangle C, D, so is C
to D;
therefore also, as 4 is to B, sois C to D.
But A4 is commensurable with 2 in square only ;
therefore C is also commensurable with 2 in square only. [x. 11]
And C is medial ;
therefore D is also medial. [x. 23, addition)
And since, as 4 is to B, so is C to D,
and the square on A is greater than the square on B by the
square on a straight line commensurable with 4,
therefore also the square on C is greater than the square on
D by the square on a straight line commensurable with C.
[x. 14]
Therefore two medial straight lines C, D, commensurable
in square only and containing a rational rectangle, have been
found, and the square on C is $reater than the square on D

by the square on a straight line commensurable in length
with C.

Similarly also it can be proved that the square on C
exceeds the square on D by the square on a straight line
incommensurable with C, when the square on A is greater
than the square on 2 by the square on a straight line incom-
mensurable with A4. [x. 30]

I. Take the rational straight lines commensurable in square only found
in X. 29, i.e. p, pV1 — 2.
Take the mean proportional p (1 — A‘:")i and x such that
p(x —k’)i cpNT-B=pV1-F1a

_ Then p(1-#3, x, or p (1=, p(1 - #)? are straight lines satisfying the
given conditions.
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For (a) p*¥1— 2 is a medial area, and therefore p( 1- k')* is a medial
straight line .......... 1)

and x.p(1 - .{-’)* =gt (1 - k') and is therefore a rauonal area.

(B) p, p(1 - B)}, p¥/ 1= A, x are straight lines in continued proportion, by
construction.
Therefore p:p\c’l-—k‘:p(l—.&’)*:x ....................... (2).
(This Euclid has to prove in a somewhat roundabout way by means of the
lemma after X. 21 to the effect that a : 6 = ab : #)

From (z) it follows [x. t1] that x ~ p (1 - #)}; whence, since p (1 — &9 is
medial, x or p (1 — #)? is medial also.

(y) From (2), since p, p\f 1 — A&* satisfy the remaining condition of the
problem, p(1 - .{")‘, pli—- - ) do so also Lx. 14]).

According as p is of the form a or /4, the straight lines take the forms

(1) N P ey A dell

- A-#4
2 YTE=RAD, =22,
® L ( b Tia-eD
II. To find medial straight lines commens irable in square only contain-
ing a rational rectangle, and such that the square on one exceeds the square
on the other by the square on a straight line incommensurable with the former,
we simply begin with the rational straight lines having the corresponding

property [x. 30], viz. p, ﬁ , and we arrive at the straight lines

Pt P
(ret (ram)d
According as p is of the form a or /4, these (if we use the same
transformation as at the end of the note on X. 30) may take any of the forms

(1) VaJai - B, 4/%;__:95
o0 (a) YA(A=B), ﬁ(%%),
or VAA-P), 9%.

ProrosiTION 32.

7o find two medial straight lines commensurable in square
only, containing a medial rectangle, and such that the square
on the greater is grealer than the square on the less by the
square on @ straight line commensuvable with the greater.
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Let there be set out three rational straight lines 4, B, C
commensurable in square only, and such that the square on 4
is greater than the square on C by the square on a straight
line commensurable with A4, [x. 29]

and let the square on D be equal to the rectangle 4, B.
A
B
c

Therefore the square on D is medial ;
therefore D is also medial. [x. 21]
Let the rectangle D, £ be equal to the rectangle B, C.
Then since, as the rectangle 4, B is to the rectangle B, C,
sois 4 to G
while the square on D is equal to the rectangle 4, 5,
and the rectangle D, £ is equal to the rectangle 5, C,
the:zfore, as A4 is to C, so is the square on D to the rectangle
D, E.
But, as the square on D is to the rectangle D, £, so is D
to £ ;
therefore also, as 4 is to C, so is D to £.
But A4 is commensurable with C in square only ;
therefore D is also commensurable with £ in square only. [x.11]
But D is medial ;
therefore £ is also medial. [x. 23, addition]
And, since, as A is to C, so is D to £,
while the square on A is greater than the square on C by
the square on a straight line commensurable with 4,
therefore also the square on D will be greater than the square
on £ by the square on a straight line commensurable with D.

[x. 14]
I say next that the rectangle D, £ is also medial.

For, since the rectangle 5, C is equal to the rectangle D, E,
while the rectangle B, C is medial, [x. 21]
therefore the rectangle D, £ is also medial.

: Therefore two medial straight lines D, £, commensurable
in square only, and containing a medial rectangle, have been
found such that the square on the greater is greater than the
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square on the less by the square on a straight line commen-
surable with the greater.

Similarly again it can be proved that the square on D
is greater than the square on £ by the square on a straight
line incommensurable with 0, when the square on 4 is
greater than the square on C by the square on a straight line

incommensurable with 4. [x. 30]
I. Euclid takes three straight lines of the form p, p /A, p¥1 43,
takes the mean proportional pl* between the first tWo ................ce... (1),
and then finds x such that
A oM T B x(2),

whence x =pAt /1=,
and the straight lines pAd, p?\* VT satisfy the given conditions.

Now (a) pA is medial.

(B) We have, from (1) and (2),

PR pmaay NP (3),

whence x ~ pk‘ ; and x is therefore medial and ~ p.\*.

() x.o=p A pV1-A.

But the latter is medial ; [x. 21]
therefore z. pAd, or pA}. pAt VT 2, is medial.

Lastly (8) p, p~/1 = # have the remaining property in the enunciation ;
therefore pA¥, pA¥ VT— 2 have it also. [x. 14]

(Euclid has not the assistance of symbols to prove the proportion (3) above.
He therefore uses the lemmas ab:bc=a:c and d*:de=d : ¢ to deduce from
the relations

ab=d* }
and d:b=c:e
that a:c=d:e)

The straight lines p)&*, px* J1—7# may take any of the following forms
according as the straight lines first taken are
(1) a, JB, Ja*=&, (2) JA, JB, JA=-#A4, (3) JA4, b, JAd-FA.

—_ NB@-2).

(1) JaJB, _:";:J:B—"
-  NB(4-#4)

(2) Y4B, ——-%«T;

sNA-#4
(3) ~&.J4, s
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II. If the other conditions are the same, but the square on the first
medial straight line is to exceed the square on the second by the square on a
straight line incommensurable with the first, we begin with the three straight

lines p, p /A, Jx—p{?:é’ , and the medial straight lines are

ot
Nis k'
The possible forms are even more various in this case owing to the more

various forms that the original lines may take, e.g.
(I) a, J—B) J“,_Ci
(2) J4, 8, NA-;
(3) vA4 & JA-C;
4) J4, JB, JA=7;
() 4, JB, JA-C;

the medial straight lines corresponding to these being

o,

(x) vaJB, i%??);
@ Vi
() 5T, *’::%‘
(4) Y4B, “i%;ﬂ;
o va5, YZA0.
LEMMA.

Let ABC be a right-angled triangle having the angle 4
right, and let the perpendicular 40 be

drawn ; A

I say that the rectangle CB, BD is

equal to the square on B4, <32
the rectangle BC, CD equal to the & )
square on CA4,

the rectangle B0, DC equal to the square on 4D,

and, further, the rectangle BC, AD equal to the rectangle
B4, AC.
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And first that the rectangle CB, BD is equal to the square
on BA.

For, since in a right-angled triangle 40 has been drawn
from the right angle perpendicular to the base,

therefore the triangles 48D, ADC are similar both to the

whole 4 BC and to one another. [v1. 8]
And since the triangle A BC is similar to the triangle 48D,
therefore, as CBis to BA, sois BA to BD; [vi. 4]

therefore the rectangle C5, BD is equal to the square on A 25.
[vi 17]
For the same reason the rectangle BC, CD is also equal

to the square on AC.

And since, if in a right-angled triangle a perpendicular
be drawn from the right angle to the base, the perpendicular
so drawn is a mean proportional between the segments of the
base, [v1. 8, Por.]
therefore, as BD is to DA, sois AD to DC;
therefore the rectangle 2D, DC is equal to the square on 4D,

[vi. 17]

I say that the rectangle BC, 4D is also equal to the rect-

angle B4, AC.
For since, as we said, 4 BC is similar to 48D,
therefore, as BC is to CA, so is BA to AD. [v1. 4]
Therefore the rectangle BC, AD is equal to the rectangle
BA, AC. [v1. 16]

Q. E. D.

ProrosiTiON 33.

To find two straight lines incommensurable in square whickh
make the sum of the squares on them rational but the rectangle
contained by them medial.

Let there be set out two rational straight lines 45, BC
commensurable in square only
and such that the square on the
greater A B is greater than the F
square on the less BC by the
square on a straight line in- ‘
commensurable with 425, A EB 0O ¢

[x- 3]
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let BC be bisected at D,

let there be applied to 45 a parallelogram equal to the square
on either of the straight lines B2, DC and deficient by a
square figure, and let it be the rectangle AE, EB;  [vi 28]

let the semicircle 477 be described on A5,
let £F be drawn at right angles to 45,
and let AF, FB be joined.

Then, since A58, BC are unequal straight lines,

and the square on 428 is greater than the square on BC by
the square on a straight line incommensurable with 425,

while there has been applied to 48 a parallelogram equal to
the fourth part of the square on BC, that is, to the square on
half of it, and deficient by a square figure, making the rect-
angle AE, EB,

therefore 4 £ is incommensurable with £25. [x. 18]

And, as AE is to £B, so is the rectangle B4, AE to the
rectangle A8, BE,

while the rectangle B4, AF is equal to the square on AF,
and the rectangle A8, BE to the square on BF;

therefore the square on A/ is incommensurable with the
square on /B ;

therefore AF, FB are incommensurable in square.
And, since 4B is rational,
therefore the square on A8 is also rational ;

so that the sum of the squares on A%, F2B is also rational.
(r 47]
And since, again, the rectangle 4Z, £B is equal to the
square on £F,

and, by hypothesis, the rectangle 4 £, £B is also equal to the
square on 5D,

therefore FE is equal to BD;
therefore BC is double of FE,

so that the rectangle 4B, BC is also commensurable with the
rectangle A5, EF.

But the rectangle 45, BC is medial ; [x. 21]
therefore the rectangle 45, £F is also medial.  [x. 23, Por.]
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But the rectangle 48, EF is equal to the rectangle 4F,
FB; [Lemma]

therefore the rectangle AF, FB is also medial.

But it was also proved that the sum of the squares on these
straight lines is rational.

Therefore two straight lines 4%, FB incommensurable
in square have been found which make the sum of the
squares on them rational, but the rectangle contained by them
medial.

Q E. D.

P -
NIy

Euclid takes the straight lines found in X. 3o, viz. p,

He then solves geometrically the equations
x+y=p
P (1)
MG }
If x, y are the values found, he takes %, # such that
“’ =
9,=z;} T 1
and u, v are straight lines satisfying the conditions of the problem.
Solving algebraically, we get (if x> y)

e )
whence uzﬁg 7 !+_J%'F
i

Euclid’s proof that these straight lines fulfil the requirements is as follows.

(a) The constants in the equations (1) satisfy the conditions of x. 18;

therefore X
But x:y=u:1"
Therefore [7ARVE /A

and », v are thus sncommensurable in square.

(B) #*+0*=p* which is rational.

- P
() By (), Ny = ——s.
By (2), wo=p.Nay
P

=2Jt+k"
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But

‘I
is a medial area,
AT+ A
therefore #v is medial.

may have any of the three forms

Since p, —=2
1o Ve
(1) a, N@®=B, (2) JA, NA=B, (3) JA4, NA-F,
u, v may have any of the forms

(1) ‘*"4_“5"75’ \/‘_"_‘_‘_’ NZS

@) \/A*”'A‘? =T,
@ A, N

ProrosITiON 34.

7o find two straight lines incommensurable in square which
make the sum of the squares on them medial but the rectangle
contained by them rational.

Let there be set out two medial straight lines 425, BC,
commensurable in square only, such that the rectangle which
they contain is rational, and the square on A5 is greater than
the square on BC by the square on a straight line incom-
mensurable with 458 ; [x. 31, ad fin.]

A F B E [+

let the semicircle 408 be described on A5,

let BC be bisected at £,

let there be applied to 4.8 a parallelogram equal to the square

on BE and degcmnt by a square figure, namely the rectangle

AF, FB; [v1. 28]

therefore A F is incommensurable in length with #B. [x. 18]
Let 7D be drawn from # at right angles to 45,

and et AD, DB be joined.
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Since 4 F is incommensurable in length with 723,
therefore the rectangle B4, AF is also incommensurable with
the rectangle A8, BF. [x. 11]

But the rectangle B4, AF is equal to the square on 4D,
and the rectangle 45, BF to the square on DA ;
therefore the square on 4.0 is also incommensurable with the
square on D2B.

And, since the square on 428 is medial,
therefore the sum of the squares on 4D, DA is also medial.

1L 31, I

And, since BC is double of DZ, ikl
therefore the rectangle 4.8, BC is also double of the rectangle
AB, FD.

But the rectangle A5, BC is rational ;

therefore the rectangle A8, FD is also rational. [x. 6]
But the rectangle 48, FD is equal to the rectangle 4D,
DB; [Lemma]

so that the rectangle AD, DB is also rational.

Therefore two straight lines 4.0, DB incommensurable
in square have been found which make the sum of the squares
on them medial, but the rectangle contained by them rational.

Q E.D.
In this case we take [x. 31, 2nd part] the medial straight lines
P P
(e i)t

Solve the equations
p
P/ M| 5v=
7 (ot
i Bz
RAYTY™.
Take , v such that, if x, y be the result of the solution,

(1)

and w, v are straight lines satisfying the given conditions.
Euclid's proof is similar to the preceding.
(a) From (1) it follows [x. 18] that
x v)"
whence W
and #, v are thus incommensurable in square.
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B) w+o= Jf;.?,which is a medial area.
1

(T) uy = P‘P 3 ‘J;J-"

(r+
=£

—P-:;,, which is a rational area.

Therefore »v is rational.
To find the actual form of », v, we have, by solving the equations (1)
(if x> y),

o P 7
x_z(:+k'}5w + &2+ k),
y==“+él) (J:+.¢» £);
and hence w= J~"1+k’+
-Jz(n»
=J2_(I_Jm &

Bearing in mind the forms which ——; may take (see note

(1+ p)i (1 + E)*
on X. 31), we shall find that », » may have any of the forms

ik J(a+ JB)NE=B \/(1___—@! J&=B.
@ J(JA+J&JH, \/(JA—JB!JATE;
JW’ \/(!;_'A-QJZ-:?"

(3)

ProrosiTION 35.

7o find two straight lines incommensurable in square whick
make the sum of the squares on them medial and the rectangle
contained by them medial and morveover incommensurable with
the sum of the squaves on them.

Let there be set out two medial straight lines 42, BC
commensurable in square only, containing a medial rectangle,
and such that the square on 423 is greater than the square on
BC by the square on a straight line incommensurable with
AB; [x. 32, ad fin.]
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let the semicircle 4025 be described on 4B,
and let the rest of the construction be as above.

A FB E o)

Then, since A is incommensurable in length with 725,
[x. 18]

AD is also incommensurable in square with D25, [x. 11]
And, since the square on 48 is medial,

therefore the sum of the squares on 4D, DA is also medial.
[ 31, 1. 47]
And, since the rectangle A, FB is equal to the square
on each of the straight lines BE, DF,

therefore BE is equal to DF;
therefore BC is double of 7D,

so that the rectangle 48, BC is also double of the rectangle
AB, FD.

But the rectangle 42, BC is medial ;
therefore the rectangle 48, FD is also medial. [x. 32, Por.]

And it is equal to the rectangle 4D, DB ;
[Lemma after x. 32]

therefore the rectangle 4D, DB is also medial.
And, since A8 is incommensurable in length with BC,
while C# is commensurable with BZ,
therefore 42 is also incommensurable in length with B[E,
x. 13]

so that the square on 425 is also incommensurable with the
rectangle A8, BE. [x. 11]

But the squares on 40D, DB are equal to the square on
AB, (1 47]
and the rectangle 42, FD, that is, the rectangle AD, DB, is
equal to the rectangle A58, BE;

therefore the sum of the squares on 40, DB is incommen-
surable with the rectangle 4D, DB.
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Therefore two straight lines 4.0, DB incommensurable
in square have been found which make the sum of the squares
on them medial and the rectangle contained by them medial
and moreover incommensurable with the sum of the squares
on them.

Q. E. D

Take the medial straight lines found in x. 32 (znd part), viz.
SCAPS N e o)
Solve the equations
x+y= pxi }
_ PN
4(1+#)
and then put = ph* A } @)
P= pl* .y '
where x, y are the ascertained values of x, y.

Then u, v.are straight lines satisfying the given conditions.
Euclid proves this as follows.
(a) From (1) it follows [x. 18] that x u y.

Therefore u o v,
and U T,
(8) u* + 98 =p* /A, which is a medial area .................. (3)
7 wo=pM, Jay
L1 which is a medial area (4);
W e, T () 1
therefore »v is medial.
1
5 1! .._..PZ"_...,
@ S
1 p* A
whence A - z
Fiafhu gy
That is, by (3) and (4),
(1 + 7% w wo.
The actual values are found thus. Solving the equations (1), we have
1
ety 0
R e NE +k')'
E
TEEN A1 +&’)
* —_— -
whence u =‘;;-l ,\/1 + __f,__
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According as p is of the form a or ,/4, we have a variety of forms for

u, v, arrived at by using the same transformations as in the notes on X. 30
and x. 32 (second part), e.g.

o JELOE, | [EIOTE,
(2) ~/(~M+:"C)JB’ \/(JA_‘:C)"/B;

WA+ B WA-9JB,
o JAEAB, | [TEDTE,
and the expressions in (2), (3) with & in place of ,/B.

ProrosiTioN 36.

If two rational straight lines commensurable in square
only be added together, the whole is irrational; and let it be
called binomial.

For let two rational straight lines 48, BC commen-
ssurable in square only be added
together ;
I say that the whole 4C is ir- A - 3
rational.
For, since A28 is incommensurable in length with BC—
10 for they are commensurable in square only—
and, as A8 is to BC, so is the rectangle 458, BC to the
square on BC,
therefore the rectangle 48, BC is incommensurable with the
square on BC, [x. 1]
15 But twice the rectangle 48, BC is commensurable with
the rectangle 48, BC [x. 6], and the squares on 425, BC are
conmensurable with the square on BZC—for AB, BC are
rational straight lines commensurable in square only— [x. 15]
therefore twice the rectangle 458, BC is incommensurable
20 with the squares on A5, BC. [x. 13)
And, componends, twice the rectangle AB, BC together
wich the squares on A5, BC, that is, the square on AC [1. 4},
is incommensurable with the sum of the squares on 45, BC.
X. 16
But the sum of the squares on 45, BC is rational ; b1l
a5 therefore the square on A4C is irrational,
so that 4C is also irrational. [x. Def. 4]
And let it be called binomial.
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Here begins the first hexad of propositions relating to compound irrational
straight lines. The six compound irrational straight lines are formed by
adding two parts, as the corresponding six in Props. 73—78 are formed by
subtraction. The relation between the six irrational straight lines in this and
the next five propositions with those described in Definitions 11. and the
Props. 48—s53 following thereon (the first, second, third, fourth, fifth and
sixth binomials) will be seen when we come to Props. 54—59 ; but it may be
stated here that the six compound irrationals in Props. 36—41 can be found
by means of the equivalent of extracting the square root of the compound
irrationals in X. 48—53 (the process being, strictly speaking, the finding of the
sides of the squares equal to the rectangles contained by the latter irrationals
respectively and a rational straight line as the other side), and it is therefore
the further removed compound irrational, so to speak, which is treated first.

In reproducing the proofs of the propositions, I shall for the sake of
simplicity call the two parts of the compound irrational straight line x, y,
explaining at the outset the forms which x, y really have in each case ; x will
always be supposed to be the greater segment.

In this proposition x, y are of the form p, /4. p, and (x +y) is proved to
be irrational thus,

x ~— y, so that x v y.

Now x:y=2: 2y
so that v xy,
But 2* ~ (2* +3*), and 2y ~ 22y;
therefore (x* + %) v 2y,
and hence (2* + 9 + 2xy) © (2* + 7).

But (2? + »*) is rational ;
therefore (x + y)?, and therefore (x +y), is frrational.

This irrational straight line, p + /4. p, is called a dinomial straight line.
This and the corresponding agofome (p— \Jk.p) found in x. 73 are the
positive roots of the equation

A—z2(1+k)p .+ (1-R)p'=0.

PRrRoPOSITION 37.

If two medial straight lines commensurable in squarve only
and conlaining a rational rectangle be added logelher, the
whole is irrational; and let it be called a first bimedial
straight line.

For let two medial straight lines 48, BC commensurable
in square only and containing
a rational rectangle be added g 3 T
together ;

I say that the whole 4C is irrational.
For, since A8 is incommensurable in length with BC,

therefore the squares on 4.8, BC are also incommensurable
with twice the rectangle A8, BC; [cf. x. 36, 1. 9—20)
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and, componendo, the squares on 4B, BC together with twice
the rectangle 4B, BC, that is, the square on AC [u. 4], is
incommensurable with the rectangle 423, BC. [x. 16]

But the rectangle 45, BC is rational, for, by hypothesis,
AB, BC are straight lines containing a rational rectangle ;
therefore the square on AC is irrational ;

there fore AC is irrational. [k Def. 4)
And let it be called a first bimedial straight line.
Q. E. D.

Here x, y have the forms #4p, #tp respectively, as found in x. 27.
Exactly as in the last case we prove that
a +J" v 2xY,
whence (x+y) v 22y
But xy is rational ;
therefore (x + y)%, and consequently (x + y), is irrational.
The irrational straight line #p + #lp is called a [first bimedial straight line,

This and the corresponding first agotome of a medial (kip —ﬁ’p) found in
X. 74 are the positive roots of the equation
-2 Jh(1+E)p. 2+ k(1—£)p'=o0.

ProrosiTioN 38.

If two medial straight lines commensurable in square only
and containing a medial rectangle be added together, the whole
is trrational; and let it be called a second bimedial straight
line.

5 For let two medial straight lines 45, ZC commensurable
in square only and containing

a medial rectangle be added A B o
together ; is » a

I say that 4C is irrational.

10 For let a rational straight
line DE be set out, and let the

parallelogram DF equal to the g F

square on A4 C be applied to DE,

producing DG as breadth. [1. 44)
15 Then, since the square on 4C is equal to the squares on

AB, BC and twice the rectangle 45, BC, [1. 4]

let £/, equal to the squares on 4B, BC, be applied to DE;
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therefore the remainder A F is equal to twice the rectangle
AB, BC.

20 And, since each of the straight lines 48, BC is medial,
therefore the squares on 48, BC are also medial.

But, by hypothesis, twice the rectangle 48, BC is also
medial.
And E£H is equal to the squares on A5, BC,

25 while 7/ is equal to twice the rectangle 48, BC;
therefore each of the rectangles £/, AF is medial.
And they are applied to the rational straight line DE ;

therefore each of the straight lines DA, AG is rational and
incommensurable in length with DE. [x. 22]

%  Since then 428 is incommensurable in length with Z2C,

and, as A8 is to BC, so is the square on 475 to the rectangle
AB, BC,

therefore the square on A5 is incommensurable with the rect-

angle 4B, BC. [x. 11]
35  But the sum of the squares on 45, BC is commensurable
with the square on 45, [x. 15]
and twice the rectangle 458, BC is commensurable with the
rectangle 45, BC. [x. 6]
Therefore the sum of the squares on 48, BC is incom-

s0 mensurable with twice the rectangle 43, BC. [x. 13)

But £/ is equal to the squares on 458, BC,
and A F is equal to twice the rectangle 45, BC.
Therefore £/ is incommensurable with AF,

so that DA is also incommensurable in length with ZG.
[ve 1, x. 11]

45  Therefore DA, HG are rational straight lines commen-
surable in square only ;

so that DG is irrational. [x. 36]
But DE is rational ;

and the rectangle contained by an irrational and a rational
so straight line is irrational ; [cf. x. 20]

therefore the area DF is irrational,
and the side of the square equal to it is irrational.  [x. Def. 4]
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But AC is the side of the square equal to DF';
therefore AC is irrational.

ss  And let it be called a second bimedial straight line.
Q. E. D.

After proving (L. 21) that each of the squares on 4B, BC is medial, Euclid
states (Il 24, 26) that EH, which is equal to the sum of the squares, is a
medial area, but does not explain why. It is because, by hypothesis, the
squares on 4B, BC are commensuragle, so that the sum of the squares is
commensurable with either [x. 15] and is therefore a medial area [x. 23, Por.}

In this case [Xx. 28, note] «, y are of the forms Bp, Aol respectively.
Apply each of the areas (x*+3*) and 2xy to a rational straight line o, i.e.
suppose
2+ y* = ou,
2xy = o0,
Now it follows from the hypothesis, x. 15 and X. 23, Por. that (x* + ") is
a medial area ; and so is zxy, by hypothesis ;
therefore o, ov are medial areas.

Therefore each of the straight lines #, v is rational and v & ........ (1).
Again xvy;

therefore o xy.
But a' x4yt and xy ~ 2375

therefore 2+ v o2xy,

or oU v o0,

whence PR SRR S ST - - (2).

Therefore, by (1), (2), #, v are rational and ~.

It follows, by x. 36, that ( + v) is irrational.

Therefore (1 + v) & is an irrational area [this can be deduced from x. 20
by reductio ad absurdum),

whence (x + y)*, and consequently (x + y), is irrational.
3
The irrational straight line k*p+-t—{ is called a second bimedial straight
line.
This and the corresponding second apotome of a medial (ﬁ’p«-‘ :'*—A p)

found in X. 75 are the positive roots of the equation

s ﬁ+l, 3 (é_‘\)’ 4 —
at 27;,0.34- 7 Pi=o

ProrosiTION 39.

If two straight lines incommensurable in square whichk
make the sum of the squares on them rational, but the rectangle
contained by them medial, be added together, the whole straight
line s irvational : and let it be called major.
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For let two straight lines 48, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 33], be added together ; A B c
I say that AC is irrational.

For, since the rectangle 48, BC is medial,
twice the rectangle 48, BC is also medial.  [x. 6 and 23, Por.]

But the sum of the squares on 48, BC is rational ;
therefore twice the rectangle 45, BC is incommensurable
with the sum of the squares on 48, BC,

so that the squares on 453, BC together with twice the rect-
angle 425, BC, that is, the square on 4C, is also incommen-

surable with the sum of the squares on A5, BC; [x. 16)
therefore the square on A4C is irrational,
so that AC is also irrational. [x. Def. 4]

And let it be called major.
Q. E. D.

Here x, y are of the form found in x. 33, viz.

r3 ~/ st bk \/ ¢ o B
V2 i+ W2 Ty
By hypothesis, the rectangle xy is medial ;
therefore z2xy is medial.
Also (x? + %) is a rational area.
Therefore 2+ v 23y,
whence (x+3) v (x*+37),
so that (x + »)% and therefore (x +y), is irrational.

. : . & k.
The irrational straight line l\/l+——+—e—~/ - —
g NE Jiek SN IT TR
called a major (irrational) straight line,
This and the corresponding minor irrational found in X. 76 are the
positive roots of the equation

‘”‘_”"x""lfp

pt=o.

ProrosITION 40.

If two straight lines incommensurable in square which
make the sum of the squares on them medial, but the rvectangle
contained by them rational, be added together, the whole straight
line is trrational ; and let it be called the side of a rational
plus a medial area.
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For let two straight lines 48, BC incommensurable in
uare, and fulfilling the given con-
ditions [x. 34], be added together ; A B _©
I say that AC is irrational.
For, since the sum of the squares on A8, BC is medial,
while twice the rectangle 48, BC is rational,
therefore the sum of the squares on A5, BC is incommen-
surable with twice the rectangle 45, BC;
so that the square on AC is also incommensurable with twice
the rectangle 45, BC. [x. 16]
But twice the rectangle 42, BC is rational ;
therefore the square on AC is irrational.
Therefore AC is irrational, [x. Def. 4]
And let it be called the side of a rational plus a
medial area.
Q E. D.

Here x, y have [x. 34] the forms
B JJ'I +§Té, e Bt Jv‘t + A=k

N2 (1+#) vz (1+4)
In this case (x* + ") is a medial, and 2xy a rational, area ; thus
x+ 3t o 2.
Therefore (x +) w 22y,

whence, since 2xy is rational,
(x + »)%, and consequently (x + y), is irrational.
The irrational straight line
[ N P I &
m-)ﬁfmfl +R+ R+ ‘J-ﬁ—-—-z_.l.(l_+é’_)~/~fl+k' -3
is called (for an obvious reason) the “side” of a rational plus a medial (area).
This and the corresponding irrational with a minus sign found in x. 77
are the positive roots of the equation

el 2 _P__ 4=
xt ﬁp.x’+(!+&_“)’p—0.

PRrROPOSITION 41.

If two straight lines incommensurvable in squave whick
make the sum of the squares on them medial, and the rectangle
contained by them medial and also incommensurable with the
sum of the squares on them, be added logether, the whole straight
line is irrational ; and let it be called the side of the sum
of two medial areas.
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For let two straight lines 48, BC incommensurable in
square and satisfying the given conditions
[x. 35] be added together;

I say that 4C is irrational.

Let a rational straight line D£ be set out,
and let there be applied to D £ the rectangle
DF equal to the squares on A8, BC, and G
the rectangle G/ equal to twice the rectangle

K H

-

AB, BC;
therefore the whole D/ is equal to the square
on AC. [11. 4]
Now, since the sum of the squares on o
AB, BC is medial, =
and is equal to DF, A o

therefore DF is also medial.

And it is applied to the rational straight line DE ;
therefore DG is rational and incommensurable in length with
DE. [x. 22]

For the same reason G X is also rational and incommen-
surable in length with GZ, that is, DE.

And, since the squares on A8, BC are incommensurable
with twice the rectangle 45, BC,

DF is incommensurable with G ;
so that DG is also incommensurable with GX. [vt. 1, x. 11]

And they are rational ;
therefore DG, GK are rational straight lines commensurable
in square only ;
therefore DK is irrational and what is called binomial. [x. 36]

But DE is rational ;
therefore DA is irrational, and the side of the square which
is equal to it is irrational. [x. Def. 4]

But AC is the side of the square equal to /7D ;
therefore AC is irrational.

And let it be called the side of the sum of two medial
areas.

Q. E. D.
In this case x, y are of the form

=iy ORI e
NE Ji+ B Wz Jit B
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By hypothesis, (2* + %) and 2xy are medial areas, and

R PGARY . covcnmsrmmanounen sproiismes (1).
‘ Apply’ these areas respectively to a rational straight line o, and suppose
wiv S “"} ............................. (2).
23y =00

Since then ox and ov are both medial areas, »,  are rational and both
L LU L ) o N LR T L % Y W) (M AR (3)

Now, by (1) and (2),
ou v av,
so that URE
By this and (3), », v are rational and ~.
Therefore [x. 36] (« + v) is irrational.
Hence o (# + ) is irrational [deduction from x. z0].
Thus (x + y)%, and therefore (x + y), is irrational.
The irrational straight line

"ﬁ 1+ - +‘°h*,‘/:——____k
NE Nir B e iy 2
is called (again for an obvious reason) the “side” of the sum of two medials
(medial areas). ) :
This and the corresponding irrational with a minus sign found in x. 78
are the positive roots of the equation

-2 A 2%+ A

$=o.
il

LEMMA.

And that the aforesaid irrational straight lines are divided
only in one way into the straight lines of which they are the
sum and which produce the types in question, we will now
prove after premising the following lemma.

Let the straight ﬁne AR be set out, let the whole be cut
into unequal parts at each of
the points C, D, e
and let4 Cbe supposed greater 4 &8 8
than D75 ;

I say that the squares on 4C, CB are greater than the squares
on AD, DB,

For let AB be bisected at £.

Then, since AC is greater than D25,
let DC be subtracted from each ;

therefore the remainder 4D is greater than the remainder CA3.
But AE is equal to £B;

therefore DE is less than £C;
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therefore the points C, D are not equidistant from the point
of bisection.

And, since the rectangle 4C, CB together with the square

on E£C is equal to the square on £5, (1. 5]
and, further, the rectangle 4.0, DB together with the square
on DE is equal to the square on £5, [id.]

therefore the rectangle 4C, CB together with the square on
EC is equal to the rectangle Ag), DB together with the
square on DE.

And of these the square on DE is less than the square
on EC;
therefore the remainder, the rectangle AC, CB, is also less
than the rectangle 4D, DA,
so that twice the rectangle 4C, CB is also less than twice
the rectangle 4D, DB.

Therefore also the remainder, the sum of the squares on
AC, CB, is greater than the sum of the squares on 40, DB.

Q. E. D.

3. and which produce the types in question. The Greek is rowvodv T4 wpoxelueva
eldn, and I have taken eldy to mean *‘types (of irrational straight lines),” though the expression
might perhaps mean * satisfying the conditions in question.”

This proves that, if x +y=#u+9, and if «, v are more nearly equal than
x, y (i.e. if the straight line is divided in the second case nearer to the point
of bisection), then
(a + %) > (u* + 2°).
It is first proved by means of 11. 5 that
2xy < 2uv,
whence, since (x + y)* = (# + v)%, the required result follows.

PRrOPOSITION 42.

A binomial straight line is divided into ils terms at one
point cnly.

Let 4B be a binomial straight line divided into its terms
at C;

therefore AC, CB are rational YA 8
straight lines commensurable in
square only. [x. 36]

I say that 42 is not divided at another point into two
rational straight lines commensurable in square only.
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For, if possible, let it be divided at 2 also, so that 4D,
D2Z are also rational straight lines commensurable in square
only.

It is then manifest that 4C is not the same with D2ZA.

For, if possible, let it be so.

Then ALD will also be the same as C5,
and, as AC is to CB, so will 2D be to DA ;

thus 42 will be divided at D also in the same way as by the
division at C:

which is contrary to the hypothesis.

Therefore AC is not the same with D25.

For this reason also the points C, 2 are not equidistant
from the point of bisection.

Therefore that by which the squares on 4C, CAB differ
from the squares on 4D, DB is also that by which twice
the rectangle 40, DB differs from twice the rectangle
AC, CB,
because both the squares on 4C, CA together with twice the
rectangle AC, CB, and the squares on 4D, DB together
with twice the rectangle 4D, DB, are equal to the square
on AB. [ 4]

But the squares on AC, CZ differ from the squares on
AD, DB by a rational area,

for both are rational ;

therefore twice the rectangle 40, DA also differs from twice
the rectangle AC, CB by a rational area, though they are
medial [x. 21]:
which is absurd, for a medial area does not exceed a medial
by a rational area. [x. 26]

Therefore a binomial straight line is not divided at different
points ;
therefore it is divided at one point only.

Q. E. D.

This proposition proves the equivalent of the well-known theorem in

surds that,
if a+ Jb=x+ .0y,
then a=x, b=y,

and if Ja+ Jo= Jx + .y,
then a=x, b=y (ora=y b=x)
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The proposition states that a dimomial straight line cannot be split up into
terms (bvépara) in two ways. For, if possible, let
C x+y=x+Yy,
where x, y, and also 2/, ¥, are the ferms of a binomial straight line, «', ¥’
being different from x, y (or y, x).
One pair is necessarily more nearly equal than the other. Let &/, be
more nearly equal than x, y.

Then (2 + %) = (2 + ¥?) = 22y’ — 22y
: ]'gc;w by hypothesis (x* +72), (=" + %) are rational areas, being of the form
P+ ks
but 2x'y', 2xy are medial areas, being of the form /. p*;
therefore the difference of two medial areas is rational :
which is impossible. [x. 26]
Therefore %, y' cannot be different from x, y (or’y, x).

ProrosiTiON 43.

A first bimedial straight line is divided at one point only.

Let A8 be a first bimedial straight line divided at C, so
that 4C, CB are medial straight
lines commensurable in square
only and containing a rational
rectangle ; [x. 37]
I say that 4B is not so divided at another point.

For, if possible, let it be divided at 2 also, so that 4D,
DB are also medial straight lines commensurable in square
only and containing a rational rectangle,

Since, then, that by which twice the rectangle 40D, DB
differs from twice the rectangle 4C, CAB is that by which the
squares on AC, CA differ from the squares on 4D, DB,

while twice the rectangle 4D, DB differs from twice the
rectangle AC, CB by a rational area—for both are rational—

therefore the squares on 4C, CZ also differ from the squares
on AD, DB by a rational area, though they are medial :

which is absurd. [x. 26)

Therefore a first bimedial straight line is not divided into
its terms ar different points;

therefore it is so divided at one point only.

D © B
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In this case, with the same hypothesis, viz. that
x+y=x+y,

and ', ' are more nearly equal than x, y,
we have as before (a®+37%) — (2" + %) = 227y — 229

But, from the given properties of x, ¥, and &, ¥/, it follows that 2xy, 227y’
are rational, and (x*+)?), (2™ +y") medial, areas.

Therefore the difference between two medial areas is rational :
which is impossible. [x. 26]

PRrorosITION 44.

A second bimedial straight line is divided at one point only.

Let A8 be a second bimedial straight line divided at C,
so that AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle ; [x. 38]
it is then manifest that C is not at the point of bisection,
because the segments are not commensurable in length,

I say that 428 is not so divided at another point.

A D 6 B
E M H N
F L [¢] K

For, if possible, let it be divided at D also, so that AC is
not the same with D2, but AC is supposed greater ;
it is then clear that the squares on 40, DB are also, as we
proved above [Lemma], less than the squares on 4C, CB;
and suppose that 40D, DB are medial straight lines commen-
surable in square only and containing a medial rectangle.
Now let a rational straight line £ be set out,
let there be applied to £/ the rectangular parallelogram £X
equal to the square on 45,
and let £G equal to the squares on AC, CB be subtracted ;
therefore the remainder ZK is equal to twice the rectangle
AC, CB. [11. 4]
Again, let there be subtracted £LZ, equal to the squares

on A0, DB, which were proved less than the squares on
AC, CB [Lemma];
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therefore the remainder /K is also equal to twice the rect-
angle AD, DB.

Now, since the squares on AC, CB are medial,
therefore £G is medial.

And it is applied to the rational straight line £/;
therefore £/ is rational and incommensurable in length with
EF, [x. 22]

For the same reason
HN is also rational and incommensurable in length with £7.

And, since AC, CB are medial straight lines commen-
surable in square only,
therefore 4 C is incommensurable in length with CA.

But, as AC is to CB, so is the square on 4C to the rect-
angle AC, CB;
therefore the square on 4 C is incommensurable with the rect-
angle AC, CAB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC ; for AC, CB are commensurable in squafe. ]

X. 15

And twice the rectangle AC, CB is commensurable with
the rectangle 4C, CA5. [x. 6)

Therefore the squares on AC, CB are also incommen-
surable with twice the rectangle 4C, CA. [x. 13]

But £G is equal to the squares on 4C, C5,
and AK is equal to twice the rectangle AC, CB;
therefore £G is incommensurable with 7K,
so that £/ is also incommensurable in length with 7N,

VL 1, X. IT

And they are rational ; [ ]
therefore £/, HN are rational straight lines commensurable
in square only.

But, if two rational straight lines commensurable in square
only be added together, the whole is the irrational which is
called binomial. [x. 36]

Therefore £N is a binomial straight line divided at /7.

In the same way £M, MN will also be proved to be
rational straight lines commensurable in square only ;
and £N will be a binomial straight line divided at different
points, /7 and M.
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And EH is not the same with MN.

For the squares on AC, CAB are greater than the squares
on AD, DB,

But the squares on 4D, DB are greater than twice the
rectangle AD, DB ;

therefore also the squares on 4C, CB, that is, £G, are much
greater than twice the rectangle 4D, DB, that is, MK,

so that £/ is also greater than MNV.

Therefore £H is not the same with MV, QB D

As the irrationality of the second bimedial straight line [x. 38] is proved by
means of the irrationality of the binomial straight line [x. 36}, so the present
theorem is reduced to that of x. 42.

Suppose, if possible, that the second bimedial straight line can be divided
into its terms as such in two ways, i.e. that

x+y=x"+y,

where 2/, ' are nearer equality than x, y.

Apply ' +?% 2xy to a rational straight line o, i.e. let

'+ = ou,
22y = o
'I.‘hen, as in X. 38, the areas z'+ )% 2xy are medial, so that ow, ov are
J

therefore u, v are both rational and v o .......... cena(1)

Again, by hypothesis, x, y are medial strmght hnes commensurable in
square only ;

therefore xvy.
Hence v xy.
And '~ (2*+%), while xy ~ 2xy;
therefore (a* + %) v 229,
or ou v 07,
and hence R T S R s (2).

Therefore, by (1) and (2), , v are rational straight lines commensurable
in square only ;
therefore u + v is a dinomial straight line.

Similarly, if 2% +y* =0+’ and 247y =07,
'+ 7/ will be proved to be a binomial straight line.

And, since (x +y)*= («"+)}, and therefore (v + v) = (&' +7), it follows that
a binomial straight line is divided as such in two ways:
which is impossible. [x. 42]

Therefore x+y, the given second bimedial straight line, can only be so
divided in one way.

In order to prove that u +, #' + ¢/ represen. a different division of the

same straight line, Euclid assumes that x*+3*> 22y. This is of course an

easy inference from 11. 7; but the assumption of it here renders it probable
that the Lemma after X. 59 is interpolated.
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PROPOSITION 45.
A major straight line is divided at one and the same point
only.

Let AB be a major straight line divided at C, so that
AC, CB are incommensurable in & B

square and make the sum of the ——p
squares on AC, CB rational, but the
rectangle AC, CB medial ; [x. 39]

I say that A2 is not so divided at another point.

For, if possible, let it be divided at 2 also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on AD, DB rational, but the rectangle con-
tained by them medial.

Then, since that by which the squares on AC, CB differ
from the squares on 40D, DA is also that by which twice the
rectangle AD, DB differs from twice the rectangle AC, CB,

while the squares on 4C, CB exceed the squares on 4D,
DRZ by a rational area—for both are rational—
therefore twice the rectangle 4D, DB also exceeds twice the
rectangle 4C, CB by a rational area, though they are medial :
which is impossible. [x. 26]

Therefore a major straight line is not divided at different
points ;
therefore it is only divided at one and the same point.

Q. E. D.

If possible, let the major irrational straight line be divided into terms in
two ways, viz. as (x+y) and (x' + '), where &', ' are supposed to be nearer
equality than =x, y.

We have then, as in X. 42, 43,

(2 + ) — (& + %) = 22y — 23y.

But, by hypothesis, (x*+3*), (x?+»") are both rational, so that their

difference is rational.

Also, by hypothesis, 2xy, 2xy are both media/ areas ;

therefore the difference of two medial areas is a rational area :

which is impossible. [x. 26]
Therefore etc.
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ProprosiTiON 46.

The side of a rational plus a medial area s divided at one
point only.

Let 4B be the side of a rational plus a medial area
divided at C, so that AC, CB are

incommensurable in square and make A 5§ B8
the sum of the squares on 4C, CAB
medial, but twice the rectangle 4C, C2A rational ; [x. 40]

I say that A7 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on AD, DB medial, but twice the rectangle
AD, DB rational.

Since then that by which twice the rectangle 4C, CB
differs from twice the rectangle 4D, DB is also that by
which the squares on 4D, DA differ from the squares on
AC, CB,
while twice the rectangle 4C, CB exceeds twice the rectangle
AD, DB by a rationa%area,
therefore the squares on 4D, DB also exceed the squares
on AC, CB by a rational area, though they are medial :
which is impossible. [x. 26]

Therefore the side of a rational plus a medial area is not
divided at different points ;
therefore it is divided at one point only.

Here, as before, if we use the same notation,
(2*+ %) — (2" + %) = 227y — 22y,
and the areas on the left side are, by hypothesis, both medial, while the areas
on the right side are both rational.
Thus the result of x. 26 is contradicted, as before.
Therefore etc.

ProrosiTION 47.

The side of the sum of two medial aveas is divided at one
point only.

Let A8 be divided at C, so that AC, CB are incommen-
surable in square and make the sum of the squares on AC,
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CB medial, and the rectangle AC, CB medial and also in-
commensurable with the sum of the squares on them ;

I say that 425 is not divided at another point so as to fulfil
the given conditions.

A E M_H N
D
c

F K
B

For, if possible, let it be divided at D, so that again AC
is of course not the same as 2D, but AC is supposed greater;
let a rational straight line Z7 be set out,
and let there be applied to £ F the rectangle £G equal to the
squares on AC, C5,
and the rectangle K equal to twice the rectangle AC, CB;
therefore the whole £X is equal to the square on 48. |u. 4]

Again, let £L, equal to the squares on 4.0, DB, be applied
to EF;
therefore the remainder, twice the rectangle 4.0, D25, is equal
to the remainder /XK.

And since, by hypothesis, the sum of the squares on 4C,
CAB is medial,
therefore £G is also medial.

And it is applied to the rational straight line £F;
therefore /7£ is rational and incommensurable in length with
EF, [x. 22]

For the same reason
HN is also rational and incommensurable in length with £F.

And, since the sum of the squares on AC, CB is incom-
mensurable with twice the rectangle 4C, C5,
therefore £G is also incommensurable with GV,
so that £/ is also incommensurable with AV,  [vi. 1, x. 11]

And they are rational ;
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therefore £/, HN are rational straight lines commensurable
in square only ;
therefore £V is a binomial straight line divided at 4. [x. 36]

Similarly we can prove that it is also divided at /.
And £ is not the same with MV ;
therefore a binomial has been divided at different points :
which is absurd. [x. 42]
Therefore a side of the sum of two medial areas is not
divided at different points;
therefore it is divided at one point only.

Using the same notation as in the note on X. 44, we suppose that, if
possible,
x+y=a"+y,
. 2 s _ Y
x’+_y’__m} sl <F +?'_cm'}_
25y =0v 2x’y' = ov
Then, since & + 3%, 2y are medial areas, and o rational,
u, v are both rational and v & ...ecevverrnnnnnnnnnn ()
Also, by hypothesis, 2+ o 2ay,
whence WS dausesnvissaserviseensynbseniesebioal 2 )i
Therefore, by (1) and (2), , » are rational and ~.

Hence u + v is a éinomial straight line. [x. 36]
Similarly #' + ¢ is a binomial straight line.

But u+v=u'+1;

therefore a binomial straight line is divided into terms in two ways:

which is impossible. [x. 42]
Therefore etc.

and we put

DEFINITIONS II

1. Given a rational straight line and a binomial, divided
into its terms, such that the square on the greater term is
greater than the square on the lesser by the square on a
straight line commensurable in length with the greater, then,
if the greater term be commensurable in length with the
rational straight line set out, let the whole be called a first
binomial straight line;

2. but if the lesser term be commensurable in length
with the rational straight line set out, let the whole be called
a second binomial ;
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3. and if neither of the terms be commensurabie in length
with the rational straight line set out, let the whole be called
a third binomial.

4. Again, if the square on the greater term be greaer
than the square on the lesser by the square on a straight line
incommensurable in length with the greater, then, if the
greater term be commensurable in length with the rational
straight line set out, let the whole be called a fourth
binomial ;

5. if the lesser, a fifth binomial ;

6. and if neither, a sixth binomial.

ProrosiTioN 48.

To find the first binomial straight line.

Let two numbers AC, CB be set out such that the sum
of them AFB has to BC the ratio
which a square number has to a P
square number, but has not to CA4
the ratio which a square number 5 4 4

has to a square number; K - ik 8
[Lemma 1 after x. 28]
let any rational straight line D be set out, and let £F be
commensurable in length with D,
Therefore £F is also rational.
Let it be contrived that,
as the number B4 is to AC, so is the square on £F to the
square on /G, [x. 6, Por.]
But 48 has to AC the ratio which a number has to a
number; .
therefore the square on £F also has to the square on <G
the ratio which a number has to 4 number,
so that the square on £F is commensurable with the square
on FG. [x. 6]
And £F is rational ;
therefore #C is also rational.
And, since B4 has not to AC the ratio which a square
number has to a square number.

H
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neither, therefore, has the square on E£ to the square on FG

the ratio which a square number has to a square number ;

therefore £F is incommensurable in length with #G.  [x. 9]
Therefore £F, FG are rational straight lines commen-

surable in square only;

therefore £G is binomial. [x. 36]

I say that it is also a first binomial straight line.
For since, as the number B4 is to AC, so is the square
on EF to the square on FG,
while BA is greater than 4C,
therefore the square on EF is also greater than the square
on FG.
Let then the squares on G, A be equal to the square on
EF.
Now since, as B4 is to AC, so is the square on £F to the
square on /G,
therefore, convertendo,
as AB is to BC, so is the square on £F to the square on A.
[v. 19, Por.]
But 42 has to BC the ratio which a square number has
to a square number ;
therefore the square on £F also has to the square on A the
ratio which a square number has to a square number.
Therefore £F is commensurable in length with Z; [x. ¢]
therefore the square on £/ is greater than the square on FG
by the square on a straight line commensurable with £7.
And E£F, FG are rational, and £F is commensurable in
length with D.
Therefore £F is a first binomial straight line.
Q E. D.
Let 4p be a straight line commensurable in length with p, a given rational
straight line.
The two numbers taken may be written 2 (m® — #°), pn*, where (m*-n?) is
not a square.

Take x such that
pmtip(m =) =Hpt 1 a? s (),

Jm'

whence x=kp
m

N —a Mooy, e
Then £p+x, or kp+ 4p o risa Jirst binomial straight line ...... (2).
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To prove this we have, from (1),
2~ P,

and x is rational, but x v Ap;
that is, x is rational and ~ Zp,
so that £p + x is a binomial straight line.

Also, #°p? being greater than &%, suppose #p® — x* ="

Then, from (1) o prt =gt
whence y is rational and ~ Zp.

Therefore %p + x is a first binomial straight line [x. Deff. 1. 1].

This binomial straight line may be written thus,

kp+ kp TN

When we come to X. 85, we shall find that the corresponding straight line

with a negative sign is the firs¢ apotome,
ko —kp N TN,

Consider now the equation of which these two expressions are the roots.

The equation is
a'—2kp. x+ N¥p'=o.

In other words, the first binomial and the first apotome correspond to the

roots of the equation
x*—zax + Ma*= o,

where a = £p.

ProrosiTioN 49.
7o find the second binomzial straight line.

Let two numbers AC, CB be set out such that the sum
of them A28 has to BC the ratio which
a square number has to a square number,

but has not to AC the ratio which a .
square number has to a square number ; |D H
let a rational straight line 2 be set out, F

and let £F be commensurable in length

with D ; B

therefore £F is rational. G

Let it be contrived then that,
as the number CA is to 4B, so also is the square on £F to

the square on FG; [x. 6, Por.]
therefore the square on £F is commensurable with the square
on FG. [x 6]

Therefore /G is also rational.
Now, since the number C4 has not to 425 the ratio which
a square number has to a square number, neither has the
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square on £ F to the square on #G the ratio which a square
number has to a square number.
Therefore £F is incommensurable in length with 7G ;
[x. 9]
therefore £/, FG are rational straight lines commensurable
in square only ;

therefore £G is binomial. [x. 36]

It is next to be proved that it is also a second binomial
straight line.

For since, inversely, as the number BA4 is to AC, so is
the square on G F to the square on FE,
while BA is greater than 4AC,
therefore the square on GF is greater than the square on FE.
Let the squares on £F, H be equal to the square on GF;
therefore, convertendo, as AB is to BC, so is the square on
FG to the square on A. [v. 19, Por.]
But A5 has to BC the ratio which a square number has
to a square number ;
therefore the square on #G also has to the square on /7 the
ratio which a square number has to a square number.
Therefore G is commensurable in length with &; [x. 9]
so that the square on #G is greater than the square on FE
by the square on a straight line commensurable with #G.

And FG, FE are rational straight lines commensurable
in square only, and £F, the lesser term, is commensurable in
length with the rational straight line D set out.

Therefore £G is a second binomial straight line.

Q. E. D.

Taking a rational straight line £p commensurable in length with p, and
selecting numbers of the same form as before, viz. p (m? — #%), p»’, we put

P(m—n?) i pm* =R 1 & oot (T),
m
so that x:,&p ﬁ
=ka—lI_—»,say P 1 1

Just as before, « is rational and ~ Zp,
whence %p + x is a dinomial straight line.
By (1), > B,



106 BOOK X [x- 49, 50

Let o - Bt =y,
whence, from (1), ol prt =2t 1 )P,
and y is therefore rational and ~ x.
The greater term of the binomial straight line is x and the lesser 4p, and
A
V1 p—A’ e
satisfies the definition of the second binomial straight line.
The corresponding second @atm;c [x. 86] is
p
Jiw
The equation of which the two expressions are the roots is
at— adp x4 L.
Ji-x -\
or &% — zax + AMa? =0,

&p
where = .
= NI Y

Fp'=o,

ProrosITION 50.
To find the third binomial straight line.

Let two numbers 4C, CB be set out such that the sum
of them A28 has to BC the ratio which a square number has
to a square number, but has not to 4C the ratio which a square
number has to a square number.

K A C B

E—
G

F + H

Let any other number 2, not square, be set out also, and
let it not have to either of the numbers 4. AC the ratio
which a square number has to a square number.

Let any rational straight line £ be set out,

and let it be contrived that, as D is to A5, so is the square

on £ to the square on £G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG. [x. 6]

And £ is rational ;
therefore ~G is also rational.
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And, since D has not to A8 the ratio which a square
number has to a square number,
neither has the square on £ to the square on FG the ratio
which a square number has to a square number ;
therefore £ is incommensurable in length with FG. [x. 9]

Next let it be contrived that, as the number B4 is to AC,

so is the square on FG to the square on GH; [x. 6, Por.]
therefore the square on FG is commensurable with the square
on GH. [x. 6]

But G is rational ;
therefore G/ is also rational.
And, since A4 has not to AC the ratio which a square
number has to a square number,
neither has the square on G to the square on /ZG the ratio
which a square number has to a square number ;
therefore /G is incommensurable in length with GA.  [x. 9]
Therefore FG, GH are rational straight lines commen-
surable in square only ;
therefore ~/ is binomial. [x 36]

I say next that it is also a third binomial straight line.
For since, as D is to AB, so is the square on £ to the
square on /G,
and, as BA4 is to AC, so is the square on FG to the square
on GH,
therefore, ex aequali, as D is to AC, so is the square on £ to
the square on G/, [v. 22)
But D has not to AC the ratio which a square number
has to a square number ;
therefore neither has the square on £ to the square on GH
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]
And since, as B4 is to AC, so is the square on FG to
the square on GH,
therefore the square on FG is greater than the square on GA.

Lét then the squares on G/, K be equal to the square
on FG;
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therefore, convertendo, as AB is to BC, so is the square on FG
to the square on X, [v. 19, Por.]
But 428 has to BC the ratio which a square number has
to a square number ;
therefore the square on FG also has to the square on X the
ratio which a square number has to a square number ;
therefore /G is commensurable in length with &. [x. 9]
Therefore the square on FG is greater than the square on
GH by the square on a straight line commensurable with #G.
And FG, GH are rational straight lines commensurable
in square only, and neither of them is commensurable in length
with £.
Therefore 7/ is a third binomial straight line.
Q. E. D.

Let p be a rational straight line.

Take the numbers g (m* — »7), g»°,
and let p be a third number which is not a square and which has not to gm?
or ¢ (m*— n") the ratio of square to square.

Take « such that o T a8 O o R A oy (1).
Thus xisrational and v p ..occiiiniiiiiiii(2),
Next suppose that  gm? : g (m* =) =2 1 37 .ooiivniiieinnnn o (3)
It follows that y is rational and A~ 2 .......coooeiiiiiiiiiinn e (4)

Thus (x +y) is a dinomial straight line.
Again, from (1) and (3), ex aeguali,

P g (M=) p? s P i bissisienenn (B
whence FUP cervnnrisresrsisenssasnemsiransnss {0
Suppose that x—yt=3

Then, from (3), convertendo,
gm®: gn’* =2 : 5%,
whence 5N X.
Thus N =y nz,
and z, y are both v p;
therefore x + y is a #third binomial straight line.

Now, from (1), x=p. %‘—;g,
i ) P

Thus the third binomial is
\/‘g.p(m+ Nt =),

which we may write in the form

mJhk.p+m Jh.pNT—A.
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The corresponding tkird apotome [x. 87] is
mJk.p—m Jk, pNT =N
The two expressions are accordingly the roots of the equation
x—2m Jk . px + Nm*hp'= o,
or ' —2ax + Na'=o,
where a=m,k.p
See also note on x. 53 (ad fin.).

ProrosiTiON §51.

70 find the fourth binomial straight line.

Let two numbers AC, CB be set out such that 48
neither has to BC, nor yet to AC, the ratio
which a square number has to a square number.

Let a rational straight line D be set out, A E
and let £F be commensurable in length with D; o
therefore £F is also rational.

Let it be contrived that, as the number B4 ©
is to AC, so is the square on EF to the square T
on FG; [x. 6, Por.] H
therefore the square on £/ is commensurable
with the square on FG; [x. 6] @

therefore /G is also rational.
Now, since 24 has not to AC the ratio which a square
number has to a square number,
neither has the square on £7 to the square on 7G the ratio
which a square number has to a square number ;
therefore £F is incommensurable in length with #G.  [x. 9]
Therefore £F, FG are rational straight lines commen-
surable in square only ;
so that ZG is binomial.

I say next that it is also a fourth binomial straight line,
For since, as BA4 is to AC, so is the square on £F to the
square on /G,
therefore the square on £ is greater than the square on 7G,

Let then the squares on #G, // be equal to the square
on EF;
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therefore, convertendo, as the number 48 is to BC, so is the
square on £F to the square on /. [v. 19, Por.]
But 428 has not to BC the ratio which a square number
has to a square number;
therefore neither has the square on £F to the square on A
the ratio which a square number has to a square number.
Therefore £F is incommensurable in length with /7 ; [x. 9]
therefore the square on £F is greater than the square on GF
by the square on a straight line incommensurable with £7.
And EF, FG are rational straight lines commensurable in
square only, and £F is commensurable in length with 2.
Therefore £G is a fourth binomial straight line.

Q. E. D,

Take numbers m, » such that (= + ) has not to either m or # the ratio of
square to square.

Take x such that (m+n):m=~p*: 2%,
whence x=kp ,‘/ 2
m+n
Els,
NITT . %
Then 4p + x, or &p + prﬁ’ is a _fourth binomial straight line.

For /&g —2* is incommensurable in length with %p, and 4p is com-
mensurable in length with p.
The corresponding fourth apotome [x. 88) is

kp
NEEDY
The equation of which the two expressions are the roots is

kp—

A
- "
2 zép.x+I+APp o,

A 2
or x'-znx+l+‘\u =p,

where ' a=4p.

ProrosiTiON 52.

7o find the fifth binomial straight line.

Let two numbers AC, CB be set out such that A58 has
not to either of them the ratio which a square number has
to a square number ;
let any rational straight line D be set out,
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and let £F be commensurable with D ;
therefore £F is rational.

Let it be contrived that, as CA is to 4B, so is the
square on £/ to the square on FG. [x. 6, Por.]

But CA has not to A8 the ratio which a 4 | E
square number has to a square number ; [9
therefore neither has the square on £/ to the
square on #G the ratio which a square number F

has to a square number.
Therefore EF, FG are rational straight g

lines commensurable in square only ; [x. 9]

therefore £G is binomial. [x. 36]

H a

I say next that it is also a fifth binomial straight line.
For since, as CA is to AB, so is the square on £F tc
the square on G,

inversely, as BA is to AC, so is the square on /G to the
square on FE;

therefore the square on GF is greater than the square on F£,

Let then the squares on £, A be equal to the square
on GF;

therefore, convextendo, as the number 4B is to BC, so is the

square on G/ to the square on /. [v. 19, Por.]
But 4 2 has not to BC the ratio which a square number

has to a square number ;

therefore neither has the square on #G to the square on /A

the ratio which a square number has to a square number,
Therefore G is incommensurable in length with A ; [x. 9]

so that the square on /G is greater than the square on FE
by the square on a straight line incommensurable with 7G.

And GF, FE are rational straight lines commensurable
in square only, and the lesser term £/ is commensurable in
length with the rational straight line D set out.

Therefore £G is a fifth binomial straight line.

Q. E. D.
If m, n be numbers of the kind taken in the last proposition, take x such

that
m: (m 4 n)=Ap": 22
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In this case x=,ép,/“;”

=kp N1 +), say,

and x> Ap.
Then 4p »/1 + A + &p is a fifth binomial straight line.
For ~x*— 2% or /A kp, is incommensurable in length with &p &/T + A,
orx;
and #%p, but not £p »/1 + A, is commensurable in length with p.
The corresponding fif#k apofome [x. 89] is
ko N1+ A=l

The equation of which the fifth binomial and the fifth apotome are the
roots is
D—zkpN1+A.x+ M =0,

A
or 2% — 2ax + +A“._°'
where a=kpT+A

ProrosITION 53.
To find the sixth binomial straight line.

Let two numbers AC, CB be set out such that 45 has
not to either of them the ratio which a
square number has to a square number ; A F
and let there also be another number D o| |e

which is not square and which has not to
either of the numbers BA, AC the ratio

which a square number has to a square la
number, B K

Let any rational straight line £ be set
out, H
and let it be contrived that, as [ is to A5,
so is the square on £ to the square on /G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG. [x. 6]

And £ is rational ;
therefore 7~ is also rational.

Now, since D has not to A8 the ratio which a square
number has to a square number,
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neither has the square on £ to the square on G the ratio
which a square number has to a square number ;
therefore £ is incommensurable in length with G, [x. 9]
Again, let it be contrived that, as BA4 is to AC, so is the
square on /G to the square on G/ [x. 6, Por.]
Therefore the square on FG is commensurable with the
square on HG. [x. 6]
Therefore the square on /G is rational ;
therefore /G is rational.
And, since ZA4 has not to AC the ratio which a square
number has to a square number,
neither has the square on G to the square on G/ the ratio
which a square number has to a square number ;
therefore G is incommensurable in length with GA.  [x. 9]
Therefore FG, GH are rational straight lines commen-
surable in square only;
therefore #/ is binomial. [x. 36]

It is next to be proved that it is also a sixth binomial

straight line.
or since, as D is to AB, so is the square on £ to the

square on G,
and also, as 34 is to 4AC, so is the square on ~G to the
square on GH,
therefore, ex aequali, as D is to AC, so is the square on £
to the square on GA. [v. 22]

But D has not to AC the ratio which a square number
has to a square number ;
therefore neither has the square on £ to the square on G/
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]

But it was also proved incommensurable with 7G ;
therefore each of the straight lines #G, G/ is incommen-
surable in length with £,

And, since, as BA is to AC, so is the square on FG to
the square on G/,
therefore the square on /G is greater than the square on GA.

Let then the squares on GA, K be equal to the square
on FG;
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therefore, convertendo, as AB is to BC, so is the square on FG

to the square on X. [v. 19, Por.]
But 4B has not to BC the ratio which a square number

has to a square number ;

so that neither has the square on #G to the square on X the

ratio which a square number has to a square number.

Therefore /G is incommensurable in length with £7; [x. 9]

therefore the square on G is greater than the square on GH
by the square on a straight line incommensurable with 7G.

And FG, GH are rational straight lines commensurable in
square only, and neither of them is commensurable in length
with the rational straight line £ set out.

Therefore 7/ is a sixth binomial straight line.

Q. E. D.

Take numbers m, n such that (m + #) has not to either of the numbers
m, n the ratio of square to square ; take also a third number g, which is not
square, and which has not to either of the numbers (m + n), m the ratio of
square to square.

Let pi(man)=p: 2% i (1)
and (mia) smaa® P (2).
Then shall (x + y) be a sixth binomial straight line,
For, by (1), « is rational and v p.
By (2), since x is rational,
¥ is rational and v x.

Hence x, y are rational and commensurable in square only, so that (x +)
is a binomial straight line.

Again, ex aequali, from (1) and (z),
Frm= P scin s easenisssivsess BN
whence y v p.

Thus x, y are both incommensurable in length with p.
Lastly, from (2), convertendo,

(m+n):n=x":(a*-)»%,
so that J/a'—y* v .

Therefore (x + y) is a sixth binomial straight line.
Now, from (1) and (3),

m+n

2

m
=p.x/ 2 =pJA, say,
yuipsin) 3 =edlds %y,

and the six?k binomial straight line may be written

NE.p+ JN.p.
The corresponding sixth apotome is [X. go]

JE.p—JA.p;

x=p.

= p /4, say,
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and the equation of which the two expressions are the roots is
a—2 Jk.px+(k—N)p'=0,

k

or 2% - zax + a’=o,

where a = Jk.p.

Tannery remarks (“De la solution géométrique des problémes du second
degré avant Euclide” in Mémoires de la Société des sciences physiques et naturelles
de Bordeauzx, 2° Série, T. 1v.) that Euclid admits as binomials and apotomes
the #hird and sixrk binomials and apotomes which are the square roots of first
binomials and apotomes respectively. Hence the third and sixth binomials
and apotomes are the positive roots of bigwadratic equations of the same form
as the quadratics which give as roots the first and fourth binomials and
apotomes. But this remark seems to be of no value because (as was pointed
out a hundred years ago by Cossali, 11. p. 260) the squares of a¥/ the six
binomials and apotomes (including the first and fourth? give jfirst binomials
and apotomes respectively. Hence we may equally well regard them all as
roots of biquadratics reducible to quadratics, or generally as roots of equations
of the form

M t2a.2" tg=0;
and nothing is gained by raising the degree of the equations in this way.
It is, of course, easy to see that the most general form of binomial and

apotome, viz.
p-NJEEp. JA
give first binomials and apotomes when squared.

For the square is p{(#+A)p+2 ~AX.p}; and the expression within the
bracket is a first binomial or apotome, because

(1) k+r>2JEN
(2) ¥ (R+X)"—4kh=k— A which is ~ (£ +X),
(3) (R+X)p~p

LEMMA.

Let there be two squares A3, BC, and let them be placed
so that D2 is in a straight line with BE';

therefore 7B is also in a straight line with & ¢
BG.
Let the parallelogram 4 C be completed; © & e

I say that AC is a square, that DG is a
mean proportional between 425, BC, and
further that DC is a mean proportional A F H
between AC, CAB.

For, since DA is equal to BF, and BE to BG,
therefore the whole D£ is equal to the whole 7G.

But DE is equal to each of the straight lines 44, XC,
and FG is equal to each of the straight lines AKX, HC; [1 34]
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therefore each of the straight lines 4/, KC is also equal to
each of the straight lines AKX, AC.

Therefore the parallelogram A4C is equilateral.
And it is also rectangular ;

therefore AC is a square,
And since, as 7B is to BG, so is DB to BE,
while, as 7B is to BG, so is AR to DG,
and, as DB is to BE, so is DG to BC, [v1. 1]
therefore also, as A8 is to DG, so is DG to BC, [v. 11]

Therefore DG is a mean proportional between 48, BC,

I say next that DC is also a mean proportional between
AC, CB.

For since, as AD is to DK, so is KG to GC—
for they are equal respectively—
and, componendo, as AK is to KD, so is KC to CG, [v. 18]
while, as AK is to KD, sois AC to CD,
and, as KCis to CG, so is DC to CB, [v1. 1]
therefore also, as AC is to DC, so is DC to BC. [v. 11]

Therefore DC is a mean proportional between AC, CAB.

Being what it was proposed to prove.
It is here proved that
aixy=ay:y,

and (®+2): (x+)y=(x+3)y: 5"

The first of the two results is proved in the course of x. 25 (lines 6—8 on

p. 57 above). This fact may, I think, suggest doubt as to the genuineness
of this Lemma.

ProrosITION 54.

If an area be contained by a rational straight line and the
Jerst binomial, the “side” of the area is the irvational straight
line which is called binomial.

For let the area 4C be contained by the rational straight
line A8 and the first binomial 4D ;

I say that the “side” of the area AC is the irrational straight
line which is called binomial.

For, since AD is a first binomial straight line, let it be
divided into its terms at £,

and let 4Z be the greater term.
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[t is then manifest that 4 £, ED are rational straight lines
commensurable in square only,

the square on A £ is greater than the square on £D by the
square on a straight line commensurable with 4 E,
and A £ is commensurable in length with the rational straight

line 4 B set out. [x. Deff. 1. 1)
Let £D be bisected at the point 7.
A GE F D R_Q
Y] o
B HK L C
s P

Then, since the square on AE is greater than the square
on £D by the square on a straight line commensurable with
AE,
therefore, if there be applied to the greater 4 £ a parallelogram
equal to the fourth part of the square on the less, that 1s, to
the square on £F, and deficient by a square figure, it divides
it into commensurable parts. [x. 17]

Let then the rectangle 4G, GE equal to the square on
EF be applied to AE;
therefore 4G is commensurable in length with £G.

Let GH, EK, FL be drawn from G, E, F parallel to
either of the straight lines 48, CD;

let the square SV be constructed equal to the parallelogram
AH, and the square NQ equal to GX, [ 14]
j\];% let them be placed so that MV is in a straight line with
therefore RV is also in a straight line with V2,

And let the parallelogram SQ be completed ;
therefore SQ is a square. [Lemma)

Now, since the rectangle 4G, GE is equal to the square
on EF,

therefore, as AG is to £EF, so is FE to EG; [vr 17)
therefore also, as AH is to £L, so is EL to KG; [vi. 1]
therefore £ is a mean proportional between 4/, GK.

But AH is equal to SV, and GK to NQ;
therefore £L is a mean proportional between SN, NQ.
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But MR is also a mean proportional between the same
SN, NQ; [Lemma]
therefore £L is equal to MR,
so that it is also equal to PO.

But AH, GK are also equal to SNV, NQ;
therefore the whole 4AC is equal to the whole SQ, that is, to
the square on /0 ;
therefore MO is the “side” of AC.

I say next that MO is binomial.
For, since 4G is commensurable with GZ,

therefore A£ is also commensurable with each of the straight
lines AG, GE. [x. 15]
But 4 E is also, by hypothesis, commensurable with 427 ;
therefore AG, GE are also commensurable with A8. [x. 12]
And 4B is rational ;
therefore each of the straight lines 4G, GE is also rational ;
therefore each of the rectangles 4/, GKX is rational, [x. 19]
and A A is commensurable with GX.
But AH is equal to SV, and GK to NQ;

therefore SN, NQ, that is, the squares on MN, NO, are
rational and commensurable.

And, since AE is incommensurable in length with £D,
while AF is commensurable with 4G, and DE is commen-
surable with £F,
therefore AG is also incommensurable with £7, [x. 13]
so that A/ is also incommensurable with £Z. [vi 1, x. 11]

But AH is equal to SV, and £L to MR ;
therefore SNV is also incommensurable with //R.

But, as SV is to MR, sois PN to NR; [ve. 1]
therefore P/ is incommensurable with V. [x. 11]

But PN is equal to N, and NR to NO;
therefore MV is incommensurable with NV O.

And the square on M/ is commensurable with the square
on NO,

and each is rational ;

therefore M N, NO are rational straight lines commensurable
in square only.
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Therefore MO is binomial [x. 36] and the “side” of AC.
Q. E. D.

2. ‘“*side.” I use the word “side” in the sense explained in the note on X. Def. 4
(p- 13 above), i.e. as short for *side of a square equal to.” The Greek is # md xwplor

A first binomial straight line being, as we have seen in X. 48, of the form
ko +kpaf1 =N,
the problem solved in this proposition is the equivalent of finding the square
root of this expression multiplied by p, or of
p(kp+&p 1 =23,
and of proving that the said square root represents a dimomial straight line
as defined in x. 36.

The geometrical method corresponds sufficiently closely to the algebraical
one which we should use.
First solve the equations

u+1'}=:§p
S P L
Then, if u, v represent the straight lines so found, put
o =pn } e st B) 5
Y=

and the straight line (x + y) is the square root required.
The actual algebraical solution of (1) gives

u—v="rkp. A
so that u=44p(1 +X),
v=44p(1-A),

and therefore X=pa .f§(1+)¢),

y=en/ 2w,

and x+y=p,/§(:+l)+p,‘/§(x-,\).

This is clearly a dinomsal straight line as defined in X. 36.
Since Euclid has to express his results by straight lines in his figure, and
has no symbols to make the result obvious by inspection, he is obliged to
(1) that (% +) is the square root of p(%p+4p ¥/1—X%), and (2) that
x +y) is a binomial straight line, in the following manner.
First, he proves, by means of the preceding Lemma, that

xy:-p’v’l—d\' ............................. (3),
therefore (x+y) =2+ + 22y

=p(u+7)+2xy
= &' + kp* 1= N3, by (1) and (3),
so that x+y=vplhp+kp N1 —1AY).
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Secondly, it results from (1), [by x. 17], that
¥~y
so that », v are both ~ (z + ), and therefore ~ p ...........cocvvuueeieinns (4);
thus », v are rational,
whence pu, pv are both rational, and
pu ~ pu.

Therefore 2% »* are rational and commensurable ........................(5)
Next, kpw kpNT — X",
and #p ~ , while zp N1 X' ~ }2p V1-N*;
therefore uv lhp 1= N,
whence pu v Lhpt N1 =N,
or 2o oy,
so that x vy
By this and (5), x, » are rational and ~, so that (x+y) is a binomial
straight line. [x. 36]

X. g1 will prove in like manner that a like theorem holds for apofomes,

viz. that
p N/‘_:(l +N)=p \/g(:—x)zJ@—épJ?:l-}.

Since the first binomial straight line and the first apofome are the roots of
the equation

x'—z2kp.x+ ANip =0,
this proposition and x. g1 give us the solution of the biquadratic equation
24— 2kp? . 27+ Nt = 0.

ProrposiTiON §55.

If an area be contained by a vational straight line and the
second binomial, the ‘side” of the area is the irrational straight
line vhick is called a first bimedial,

For let the area ABCD be contained by the rational
s straight line 42 and the second binomial 4.0 ;

I say that the “‘side” of the area 4C is a first bimedial straight
line.

For, since 4D is a second binomial straight line, let it be
divided into its terms at £, so that A £ is the greater term ;

10 therefore 4 £, ED are rational straight lines commensurable
in square only,

the square on A £ is greater than the square on £0 by the
square on a straight line commensurable with 4 £,

and the lesser term £ is commensurable in length with 43.

[x. Deff. 1. 2]
15 Let £D be bisected at 7,
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and let there be applied to 4 £ the rectangle 4G, GE equal
to the square on £/ and deficient by a square figure ;
therefore 4G is commensurable in length with GE.  [x. 17]
Through G, £, Flet GH, EK, FL be drawn parallel to
20 4B, CD,
let the square SNV be constructed equal to the parallelogram
AH, and the square NQ equal to GX,
33((1) let them be placed so that M is in a straight line with
25 therefore RV is also in a straight line with V2.
R_Q

N

B H K L [o}

Let the square SQ be completed.

It is then manifest from what was proved before that MR
is a mean proportional between SV, NVQ and is equal to £L,
and that MO is the “side” of the area AC.

30 Itisnowto be proved that MO is a first bimedial straight line.
Since AE is incommensurable in length with £D,
while £ is commensurable with 425,
therefore 4 E is incommensurable with 425, [x. 13]
And, since 4G is commensurable with £G,
35 AE is also commensurable with each of the straight lines
AG, GE. [x. 15]
But 4 E is incommensurable in length with 42 ;
therefore AG, GE are also incommensurable with 45, [x. 13]

Therefore BA, AG and BA, GE are pairs of rational
4o straight lines commensurable in square only ;

so that each of the rectangles 4/, GK is medial. [x. 2x]

Hence each of the squares SN, NQ is medial.
Therefore MN, NO are also medial.
And, since 4G is commensurable in length with GE,

45 A H is also commensurable with GX, [vr. 1, x. 11]
that is, SNV is commensurable with VO,
that is, the square on MV with the square on NVO.



122 BOOK X [x. 55

And, since 4AZ is incommensurable in length with £D,
while A is commensurable with 4G,
soand £D is commensurable with £7,
therefore AG is incommensurable with ZF; [x. 13]
so that 4 A is also incommensurable with £LZ,
that is, SA is incommensurable with /R,
that is, PV with VR, [ve. 1, x. 11]
55 that is, MV is incommensurable in length with NVO.

But MN, NO were proved to be both medial and com-
mensurable in square ;

therefore MN, NO are medial straight linres commensurable
in square only.

6o | say next that they also contain a rational rectangle.
For, since DE is, by hypothesis, commensurable with each
of the straight lines 4.8, EF,

therefore £F is also commensurable with £X. x. 12]
And each of them is rational ;
65 therefore £, that is, MR is rational, X 19]

and MR is the rectangle MN, NO.

But, if two medial straight lines commensurable in square
only and containing a rational rectangle be added together, the
whole is irrational and is called a first bimedial straight line.

[x. 37]
70 Therefore MO is a first bimedial straight line.

Q. E. D.

39. Therefore BA, AG and BA, GE are pairs of rational straight lines com-
mensurable in square only. The text has * Therefore B4, AG, GZ are rational straight
lines ¢ ble in sq only,” which I have altered 1 it would naturally convey
the impression that any fwe of the three straight lines are ble in sq only,
whereas AG, GE are commensurable in length (l. 18), and it is only the other two pairs
which are commensurable in square only.

A second binomial straight line being [X. 49] of the form

the present proposition is equivalent to finding the square oot of the expression

P (Jrkf a k‘p)'
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As in the last proposition, Euclid finds %,  from the equations

u+to= X
41—.\‘}(1),
uy = } A%*
then finds x, y from the equations
x'=pu
)"-pv} (2)

and then proves (a) that

x+y= ,\/ »+&p)

and (B) that (x + ) is a first bimedial slrmght line [x. 37)-

The steps in the proof are as follows.
For (a) reference to the corresponding part of the previous proposition
suffices.

(B) By (1) and x. 17,
#nv,;

therefore u, z are both rational and ~ (#+), and therefore v p [by (1)]...(3)-
Hence pu, pv, or &% y* are medial areas,

s0 that x, y are also medial ..........co. coviriiiiiii e (4)-

But, since # ~ 9,
" BEANE avvvsvvsvariiseisvinssnasss versd (s).

Again (x +9), or JYf-_A" v kp,

so0 that u v ghp,

whence pu v $Ap,

or 2o xy,

and R, S « Sl Bl (6).

Thus [(4), (5), (6)] %, ¥ are medial and ~.
y, 2y = &p’, which is rational.

Therefore (x +y) is a first bimedial straight line.

The actual straight lines obtained from (1) are

L] S |
so that x+y= p\/é(:ii +p~/f('+x).

The correspondlng Jirst apotome of a medial straight line found in X. 92
bcmi the same thing with a msnus sign between the terms, the two expressions
are the roots of the biquadratic

2kp* A2
at— - _”.x' B _”k’p‘=o.

being the equation in 2* corresponding to that in x in X. 49.
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ProrosiTION 56.

If an area be contained by a rational straight line and the
thivd binomial, the “side” of the area is the ivrational straight
line called a second bimedial.

For let the area 4BCD be contained by the rational
straight line 48 and the third binomial 4.0 divided into its
terms at £, of which terms 4 £ is the greater;

I say that the “side” of the area 4C is the irrational straight
line called a second bimedial.

For let the same construction be made as before.

R_Q

N o

HK L C

Now, since 4D is a third binomial straight line,
therefore A £, ED are rational straight lines commensurable
in square only,
the square on 4 £ is greater than the square on £D by the
square on a straight line commensurable with 4 Z,
and neither of the terms A £, £D is commensurable in length
with 45, [x. Def 1. 3]
Then, in manner similar to the foregoing, we shall prove
that MO is the *‘side” of the area 4AC,
and MN, NO are medial straight lines commensurable in
square only ;
so that M0 is bimedial.

It is next to be proved that it is also a second bimedial
straight line.
Since DE is incommensurable in length with 425, that is,
with £K,
and DZ£ is commensurable with £,
therefore £F is incommensurable in length with £X.  [x. 13]
And they are rational ;
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therefore /£, EK are rational straight lines commensurable
in square only.
Therefore EL, that is, MR, is medial. [x. 21]
And it is contained by MN, NO;
therefore the rectangle MN, NO is medial.
Therefore MO is a second bimedial straight line.  [x. 38]
Q. E. D.
This proposition in like manner is the equivalent of finding the square
100t of the product of p and the tkird binomial [x. 50], i.e. of the expression
p(JVE.p+ Jh.pJT=N)

u+v= Jk.
80={ép‘{l -N) } .......................... (1)

As before, put

Next, », v being found, let
2 = pu,
y=pv;
then (x +y) is the square root required and is a second bimedial straight line.
[x. 38
For, as in the last proposition, it is proved that (x + y) is the square mot!
and x, y are medial and ~—.
Again, xy =} J£.p* J1 = A, which is medial.
Hence (x +y) is a second bimedial straight line.
By solving equations (1), we find
=3 (Jh.p+AJh.p),
0=} (JE.p=\Jk.p),

and .'.v+y=p\/—~«:‘;é (1+k)+p,/"-£—é(l—k).

The corresponding second apotome of a medial found in X. g3 is the same
thing with a minus sign between the terms, and the two are the roots (cf. note
on X. 50) of the biquadratic equation

xt—2 Jk. p"2® + Nhpt=o.

ProrosiTiON 57.

If an area be contained by a rational strvaight line and the
Jourth binomial, the “side” of the area is the irrational straight
line called major.

For let the area AC be contained by the rational straight
line A8 and the fourth binomial 40 divided into its terms
at £, of which terms let AZ be the greater ;

I say that the “side” of the area A4C is the irrational straight
line called major.
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For, since 4D is a fourth binomial straight line,
therefore 4 £, ED are rational straight lines commensurable
in square only,
the square on A is greater than the square on £0 by the
square on a straight line incommensurable with 4 Z,
and AE is commensurable in length with 42.  [x. Deff. 1. 4]

Let DE be bisected at 7,
and let there be applied to A £ a parallelogram, the rectangle
AG, GE, equal tglt)he square on E‘a}"- .
therefore AG is incommensurable in length with G£. [x. 18]

Let GH, EK, FL be drawn parallel to A5,
and let the rest of the construction be as before ;
it is then manifest that MO is the “side” of the area AC.

R_Q

A E_F
M ]

H K L [+

8 P

It is next to be proved that MO is the irrational straight
line called major.
Since AG is incommensurable with £G,

AH is also incommensurable with GX, that is, SN with NQ;

[vr. 1, x. 11]
therefore MV, NO are incommensurable in square,
And, since AE is commensurable with 45,
AK is rational ; [x. 19]
and it is equal to the squares on #MN, NO;
therefore the sum of the squares on M, NO is also rational.
And, since DE is incommensurable in length with 4.5,
that is, with £X,
while DE is commensurable with £F,
therefore £ is incommensurable in length with £X. [x. 13]
Therefore £K, EF are rational straight lines commen-
surable in square only ;
therefore L E, that is, MR, is medial. [x. 21]
And it is contained by MV, NO;
therefore the rectangle MV, NO is medial.
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And the [sum] of the squares on M, NO is rational,
and MN, NO are incommensurable in square.

But, if two straight lines incommensurable in square and
making the sum OF the squares on them rational, but the
rectangle contained by them medial, be added together, the

whole is irrational and is called major. [x. 39]
Therefore MO is the irrational straight line called major
and is the ‘‘side” of the area AC. Q. E. D.

The problem here is to find the square root of the expression [cf. x. 51]

Ap
go —)«)
4 ( A s
The procedure is the same.
Find », v from the equations

u+v=~p
R i T T RRRRIR et § § 3
L 1+A}
and, if 2=
y,z‘:;} .................................... (2),
(x +) is the required square root.

To prove that (x +y) is the major irrational straight line Euclid argues
thus.

By x. 18, uwv,

therefore plt w pv,

o """")"9

so that B ne P voroanasnennabraends Bokeqsrsssaistalbl
Now, since (u + 7) ~ p,

(u +)p, or (2? + "), is a rational area.................. (4)-

Lastly, ""“"J?%' which is a medial area ...............ccceceon():
Thus [(3), (4), (5)] (x +) is a major irrational straight line. [x. 39]
Actual solution gives

= s (1 + @)
”=**’(‘_‘\/?%1)'___
" et I Y i)

The corresponding square root found in X. 94 is the minor irrational
straight line, the terms being separated by a minus sign, and the two straight
lines are the roots (cf. note on X. 51) of the biquadratic equation

A
— 2kt 2t 4 =
xt - 2kp, 2° o Ap'=o.
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ProrosiTioN 358.

If an area be contained by a rational straight line and the
Jifth binomial, the “side” of the area is the irrational straight
line called the side of a rational plus a medial area.

For let the area AC be contained by the rational straight

line AR and the fifth binomial 40 divided into its terms at
E, so that AE is the greater term ;

I say that the “side” of the area AC is the irrational straight
line called the side of a rational plus a medial area.

For let the same construction be made as before shown;
it is then manifest that /70 is the “side” of the area 4AC.

A GE F DO R_Q

It is then to be proved that MO is the side of a rational

plus a medial area. :
For, since AG is incommensurable with G, [x. 18]

therefore A H is also commensurable with £,  [vi. 1, x. 11]
that is, the square on M/ with the square on NO;
therefore M N, NO are incommensurable in square.

And, since 4D is a fifth binomial straight line, and £D

the lesser segment,

therefore £2D is commensurable in length with 425.
[x. Deff. 11. 5]

But A4 £ is incommensurable with £D ;
therefore 4B is also incommensurable in length with 4.

[x. 13]
Therefore AK, that is, the sum of the squares on MV,
NO, is medial. [x. 21]

And, since DE is commensurable in length with 4.2, that
is, with £X,
while DE is commensurable with £F,
therefore £F is also commensurable with £X4. [x. 12]
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And EK is rational ;
therefore £LZ, that is, MR, that is, the rectangle MV, NO, is
also rational. [x. 19]

Therefore MN, NO are straight lines incommensurable
in square which make the sum of the squares on them medial,
but the rectangle contained by them rational.

Therefore A0 is the side of a rational plus a medial area
[x. 40] and is the ‘‘side” of the area AC.

Q E. D

We have here to find the square root of the expression [cf. x. 52]

plkpJ1+ A+ p).
As usual, we put

wrombp i EX
wv = } At ]- AR PUE) SN | §
Then, %,  being found, we take
2= pu
y,Z:Q } v (2

and (x +y), so founy, 15 our required square root.
Euclid’s proof of the cass of (x + y) is as follows:

By x. 18, uw;

therefore pY v pv,

so that 2oy

and B Y i e g AR (3)-
Next u+vohp

v p

whence p(u+2), or (x* +)P), is a medial area .................. (4).
Lastly, xy =} kg", which is a ratfional area ........... ......(5).
Hence [(3), (4), (5)] (= + ) is the side of a rational plus a de:al area.

: ; [x. 40]
If we solve algebraically, we obtain

s P
ﬂ:% 4 JA)!
Ria " By \/g(\/m+\fh)+p\/§(m—\h\).

The corresponding “side” found in X. 95 is a straight line which produces
with a rational area a medial whole, being of the form (x-y), where x, y
have the same values as above.

The two square roots are (cf. note on X. 52) the roots of the biquadratic
equation

xt = 2kp JTH X, 2%+ Nt = 0.
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ProrosrTiON 59.

If an area be contained by a vational straight line and the
sixth binomial, the “side” of the area is the irrational straight
line called the side of the sum of two medial areas.

For let the area ABCD be contained by the rational

straight line 45 and the sixth binomial 42, divided into its
terms at £, so that A is the greater term ;

I say that the “side” of AC is the side of the sum of two
medial areas.

Let the same construction be made as before shown.

A GE F D R Q@
_ M N o
B H K L c

S 3

It is then manifest that MO is the “side” of AC, and
that MV is incommensurable in square with NV O.

Now, since £A4 is incommensurable in length with 4.5,
therefore £A4, AF are rational straight lines commensurable
in square only;
therefore AK, that is, the sum of the squares on N, NO,

is medial. [x. 21]
Again, since £2 is incommensurable in length with 425,
therefore /£ is also incommensurable with £X7; [x 13)

therefore /77, LXK are rational straight lines commensurable
in square only ;
therefore ZZL, that is, MR, that is, the rectangle MN, NO, is

medial. [x. 21]
And, since A £ is incommensurable with £/,
AN is also incommensurable with £Z. [vi. 1, x. 11]

But AKX is the sum of the squares on MN, NO,
and ZL is the rectangle MN, NO;
therefore the sum of the squares on MN, NO is incommen-
surable with the rectangle /N, NO.

And each of them is medial, and MN, NO are incom-

mensurable in square.
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Therefore MO is the side of the sum of two medial areas
[x. 41], and is the “side” of AC.
Q. E. D,

Euclid here finds the square root of the expression [cf, x. 53]
p(NJE.p+JA.p)
As usual, we solve the equations
ut+v=,[lk.
3 I’w"' } .............................. (0);

at=pu
s } L il o e L i,
and (x + y) is the square root required.

Euclid proves that (x +y) is the side of (the sum of ) two medial areas, as
follows.
_ As in the last two propositions, x, y are proved to be incommensurable
in square.

Now /4. p, p are,commensurable in square only ;

then, %, 7 being found, we put

therefore p(u+w), or (x*+ %), is a medial area ..................(3).
Next, xy = 3 /A p*, which is again a medial area ............... (4)
Lastly, J’é'p“%’J,"'P:

so that NZ I RV TN S

that is, ol o ) JEU L 3 e P RTINS AN A FY | E (5)

Hence [(3), (4), (5)] (x +) is the side of the sum 0)’ two medial areas.
Solving the equations algebraically, we have

u=L (ke JE=N),
v =2 (Y- JE=D),

and x+y=pVi(Jh+VE—N)+pNL(JE—JE-N).
The corresponding square root found in X. g6 is x — y, where x, y are the

same as here.
The two square roots are (cf. note on X. 53) the roots of the biquadratic

equation
at—2 Jh.pat+(R—A)p'=0.

[LEMMA.

If a straight line be cut into unequal parts, the squares
on the unequal parts are greater
than twice the rectangle con-
tained by the unequal parts.

Let A5 be a straight line, and let it be cut into unequal
parts at C, and let Ag be the greater ;

I say that the squares on AC, CB are greater than twice the
rectangle AC, CAB.

29 g

e |
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For let A8 be bisected at D.

Since then a straight line has been cut into equal parts
at D, and into unequal parts at C,
therefore the rectangle 4C, CB together with the square on
CD is equal to the square on 4D, [m. 5]
so that the rectangle AC, CAB is less than the square on AD;
therefore twice the rectangle 4C, CB is less than double of
the square on 4AD.

But the squares on AC, CB are double of the squares on
AD, DC; [11. 9]
therefore the squares on 4C, CB are greater than twice the
rectangle AC, CAB.

Q. E. D.]
We have already remarked (note on X. 44) that the Lemma here proving

that
2+ > 2xy
can hardly be genuine, since the result is used in X. 44.

ProrosiTION 60.

The square on the binomial straight line applied to a
rational straight line produces as breadth the first binomial.

Let A7 be a binomial straight line divided into its terms
at C, so that 4C is the greater term;
let a rational straight line DZ be
set out,
and let DEFG equal to the square
on AR be applied to DE producing
DG as its breadth ; . ——
I say that DG is a first binomial B
straight line.

For let there be applied to DE' the rectangle DA equal
to the square on 4C, and KL equal to the square on BC;
therefore the remainder, twice the rectangle 4C, C5, is equal
to MF.

Let MG be bisected at &V, and let VO be drawn parallel
[to ML or GF].

Therefore each of the rectangles /0, NF is equal to
once the rectangle 4AC, CAB.

Now, since A8 is a binomial divided into its terms at C,

D KM N G
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therefore AC, CB are rational straight lines commensurable
in square only ; [x. 36]
therefore the squares on AC, CB are rational and commen-
surable with one another,

so that the sum of the squares or 4C, CB is also rational.

P [x. 15]
And it is equal to DL ;
therefore DL is rational.
And it is applied to the rational straight line DZ£ ;

therefore DM is rational and commensurable in length with
DE. [x. 20]

Again, since AC, CB are rational straight lines commen-
surable in square only,

therefore twice the rectangle 4C, CB, that is MF, is medial.

[x. 21
And it is applied to the rational straight line ML ; ]

therefore MG is also rational and incommensurable in length
with ML, that is, DE. [x. 22]

But MD is also rational and is commensurable in length
with DE ;
therefore DM is incommensurable in length with #G. [x. 13)
And they are rational ;
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

It is next to be proved that it is also a first binomial
straight line.

Since the rectangle 4 C, CB is a mean proportional between
the squares on AC, CB, [cf. Lemma after x. 53]
therefore MO is also a mean proportional between DH, K.

Therefore, as DH is to MO, so is MO to KL,

that is, as DK is to MN, so is MN to MK ; [vi. 1]
therefore the rectangle DK, KM is equal to the square
on MN. [vi. 17]

And, since the square on AC is commensurable with the
square on (5,

DH is also commensurable with X7,
so that DK is also commensurable with XA/, [vi. 1, x. 11]
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And, since the squares on 4C, CB are greater than twice

the rectangle AC, CB, [Lemma]
therefore DL is also greater than MF,
so that DM is also greater than MG. [vi. 1]

And the rectangle DK, KM is equal to the square on
MN, that is, to the fourth part of the square on MG,

and DX is commensurable with K.

But, if there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
if it divide it into commensurable parts, the square on the
greater is greater than the square on the less by the square
on a straight line commensurable with the greater ; [x. 17]
therefore the square on DA is greater than the square on
MG by the square on a straight line commensurable with DM,

And DM, MG are rational,

and DM, which is the greater term, is commensurable in length
with the rational straight line D£ set out.

Therefore DG is a first binomial straight line. [x. Deff. . 1]
Q. E. D.

In the hexad of propositions beginning with this we have the solution of
the converse problem to that of x. 54—59. We find the sguares of the
irrational straight lines of X. 36—41 and prove that they are respectively equal
to the rectangles contained by a rational straight line and the first, second,
third, fourth, fifth and sixth binomials.

In x. 60 we prove that, p + /4. p being a dinomial straight line [x. 36],

(o + k- p)"
o
is a jfirst binomial straight line, and we find it geometrically.
The procedure may be represented thus.
Take x, y, 2 such that
ox = P, 1

ay = kp'
o.25=2,/k.p%
p% %p* being of course the squares on the terms of the original binomial,
and 2 /4. p? twice the rectangle contained by them.

Then (x+y)+2s= (P_"_iﬂl',

and we have to prove that (x + y) + 2z is a first binomial straight line of which
(x+y), 22 are the terms and (x + y) the greater.

Euclid divides the proof into two parts, showing first that (x + y) + 22 is
some binomial, and secondly that it is the £7rs/ binomial.
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(a) p~= Jk.p, so that p% %p* are rational and commensurable ;

therefore p* + £p? or o (x +y), is a rational area,

whence (x+y)isrationaland ~ o ...l (1)
Next, 2p. ./%. p is a medial area,

so that o . 23 is a mediul area,

whence 2z is rational but v o ...eeiininnn sa(Z)
Hence [(1), (2)] (x+y), 22 are rational and commenqurable in square

OBy il s s own lomans T S, Ty Tt s 1 WA 2 (3);

thus (x + ) + 22 is a binomia/ straight line. [x. 36]

® Pk p =k kp

so that OX i 02 =0% : g},

and X185=%:%,

or wy=grEk(agf.. e, b 2 Al s} (4).

Now p?, &p* are commensurable, so that ox, ey are commensurable, and
therefore

BN, et orp a4 S B (5).
And, since [Lemma] p? + &p? > 2 J& . p?,
x+y =2z
o=y : p* + kp?
But (x + y) is given, being equal to g e (6).

Therefore [(4), (5), (6), and x. 17] J(x +3) = (22)* ~ (x + ).
And (x + y), 22 are rational and ~ [(3)],
while (x + ) ~ o [(1)].
Hence (x +y) + 2z is a first binomial.
The actual value of (x + y) + 2z is, of course,

%T(’:T'é + 2 \JA).

ProrosiTion 61.
The square on the first bimedial straight line applied to a
vational straight line produces as breadth the second binomial.

Let A8 be a first bimedial straight line dlwded into its
medials at C, of which medials 4AC
is the greater ;

. . . D KM N _G
let a rational straight line 2 £ be set :
out,
and let there be applied to J£ the
parallelogram D F equal to the square
on A B, producing DG as its breadth; € WOl F
I say that DG is a second binomial A c B

straight line.
For let the same construction as before be made.
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Then, since A28 is a first bimedial divided at C,
therefore 4C, CB are medial straight lines commensurable in

square only, and containing a rational rectangle, [x. 37]
so that the squares on 4C, CAB are also medial. [x. 21]
Therefore DL is medial. [x. 15 and 23, Por.]

And it has been applied to the rational straight line DE;
therefore MD is rational and incommensurable in length
with DE, [x. 22]

Again, since twice the rectangle AC, CB is rational, MF is
also rational.

And it is applied to the rational straight line ML ;
therefore MG is also rational and commensurable in length
with ML, that is, DE; [x. 20]
therefore DM is incommensurable in length with #/G. [x. 13]

And they are rational ;

therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36)

It is next to be proved that it is also a second binomial
straight line.

For, since the squares on 4C, CB are greater than twice
the rectangle AC, CB5,

therefore DL is also greater than M7,
so that DM is also greater than MG. [v. 1)

And, since the square on 4C is commensurable with the
square on C25,

DH is also commensurable with X2,

so that DX is also commensurable with KA. [vi. 1, x. 11]
And the rectangle DX, KM is equal to the square on MN;

therefore the square on DA/ is greater than the square on

MG by the square on a straight line commensurable with DM/,

And MG is commensurable in length with DE. [x 17]
Therefore DG is a second binomial straight line. [x. Defi. 1. 2]

In this case we have to prove that, (k*p + k*p) being a first bimedial
straight line, as found in x. 37,

(#p + #p)yr

1s a second binomial straight line,
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The form of the proposition and the figure being similar to those of x. 6o,
I can somewhat abbreviate the reproduction of the proof.

Take =, ¥, z such that
ox = kip’,
oy = é'ﬁ, )
.25 = 2kp".
Then shall (x + y) + 2z be a second binomial.

(a) .#p, #ip_are medial straight lines commensurable in square only and

containing a rational rectangle. [x. 37]
The squares lip’, k‘p’ are medial ;
thus the sum, or ¢ (x + ), is medial. (x. 23, Por.]

Therefore (x + y) is rational and v o.
And o . 22 is rational ;

therefore 2z isrationaland ~o ................. s o iR (1).

Therefore (x + y), 22 are rational and ~— .............ccoeviiiiiiniinnnns (2),
so that (* +y) + 22 is a binomial.
(B) As before, (x+y) > 2z

Now, k*p‘, .élp' being commensurable,

x Ay
And xy = 5%
39, 2t

while 2+ y = 5_.0%}_1’ .

Hence [x. 17] JEFIP =P A @ +P) i, (3)-

But 2z ~ o, by (1).
Therefore [(1), (2), (3)] (x +y) + 22 is a second binomial straight line.

Of course (.x+)’)+:s=%_’{,¢’k(1 + k) + 24}

ProrosiTioN 62.

The square on the second bimedial straight line applied to
a rational straight line produces as breadth the thirvd binomial.
Let A8 be a second bimedial straight line divided into
its medials at C, so that 4C is the
greater segment ; D LI .
let DE be any rational straight line,
and to DZE let there be applied the

parallelogram DF equal to the square
on AB and producing DG as its

I say that DG is a third binomial

straight line.
Let the same construction be made as before shown.
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Then, since A is a second bimedial divided at C,
therefore AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle, [x. 38]

so that the sum of the squares on AC, CA is also medial.

[x. 15 and 23 Por.]

And it is equal to DL ;
therefore DL is also medial.

And it is applied to the rational straight line DE ;
therefore M D is also rational and incommensurable in length
with DE. [x. 22]

For the same reason,

MG is also rational and incommensurable in length with ML,
that is, with 2.5 ;

therefore each of the straight lines DM, MG is rational and
incommensurable in length with DZ£.

And, since AC is incommensurable in length with C23,

and, as AC is to CB, so is the square on 4C to the rectangle
AC, CB,
therefore the square on 4C is also incommensurable with the

rectangle AC, CB. [x. 11]
Hence the sum of the squares on 4C, CB is incommen-
surable with twice the rectangle AC,"CA, [x. 12, 13)

that is, 2L is incommensurable with M7,

so that DM is also incommensurable with #G.  [vi. 1, x. 11]
And they are rational ;

therefore DG is binomial. [x. 36]

Itis to be proved that it is also a third binomial straight line.
In manner similar to the foregoing we may conclude that
DM is greater than MG,
and that DX is commensurable with A

And the rectangle DK, KM is equal to the square on
MN ;
therefore the square on DM is greater than the square on
MG by the square on a straight line commensurable with
DM.

And neither of the straight lines DM, MG is commen-
surable in length with DE.

Therefore DG is a third binomial straight line. [x. Deff. 1. 3]

Q E.D.
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We have to prove that [cf. x. 38]
)
Ly ’}_v)
= (b P+
is a third binomial straight line.
Take x, y, 2 such that
ox = Mg,
.
ﬂ'y - k* Ll
o.22=2,/A.p

b ; - )
(e) Now 4t X ;f are medial straight lines commensurable in square only

and containing a medial rectangle. [x. 38]
The sum of the squares on them, or o (x + ), is medial;
therefore (x+y)isrationaland v & .......ooovvinneiiin (1).
And o . 2z being medial also,
2z is rational and v @ ....ooviiiiiiiiiii (2).
bVt Al
W P = : Ty
No Hp: =~ = (W) A i
=0X : 03,

whence ox v oz.

But (é*p)’ n {(é*p)’ + (%E)’} ,orgax~o(x+y), and gz~ 22;

therefore c(x+y)vo.a2s
or (X+F) v 2F i (3)
Hence [(1), (2), (3)] (* +y) + 22 is a binomial straight line............ (4).
(B) As before, (x+y) > 23,
and x oy,
Also xy = 2%

Therefore [X. 17] V(x+y) = (22)° ~ (x +7).
And [(1), (2)] neither (x + ») nor 2z is ~ .
Therefore (x +y) + 23 is a third binomial stra.ight line.

Obviously (x+y) +25="= { JE .J;\}

ProrosiTION 63.
The square on the major straight line applied to a rational
straight line produces as breadth the fourth binomial.

Let A8 be a major straight line divided at C, so that 4C
is greater than C5;
let DE be a rational straight line,
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and to DE let there be applied the parallelogram DF equal
to the square on 42 and producing DG as its breadth ;
I say that DG is a fourth binomial
straight line. D KM N @
Let the same construction be
made as before shown.
Then, since A8 is a major
straight line divided at C,
AC, CB are straight lines incom- = iy
mensurable in square which make A ¢ s
the sum of the squares on them
rational, but the rectangle contained by them medial.  [x. 39]
Since then the sum of the squares on AC, CB is rational,
therefore DL is rational ;

therefore DM is also rational and commensurable in length
with DE. Ix. 20]

A%ain, since twice the rectangle AC, CB, that is, MF, is
medial,

and it is applied to the rational straight line /L,
therefore MG is also rational and incommensurable in length

with DFE ; [x. 22]
therefore DM is also incommensurable in length with MG.
[x. 13]

Therefore DM, MG are rational straight lines commen-
surable in square only ;

therefore DG is binomial. [x. 36]

It is to beproved that it is also a fourth binomial straight line.
In manner similar to the foregoing we can prove that
DM is greater than MG,
and that the rectangle DX, KM is equal to the square on MV,
Since then the square on 4C is incommensurable with the
square on (5,
therefore D/ is also incommensurable with XL,
so that DK is also incommensurable with KM,  [v. 1, x. 11]
But, if there be two unequal straight lines, and to the
greater there be applied a parallelogram equal to the fourth
part of the square on the less and deficient by a square
figure, and if it divide it into incommensurable parts, then the
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square on the greater will be greater than the square on the
less by the square on a straight line incommensurable in
length with the greater; [x. 18]

therefore the square on DM is greater than the square on

MG by the square on a straight line incommensurable with
DM,

And DM, MG are rational straight lines commensurable
in square only,

and DM is commensurable with the rational straight line D£
set out.

Therefore DG is a fourth binomial straight line. [x. Deff. 1. 4]

Q. E. D.
We have to prove that [cf. . 39]

I ] J _.é [ \/ _-_ k 2
N Ry
is a fourth binomial straight line.
For brevity we must call this expression

5 (u + v)%

ox=u'
=7 r,
.25 =2u0

wherein it has to be remembered [x. 39] that #, v are incommensurable in
square, («* + 77) is rational, and »v is medial.

Take x, y, z such that

(a) (u*+ "), and therefore o (x + y), is rational ;

therefore (x+y)isrationaland Ao ......oceeet iennnn Lol (1).
2ur, and therefore o . 22, is medial ;

therefore 2zisrational and v o ......oceeeei (2).
Thus (* +y), 2zare rational and ~ .................... (3),

so that (x + y) + 22 is a binomial straight line.

(B) As before, . x4y > 23,

and xy = 3%

Now, since #* v 2%,
ox vy, OF X vy
Hence [x. 18] VE+yF— (25 v (B +) e ceeaenn(8):
And (x +y) ~ @, by (1).
Therefore [(3), (4)] (* +) + 25 is a fourth binomial straight line.

It is of course %’ [l + J:::f’} .
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ProrosiTioN 64.

The square on the side of a rational plus a medial area
applied to a ratwonal straight line produces as breadth the fifth
binomial.

Let A8 be the side of a rational plus a medial area,
divided into its straight lines at C,
so that AC is the greater ; D KM N a
let a rational straight line D £ be set
out,
and let there be applied to DE the
parallelogram D/ equal to the square L
on 4B, producing DG as its breadth; = ————, —

I say that DG is a fifth binomial
straight line.

Let the same construction as before be made.

Since then A2 is the side of a rational plus a medial
area, divided at C,
therefore AC, CB are straight lines incommensurable in square
which make the sum of the squares on them medial, but the
rectangle contained by them rational. [x. 40]

Since then the sum of the squares on AC, (B is medial,
therefore DL is medial,
so that DM is rational and incommensurable in length with
DE. [x. 22]

Again, since twice the rectangle AC, CB, that is MF, is
rational,
therefore MG is rational and commensurable with DZ. [x. 20]

Therefore DM is incommensurable with /G ; [x. 13]
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36)

I say next that it is also a fifth binomial straight line.

For it can be proved similarly that the rectangle DX, KA1
is equal to the square on MV,
and that DX is incommensurable in length with XM/ ;

therefore the square on DM is greater than the square on #G

by the square on a straight line incommensurable with Z?M
x. 18]




X. 64, 65] PROPOSITIONS 64, 65 143

And DM, MG are commensurable in square only, and the
less, MG, is commensurable in length with DE.
Therefore DG is a fifth binomial.

Q. E. D.
To prove that [cf. x. 40]

1 p . x"’ Ay T o ey 3 : p . o "' 2

= {JRE_J?}' Jiv B ks s +E)JJI + £ .&}

is a fifth binomial straight line.
For brevity denote it by % (# +v), and put

ox =1,
ay =1,
o, 28 = 2uD.

Remembering that [x. 40] #* 2% (#® + 2*) is medial, and 2uv is rational,
we proceed thus.

(e) o(x+y)is medial ;

therefore (x+y)is rational and v & ...ocvvienciiniinnen, (1).
Next, o, 2z is rational ;
therefore 2sisrationaland ~ oo, (2).
Thus (* +7), 2z arerational and ~ ..................... (3),
so that (x + y) + 2z is a binomial straight line.
(B) As before, x+y> 28,
xy =2,
and xu
Therefore [x. 18] NE = (22 o (£ +7) oo, (4)-
Hence [(2), (3), (4)] (= +») + 23 is a fifth binomial straight line.
It is of course e { L L. } .
o it 1+#

ProrosiTion 65.

The square on the side of the sum of two medial areas
applied to a rational straight line produces as breadth the
swxth binomial.

Let AA be the side of the sum of two medial areas,
divided at C,

let DE be a rational straight line,

and let there be applied to DE the parallelogram DZF equal
to the square on 475, producing DG as its breadth ;
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I say that DG is a sixth binomial straight line.

For let the same construction be made as before.

Then, since 425 is the side of
the sum of two medial areas, divided
at C, > T
therefore AC, CB are straight lines
incommensurable in square which
make the sum of the squares on
them medial, the rectangle contained € HiL ©0 F
by them medial, and moreover the A ¢ B
sum of the squares on them incom-
mensurable with the rectangle contained by them,  [x. 41]

so that, in accordance with what was before proved, each of
the rectangles DL, MF is medial.

And they are applied to the rational straight line D£;
therefore each of the straight lines DM, MG is rational and
incommensurable in length with DZ£. [x. 22]

And, since the sum of the squares on AC, CA is incom-
mensurable with twice the rectangle 4C, C2,
therefore DL is incommensurable with MF.

Therefore DM is also incommensurable with #G ;

[vi. 1, x. 11]
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

I say next that it is also a sixth binomial straight line.
Similarly again we can prove that the rectangle DX, KM
is equal to the square on MV,

and that DX is incommensurable in length with K7;
and, for the same reason, the square on DM/ is greater than

the square on MG by the square on a straight line incom-
mensurable in length with DM, -

And neither of the straight lines DM, MG is commen-
surable in length with the rational straight line D £ set out.
Therefore DG is a sixth binomial straight line.

Q. E. D,
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To prove that [cf. x. 41]

1 t i B
GV T N

is a sixth binomial straight line.

Denote it by ?}- (« +v)*, and put

ox =1,
cry=v’,
o.28= 2K,

( Now, by x. 41, #* v 7 (¥ +¢°) is medial, 2uv is medial, and
w+7%) v 2uv.

(a) In this case o (x +y) is medial ;

therefore (x+y)isrational and v & ......coooiiiiiininnnns (1)
In like manner, 2z is rational and v @ .....oeoviiniinerennennn(2)
And, since o (x + ) v o. 23,

(720 EOL T RGBS i UEN S — ) §
Therefore (x +y) + 23 is a binomial straight line.
(B) As before, x+y> 2z,
Xy = 2,
EXVS

therefore [x. 18] ) L T RO £ ) SR (4)-

Hence [(1), (2), (3), (4)] (= +») + 23 is a sixth binomial straight line,
. . P A
It is obviously = {J.\ - e k'} .

ProrosiTiON 66.

A straight line commensurable in length with a binomial
struight line is itself also binomial and the same in ovder.

Let AB be binomial, and let €2 be commensurable in
length with A8 ;

A + B
c D

[ say that CD is binomial and the same in order with 45.
For, since A is binomial,

let it be divided into its terms at £,

and let 4 £ be the greater term ;
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therefore AL, EB are rational straight lines commensurable

in square only. [x. 36]
Let it be contrived that,

as ABisto CD, sois AE to CF; [v1. 12]

therefore also the remainder £27 is to the remainder D as

ARBis to CD. [v. 19]

But 42 is commensurable in length with CD;
therefore AE is also commensurable with CF, and £25 with
FD. [x. 11]
And AE, EB are rational ;
therefore CF, FD are also rational.
And, as AE is to CF,so is EB to FD. [v. 11]
Therefore, alternately, as AZ is to £8, so is CF to FD.
v. 16
But AE, EB are commensurable in square only ; o
therefore CF, FD are also commensurable in square only.

[x. 11]
And they are rational ;

therefore CD is binomial. [x. 36]

I say next that it is the same in order with 4.5.

For the square on AZ is greater than the square on £58
either by the square on a straight line commensurable with
AE or by the square on a straight line incommensurable
with it.

If then the square on A £ is greater than the square on
E B by the square on a straight line commensurable with 4Z,
the square on C will also be greater than the square on FD
by the square on a straight line commensurable with CZ.

[x. 14]

And, if AE is commensurable with the rational straight
line set out, CF will also be commensurable with it, [x. 12)
and for this reason each of the straight lines 458, CD is a
first binomial, that is, the same in order. [x. Deff. m. 1]

But, if £25 is commensurable with the rational straight line
set out, /0 is also commensurable with it, [x. 12)
j.;ld for this reason again CD will be the same in order with

B,
for each of them will be a second binomial. [x. Deff. 1. 2]
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But, if neither of the straight lines 4£, £8 is commen-
surable with the rational straight line set out, neither of the
straight lines CF, 7D will be commensurable with it, [x. 13)
and each of the straight lines 458, CD is a third binomial.

[x. Deff. 11. 3]

But, if the square on AF is greater than the square on
£B by the square on a straight line incommensurable with
the square on CF is also greater than the square on FD by
the square on a straight line incommensurable with CF. [x. 14]

And, if AE is commensurable with the rational straight
line set out, CF is also commensurable with it,
and each of the straight lines 48, CD is a fourth binomial.

[x. Deff. 1. 4]

But, if £8 is so commensurable, so is D also,

and each of the straight lines 45, CD will be a fifth binomial.
[x. Deff. 1. 5]

But, if neither of the straight lines 4Z, EB is so com-
mensurable, neither of the straight lines CF, 7D is commen-
surable with the rational straight line set out,
and each of the straight lines 4.8, CD will be a sixth binomial.

[x. Deff. 1. 6]

Hence a straight line commensurable in length with a

binomial straight line is binomial and the same in order.
Q. E. D.

The proofs of this and the following propositions up to X. 7o inclusive are
easy and require no elucidation. They are equivalent to saying that, if in each

of the preceding irrational straight lines g p is substituted for p, the resulting

irrational is of the same kind as that from which it is altered.

ProrosiTioN 67.

A straight line commensurable in length with a bimedial
straight line is itself also bimedial and the same in order.

Let AB be bimedial, and let CD be commensurable in
length with 458 ;
I say that CD is bimedial and thesame 4 __ & B8
in order with 45, ¢c__FfF O

For, since A2 is bimedial,
let it be divided into its medials at £ ;
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therefore AE, EB are medial straight lines commensurable

in square only. [x. 37, 38]
And let it be contrived that,

as AR isto CD,sois AE to CF;

therefore also the remainder £5 is to the remainder 7D as
ABis to CD. [v. 19]

But 428 is commensurable in length with CD;
therefore AE, EB are also commensurable with CF, FD

respectively. [x. 11]
But AE, EB are medial ;

therefore CF, FD are also medial. [x. 23]
And since, as AE is to E£B, so is CF to FD, [v. 11]

and AE, EB are commensurable in square only,

CF, FD are also commensurable in square only. [x. 11]

But they were also proved medial ;
therefore CD is bimedial.

I say next that it is also the same in order with AB.
For since, as A £ is to £B, sois CF to FD,

therefore also, as the square on AZ is to the rectangle AE,
EB, so is the square on CF to the rectangle CF, FD;

therefore, alternately,

as the square on 4 £ is to the square on CF, so is the rect-
angle AE, EB to the rectangle CF, FD. [v. 16]

But the square on 4 £ is commensurable with the square
on CF;

therefore the rectangle AE, EB is also commensurable with
the rectangle CF, FD.

If therefore the rectangle AE, £2 is rational,
the rectangle CF, FD is also rational,

[and for this reason CD is a first bimedial]; [x. 37]
but if medial, medial, [x. 23, Por.]
and each of the straight lines 48, CD is a second bimeiiial. :

X. 38

And for this reason CD will be the same in order with 45,
Q. E. D.



X. 68] PROPOSITIONS 67, 68 149

ProrosiTioNn 68.

A straight line commensurable with a major straight
line is itself also major.

Let A B be major, and let CD be commensurable with 45;
I say that CD is major.

Let AZB be divided at £ ; A
therefore AE, EB are strai hl: lines incommensur- c
able in square which make 'ﬁlﬂ sum of the squares g

on them rational, but the rectangle contained by F

them medial. [x.39] 8l D

Let the same construction be made as before.
Then since, as AB is to CD, so is AE to CF, and £8
to FD,

therefore also, as A £ is to CF, so is £8 to FD. [v. 11]
But A28 is commensurable with CD :

therefore AE, EB are also commensurable with CF, FD

respectively [x. 11]
And since, as AE is to CF, so is £B to FD,

alternately also,

as AE isto EB,sois CFto FD; [v. 16]
therefore also, componendo,

as AB is to BE, so is CD to DF; [v. 18]
therefore also, as the square on 42 is to the square on BE,
so is the square on C2 to the square on DF. [v1. 20]

Similarly we can prove that, as the square on A28 is to
the square on AZ, so also is the square on CD to the square
on CF.

Therefore also, as the square on 425 is to the squares on
AE, EB, so is the square on CD to the squares on CF. FD;

therefore also, alternately,

as the square on AZ is to the square on CD, so are the

squares on 4 £, EB to the squares on CF, FD. [v. 16]
But the square on 42 is commensurable with the square

on CD;

therefore the squares on A, EB are also commensurable
with the squares on CF, FD.
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And the squares on AE, EB together are rational ;
therefore the squares on CF, FD together are rational.
* Similarly also twice the rectangle AZ, EZ is commen-
surable with twice the rectangle CF, FD.
And twice the rectangle AE, E£ZB is medial ;

therefore twice the rectangle CF, FD is also medial.
[x. 23, Por.]

Therefore CF, FD are straight lines incommensurable in
square which make, at the same time, the sum of the squares
on them rational, but the rectangle contained by them medial;
therefore the whole CD is the irrational straight line called
major. [x. 39]

Therefore a straight line commensurable with the major

straight line is major.
Q. E. D.

ProrosiTiON 69,

A straight line commensurable with the side of a rational
Plus a medial area is itself also the side of a rational plus a
medial area.

Let A8 be the side of a rational plus a medial area,
and let CD be commensurable with A2
it is to be proved that CD is also the side of a A
rational plus a medial area.

Let A2 be divided into its straight lines at £; ¢
therefore AE, £ are straight lines incommensur-
able in square which make the sum of the squares E
on them medial, but the rectangle contained by them
D

rational. [x. 40] B
Let the same construction be made as before.
We can then prove similarly that
CF, FD are incommensurable in square,
and the sum of the squares on AZ£, EB is commensurable
with the sum of the squares on CF, FD,
and the rectangle 4 £, £B with the rectangle CF, FD;
so that the sum of the squares on CF, FD is also medial, and
the rectangle CF, FD rational.

Therefore CD is the side of a rational plus a medial area.
Q. E. D.
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ProrosiTION %0,

A straight line commensurable with the side of the sum
of two medial areas is the side of the sum of two medial areas.
Let AP be the side of the sum of two medial areas, and
CD commensurable with 45 ;
it is to be proved that CD is also the side of the A
sum of two medial areas.
For, since AF is the side of the sum of two
medial areas,
let it be divided into its straight lines at £;
therefore AE, EB are straight lines incommensur- &
able in square which make the sum of the squares &
on them medial, the rectangle contained by them
medial, and furthermore the sum of the squares on A£, EB
incommensurable with the rectangle AZ£, £5. [x. 41]

Let the same construction be made as before,
We can then prove similarly that
CF, FD are also incommensurable in square,

the sum of the squares on A£, £/ is commensurable with
the sum of the squares on CF, FD,

and the rectangle 4 £, EB with the rectangle CF, FD;
so that the sum of the squares on CF, D is also medial,
the rectangle CF, FD is medial,
and moreover the sum of the squares on CF, FD is incom-
mensurable with the rectangle CF, FD.
Therefore CD is the side of the sum of two medial areas.
Q. E. D.

e}

El F

ProrosiTION 71.

If a rational and a medial avea be added together, four
trrational straight lines arise, namely a binomial or a first
bimedial or @ major or a side of a rational plus a medial
area.

Let, A8 be rational, and CD medial ;

I say that the “side” of the area 4D is a binomial or a first
bimedial or a major or a side of a rational plus a medial
area.
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For 4B is either greater or less than CD.
First, let it be greater ;

let a rational straight line £ be set out,
let there be applied to £F the rectangle £G equal to 45,
producing £ lf as breadth,
and let A7, equal to DC, be applied to £F, producing AKX
as breadth.

A c

3 D

Then, since A2 is rational and is equal to £G,
therefore £G is also rational.

And it has been applied to £F, producing £/ as breadth;
therefore £/7 is rational and commensurable in length with
EF, [x. 20]

Again, since CD is medial and is equal to /7,
therefore /7 is also medial.

And it is applied to the rational straight line £F, pro-
ducing /7K as breadth ;

therefore /K is rational and incommensurable in length
with EF [x. 22]

And, since CD is medial,
while 47 is rational,
therefore A8 is incommensurable with CD,
so that £G is also incommensurable with /7,
But, as £G is to H7, so is EH to HK ; [vr. 1]
therefore Z/ is also incommensurable in length with X

[x. 1]
And both are rational ;

therefore £/, HK are rational straight lines commensurable
in square only ;

therefore £K is a binomial straight line, divided at /7. [x. 36]



x. 71] PROPOSITION 71 153

And, since 4B is greater than CD,
while 427 is equal to £G and CD to HJ,
therefore £G is also greater than /7 ;
therefore £/ is also greater than /7K.

The square, then, on £/ is greater than the square on
HK either by the square on a straight line commensurable
in length with £/ or by the square on a straight line in-
commensurable with it

First, let the square on it be greater by the square on a
straight line commensurable with itself.

Now the greater straight line /£ is commensurable in
length with the rational straight line Z/ set out ;
therefore £K is a first binomial. [x. Deff. 1. 1]

But £F is rational ;
and, if an area be contained by a rational straight line and the
first binomial, the side of the square equal to the area is
binomial. [x. 54]

Therefore the “side” of £/ is binomial ;

so that the ‘‘side” of 4.0 is also binomial.

Next, let the square on £/ be greater than the square
on /K by the square on a straight line incommensurable
with EH.

Now the greater straight line £/ is commensurable in
length with the rational straight line £ set out;
therefore £K is a fourth binomial. [x. Deff. 1. 4]

But E£F is rational ;
and, if an area be contained by a rational straight line and the
fourth binomial, the “side” of the area is the irrational straight
line called major. [x. 57]

Therefore the “side” of the area £/ is major ;
so that the “side” of the area 4.0 is also major.

Next, let A8 be less than CD ;
therefore £G is also less than /7,
so that £/ is also less than AKX,

Now the square on /K is greater than the square on £/
either by the square on a straight line commensurable with
HK or by the square on a straight line incommensurable
with it.
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First, let the square on it be greater by the square on a

straight line commensurable in length with itself.
ow the lesser straight line £/ is commensurable in

length with the rational straight line Z/ set out;
therefore £K is a second binomial. [x. Deff. 1. 2)

But £F is rational ,
and, if an area be contained by a rational straight line and
the second binomial, the side of the square equal to it is a
first bimedial ; [x. 55]
therefore the “side” of the area £/ is a first bimedial,
so that the “side” of 4D is also a first bimedial.

Next, let the square on /K be greater than the square
on HE by the square on a straight line incommensurable
with HK.

Now the lesser straight line £/ is commensurable with
the rational straight line ZF set out;
therefore £K is a fifth binomial. [x. Deff. 11. 5]

But £F is rational ;
and, if an area be contained by a rational straight line and the
fifth binomial, the side of the square equal to the area is a
side of a rational plus a medial area. [x. 58]

Therefore the “side” of the area £/ is a side of a rational
plus a medial area,
so that the “side” of the area 40 is also a side of a rational
plus a medial area.

Therefore etc. Q. E. D.

A rational area being of the form #p?, and a medial area of the form
JA - p the problem is to classify

JE+ A
according to the different possible relations between £, A.
Put ou = kp?,
ol = J.‘ . p’.

Then, since the former rectangle is rational, the latter medial,
% is rational and ~ o,
 is rational and v o.
Also the rectangles are incommensurable ;
so that TRVE 3
Hence u, v are rational and ~;
whence ( + %) is a binomial straight line.
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The possibilities now are as follows :
I. u>u9.
Then either
(1) Vi = A u,
or (2) VE—2*ou,
while in both cases # ~ o.
In case (1) (u+ v) is a first binomial straight line,
and in case (2) (¥ + ) is a _fourth binomial straight line.
Thus ~o (1 + 2) is either (1) a binomial straight line [x. 54] or (2) a major
irrational straight line [x. 57).
II. 2>
Then either
(1) Vo'=uny,
or (2) Noi—uouy,
while in both cases v @, but u~ 0.
Hence, in case (1), (v + #) is a second binomial straight line,
and, in case (2), (v + ) is a_fifth binomial straight line.

Thus ~/a (# + ) is either (1) a first bimedial straight line [x. 55], or (2) a
side of a rafional plus a medial arca [X. 58]

ProrosiTiON 72.

If two medial areas incommensurable with one another be
added together, the remaiming two irrational straight lines
arise, namely either a second bimedial or a side of the sum of
two medial areas.

For let two medial areas A5, CD incommensurable with
one another be added together ;

[ say that the ‘“‘side” of the area 4D is either a second
bimedial or a side of the sum of two medial areas.

A c

B D K I

For AB is either greater or less than CD.
First, if it so chance, let 453 be greater than CD.
Let the rational straight line Eﬁgll;e set out,

and to ZF let there be applied the rectangle £G equal to
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AZB and producing EH as breadth, and the rectangle A7
equal to CD and producing /K as breadth.

Now, since each of the areas 4B, CD is medial,
therefore each of the areas £G, A/ is also medial.

And they are applied to the rational straight line FZ,
producing £/, HK as breadth ;
therefore each of the straight lines £/, AK is rational and
incommensurable in length with £/ [x. 22]

And, since A7 is incommensurable with CD,
and 42 is equal to £G, and CD to H/,
therefore- £G is also incommensurable with A7/,

But, as £G is to H/Z, so is EH to HK ; [vi. 1]
therefore £/ is incommensurable in length with 7K. [x. 11]

Therefore £/, HK are rational straight lines commen-
surable in square only ;
therefore £K is binomial. [x. 36]

But the square on £/ is greater than the square on /X
either by the square on a straight line commensurable with
EH or by the square on a straight line incommensurable
with it.

First, let the square on it be greater by the square on a
straight line commensurable in length with itself,

Now neither of the straight lines £/, //K is commen-
surable in length with the rational straight line £ set out;
therefore £K is a third binomial. [x. Deff. 11. 3]

But £F is rational ;
and, if an area be contained by a rational straight line and the
third binomial, the “side” of the area is a second bimedial ;

[x. 56]
therefore the “side” of £/, that is, of 4D, is a second bimedial.

Next, let the square on £/ be greater than the square
on K by the square on a straight line incommensurable in
length with £/,

Now each of the straight lines £/, HK is incommen-
surable in length with £7;
therefore £X is a sixth binomial. [x. Deff. 11. 6]

But, if an area be contained by a rational straight line and
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the sixth binomial, the “side” of the area is the side of the
sum of two medial areas: [x. 59]
so that the ‘“side” of the area A0 is also the side of the
sum of two medial areas.
Therefore etc.
Q. E. D,

We have to classify, according to the different possible relations between
%, A, the straight line
JJzé.p'-!- 'J‘\"P’t

where ,/£.p* and /A. p* are incommensurable.
Suppose that ou= [k p
ov= /A, p’
It is immaterial whether ,/£.p* or J/A.p* is the greater. Suppose, e.g.,
that the former is.
Now, J&. p* JA. p* being both medial areas, and o rational,

u, v are both rational and v & ......co.ooeel (1)
Again, by hypothesis, ou v o,
or [ RVE /] .....(2)

Hence [(1), (2)] (# + ) is a binomial straight line.
Next, ¥/u'~¢* is cither commensurable or incommensurable in length
with .
(a) Suppose Nu'=o* ~ .
In this case (# + ) is a third binomial straight line,
and therefore [X. 56]
No (4 +v) is a second bimedial straight line.

(B) If V=2 v u,
(2 + v) is a sixth binomial straight line,
and therefore [X. 59]
No (u + ) is a side of the sum of two medial areas.

The binomial straight line and the irrational straight lines
after it are neither the same with the medial nor with one
another.

For the square on a medial, if applied to a rational straight
line, produces as breadth a straight line rational and incom-
mensurable in length with that to which it is applied. [x. 22)

But the square on the binomial, if applied to a rational
straight line, produces as breadth the first binomial. [x. 60]

’lghe square on the first bimedial, if applied to a rational
straight line, produces as breadth the second binomial. [x. 61]
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The square on the second bimedial, if applied to a rational
straight line, produces as breadth the third binomial.  [x. 62]
he square on the major, if applied to a rational straight
line, produces as breadth the fourth binomial. [x. 63]
The square on the side of a rational plus a medial area, if
applied to a rational straight line, produces as breadth the fifth
binomial. [x. 64]
The square on the side of the sum of two medial areas, if
applied to a rational straight line, produces as breadth the
sixth binomial. [x. 65]
And the said breadths differ both from the first and from
one another: from the first because it is rational, and from
one another because they are not the same in order ;
so that the irrational straight lines themselves also differ from
one another,
The explanation after x. 72 is for the purpose of showing that all the
irrational straight lines treated hitherto are different from one another, viz. the

medial, the six irrational straight lines beginning with the binomial, and the
six consisting of the first, second, third, fourth, fifth and sixth binomials.

ProrosITION 73.

If from a rational straight line therve be subtracted a
rational straight line commensurable with the whole in square
only, the remainder is irrational; and let it be called an
apotome.

For from the rational straight line 45 let the rational
straight line BC, commensurable with
the whole in square only, be sub- A ¢ B
tracted ;

I say that the remainder 4AC is the irrational straight line
called apotome.

For, since A8 is incommensurable in length with BC,
and, as A5 is to BC, so is the square on 45 to the rectangle
AB, BC,
therefore the square on 425 is incommensurable with the

rectangle 4B, BC. [x. 11]
But the squares on 4.8, BC are commensurable with the
square on A5, [x 15]

and twice the rectangle 4B, BC is commensurable with the
rectangle 48, BC. [x. 6]
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And, inasmuch as the squares on 48, BC are equal to
twice the rectangle 45, BC together with the square on CA,

[11. 7]
therefore the squares on 48, BC are also incommensurable
with the remainder, the square on 4C. [x. 13, 16]

But the squares on 48, BC are rational ;
therefore AC is irrational. [x Def. 4]
And let it be called an apotome.
Q. E. D,

Euclid now passes to the irrational straight lines which are the difference
and not, as before, the sum of two straight lines. Apofome (*‘portion cut off )
accordingly takes the place of dinomial and the other terms follow mutalis
mutandis. The first hexad of propositions (73 to 78) exhibit the six irrational
straight lines which are really the result of extracting the sguare root of the six
irrationals in the later propositions 85 to go (or, strictly speaking, of finding
the sides of squares equal to the rectangles formed by each of those six
irrational straight lines respectively with a rational straight line). Thus, just
as in the corresponding propositions about the irrational straight lines formed
by addition, the further removed irrationals, so to speak, come first.

We shall denote the apofome etc. by (x — y), which is formed by subtracting
a certain lesser straight line y from a greater x. In X. 79 and later propositions
yis called by Euclid the annex (5 mpocappiélovoa), being the straight line which,
when added to the apotome or other irrational formed by subtraction, makes
up the greater .

The methods of proof are exactly the same as in the precedinug propositions
about the irrational straight lines formed by addition.

In this proposition x, y are rational straight lines commensurable in square
only, and we have to prove that (x — y), the apofome, is irrational.

a ~y, sothat x v y:

therefore, since Xy p=ad.uy,
a* v xy.
But a? ~ (2* +)7), and ay ~ 2ay;
therefore 2+ ¥t 2ay,
whence (x = p) « (22 +)7).

But (2* +»?) is rational ,
therefore (x — »)?, and consequently (x — ), is irrational.

The apotome (x —y) is of the form p ~ ,/%. p, just as the binomial straight
line is of the form p + J/£. p.

PRrOPOSITION 74.

If from a medial straight line there be subtracted a medial
straight line which is commensurable with the whole in square
only, and whick contains with the whole a rational rectangle,
the remainder is irrational. And let it be called a first
apotome of a medial straight line.
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For from the medial straight line A2 let there be sub-
tracted the medial straight line BC
which is commensurable with 45 in A ¢ B
square only and with 4.8 makes the
rectangle 48, BC rational ;

I say that the remainder 4C is irrational; and let it be
called a first apotome of a medial straight line.

For, since A8, BC are medial,
the squares on 45, BC are also medial.
But twice the rectangle 48, BC is rational ;

therefore the squares on 4B, BC are incommensurable with
twice the rectangle 48, BC;

therefore twice the rectangle 42, BC is also incommensurable
with the remainder, the square on 4C, [cf. 1. 7]

since, if the whole is incommensurable with one of the magni-
tudes, the original magnitudes will also be incommensurable.
[x. 16]

But twice the rectangle 458, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational. [x. Def. 4]

And let it be called a first apotome of a medial straight
line.

The first apotome of a medial straight line is the difference between straight

lines of the form k*p, .é*p, which are medial straight lines commensurable in
square only and forming a rational rectangle.

By hypothesis, &% »* are medial areas.
And, since xy is rational, (2*+ %) v &y
v 2%y,
whence (x —y)? v 2xy.
But 2xy is rational ;
therefore (x — »)?, and consequently (x —y), is irrational.
This irrational, which is of the form (#p ~ #%p), is the first apotome of a

medial straight line ; the term corresponding of course to first bimedial, which
applies where the sign is positive.
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ProrosiTiON 75.

If from a medial straight line therve be subtracted a medial
straight line which is commensurable with the whole in square
only, and which contains with the whole a medial rectangle,
the remainder ts irrational; and let it be called a second
apotome of a medial strazght line.

For from the medial straight line 42 let there be sub-
tracted the medial straight line CZ which is commensurable
with the whole 42 in square only and such that the rectangle
AB, BC, which it contains with the whole 4 5, is medial; [x. 28]

I say that the remainder 4 C is irrational; and let it be called
a second apotome of a medial straight line.

A C B

H

For let a rational straight line D7 be set out,
let DE equal to the squares on A5, BC be applied to DJ,
producing DG as breadth,
and let D/ equal to twice the rectangle A5, BC be applied
to D7, producing DF as breadth ;
therefore the remainder 7£ is equal to the square on 4 t{ :
I 7
Now, since the squares on A8, BC are medial and
commensurable,
therefore DE is also medial. [x. 15 and 23, Por.]
And it is applied to the rational straight line D/, producing
DG as breadth ;
therefore DG is rational and incommensurable in length
with D/, [x. 22]
Again, since the rectangle 4.8, BC is medial,

therefore twice the rectangle 4.5, BC is also medial.
[x. 23, Por.]
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And it is equal to DH ;
therefore DA is also medial.

And it has been applied to the rational straight line D[
producing DF as breadth ;

therefore DF is rational and incommensurable in length
with D/, [x. 22]

And, since 4B, BC are commensurable in square only,
therefore 45 is incommensurable in length with BC;
therefore the square on A2 is also incommensurable with the

rectangle 4.5, BC. [x. 11]

But the squares on A8, BC are commensurable with the
square on A5, [x. 15]
and twice the rectangle 45, BC is commensurable with the
rectangle A8, BC; [x. 6]
therefore twice the rectangle 45, BC is incommensurable with
the squares on A28, BC. [x. 13)

But DE is equal to the squares on A58, BC,
and DA to twice the rectangle AR, BC;
therefore D E is incommensurable with DA,
But, as DE is to DH, so is GO to DF; [v1. 1]
therefore GO is incommensurable with DF. [x. 11]
And both are rational ;

therefore GD, DF are rational straight lines commensurable
in square only ;

therefore /G is an apotome. [x. 73]
But D/ is rational,

and the rectangle contained by a rational and an irrational

straight line is irrational, [deduction from x. z0]

and its “side” is irrational.
And AC is the “side” of FE ;
therefore A C is irrational,
And let it be called a second apotome of a medial
straight line.
Q. E. D.

We have here the difference between k*p, JA p}’b* two medial straight
lines commensurable in square only and containing a medial rectangle.
Apply each of the areas (x*+3%), 2xy to a rational straight line o, i.e.
suppose that
2% +)” =0u,

2%y = ov.
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Then owu, ov are medial areas,

so that #, v are both rational and v @ .......cocecviiiiiinnnciiie e (1)
Again, xvy;

therefore 2* v xy,

and consequently x4+ 90 v 22y,

or ou v o,

and WO siviiigioiivaivisaialpmiiaiinainry (2).

Thus [(1), (2)] #, v are rational and ~;
therefore [X. 73] (¥ — ) is an apofome,
and, (¥ — v) being thus irrational,
(#—1v)e is an irrational area.
Hence (x - »)*, and consequently (x —y), is irrational.

The irrational straight line Hp ~ -J:ip is called a second apotome of a
medial straight line.

ProrosiTion 76.

If from a straight line there be subtvacted a straight line
which is incommensurable in square with the whole and whickh
with the whole makes the squarves on them added together
rational, but the vectangle contained by them wmedial, the
remainder is irvational,; and let it be called minor.

For from the straight line 423 let there be subtracted the
straight line BC which is incom- ¢
mensurable in square with the whole & [ B
and fulfils the given conditions. [x. 33]

I say that the remainder 4C is the irrational straight line
called minor.

For, since the sum of the squares on 45, BC is rational,
while twice the rectangle 453, BC is medial,

therefore the squares on A58, BC are incommensurable with
twice the rectangle A58, BC;

and, convertendo, the squares on A58, BC are incommensurable
with the remainder, the square on 4C. [11. 7, x. 16]

But the squares on 48, BC are rational ;
therefore the square on AC is irrational ;
therefore 4C is irrational.

And let it be called minor.
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x, y are here of the form found in x. 33, viz.

P \/__é p J Lk
EN I hE BV R
By hypothesis (2* + »?) is a rational, xy a medial, area.
Therefore (2* + %) v 2xy,
whence (=) v (2 +5°).
Therefore (x — y)%, and consequently (x — y), is irrational.
The minor (irrational) straight line is thus of the form

U caar RN Y sesuey T
2 +J1+P 2 7 Ni+ &

Observe the use of convertendo (dvacrpéavri) for the inference that, since
(x*+5") v 22y, (2*+ %) v (x —y)>. The use of the word corresponds exactly
to its use in proportions.

ProrosiTION 77.

If from a straight line there be subtvacted a straight line
which is incommensurable in square with the whole, and which
with the whole makes the sum of the squares on them medial,
but twice the rectangle contained by them rational, the remainder
s rrational: and let it be called that which produces with
a rational area a medial whole.

For from the straight line 453 let there be subtracted the
straight line BC which is incommensurable in square
with 472 and fulfils the given conditions ; [x. 34] A

I say that the remainder 4C is the irrational straight
line aforesaid.

For, since the sum of the squares on 48, BC is
medial, c
while twice the rectangle 458, BC is rational,
therefore the squares on 45, BC are incommensurable 8
with twice the rectangle 48, BC;
therefore the remainder also, the square on AC, is incom-
mensurable with twice the rectangle 48, BC. [1. 7, x. 16)

And twice the rectangle 45, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational.

And let it be called that which produces with a
rational area a medial whole.
Q. E. D.
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Here x, y are of the form [cf. x. 34]

'—z(:+k'Jm+é —_—,m_r_dm

By hypothesis, (x* + y*) is a medial, xy a rational, area;
thus (2*+ %) v 2y,
and therefore (x-y) v 22y,
whence (x —y)?, and consequently (x — y), is irrational.
The irrational straight line

+ A A +&—k
T by
is called that which produces with a rational area a medial whole or more
hterally that which with a rational area makes the whole medial (7 perd pyrod
péoov 16 GAov mowoioa). Here “produces” means “produces when a square
is described on it.” A clearer way of expressing the meaning would be to call
this straight line the “side” of a medial minus a rational area corresponding
to the “side” of a rational plus a medial area [X. 40).

ProrosiTiON 78.

If from a straight line there be subtvacted a straight line
whick is incommensurable in square with the whole and whick
with the whole makes the sum of the squarves on them medial,
twice the rectangle contained by them medial, and further the
squares on them incommensurable with twice the rectangle
contained by them, the remainder is irvational,; and let it be
called that which produces with a medial area a
medial whole.

For from the straight line 4.2 let there be subtracted the
straight line BC incommensurable in
square with 428 and fulfilling the o F a
given conditions ; [x. 35]
I say that the remainder AC is the
irrational straight line called that
which produces with a medial |
area a medial whole. ' n
For let a rational straight line D7 ATS L
be set out,
to D7 let there be applied DE equal to the squares on 4.5,
BC, producing DG as breadth,
and let DA equal to twice the rectangle 4B, BC be
subtracted.
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Therefore the remainder FZ is equal to the square
on AC, [11. 7]
so that 4C is the “side” of FE.

Now, since the sum of the squares on A5, BC is medial
and is equal to DE,

therefore DE is medial.

And it is applied to the rational straight line D7, producing
DG as breadth ;

therefore DG is rational and incommensurable in length
with D/, [x. 22]

Again, since twice the rectangle 45, BC is medial and is
equal to DA,

therefore DA is medial.

And it is applied to the rational straight line 2/, producing
DF as breadth ;

therefore DF is also rational and incommensurable in length
with D/, [x. 22]

And, since the squares on A58, BC are incommensurable
with twice the rectangle 45, BC,

therefore DE is also incommensurable with DA,
But, as DE is to DH, so also is DG to DF; [v. 1]
therefore DG is incommensurable with DF. [x. 11]
And both are rational ;

therefore GD, DF are rational straight lines commensurable
in square only.

Therefore /G is an apotome. [x. 73]
And FH is rational ;
but the rectangle contained by a rational straight line and an
apotome is irrational, [deduction from x. z0]

and its “side” is irrational.
And AC is the “side” of FE ;
therefore AC is irrational.

And let it be called that which produces with a
medial area a medial whole.

Q. E. D.
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In this case x, y have respectively the forms [cf. x. 35]

ph* (5 i pl* k
7; 1+8 W2 3 Jiv A
Suppose that x*+ Y =ou,
2ay = ov.
By hypothesis, the areas o, ov are medial ;
therefore %, z are both rational and « & ........ccooeevviiiiiiiieiiiininninnn, (1).
Further ou v oY,
so that BEinm ) ivsdanive i FAT I - (2)-

Hence [(1), (2)] %, v are rational and ~,

so that (# —o) is the irrational straight line called apofome [x. 73}
Thus o (#—wv) is an irrational area,

so that (x —y)’, and consequently (x—y), is irrational.
The irrational straight line

RGOSR (e M P
ol Jiv B 2 Ny

is called that whick produces [i.e. when a square is described on it] with a
medial area a medial whole, more literally that whick with a medial area makes
the whole medial (3 perd péoov péoov o SAov mowdoa). A clearer phrase (to
us) would be the “side” of the difference between two medial areas, correspond-
ing to the “side ™ of (the sum of ) two medial areas [X. 41).

ProrosiTION 79.

To an apotome only one rational straight line can be
annexed whickh is commensurable with the whole in square only.

Let A8 be an apotome, and BC an annex to it ;
therefore AC, CB are rational
straight lines commensurable in
square only. [x. 73]

I say that no other rational
straight line can be annexed to 42 which is commensurable
with the whole in square only.

For, if possible, let £ be so annexed ;
therefore A0, DB are also rational straight lines commen-
surable in square only. [x. 73]

Now, since the excess of the squares on AD, DB over
twice the rectangle 4D, DB is also the excess of the squares
on AC, CB over twice the rectangle AC, CB,
for both exceed by the same, the square on 425, [ 7]
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therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is the excess of twice the rect-
angle AD, DB over twice the rectangle AC, C5.

But the squares on 4D, DB exceed the squares on AC,
C2B by a rational area,

for both are rational ;

therefore twice the rectangle 4.0, DB also exceeds twice the
rectangle AC, CB by a rational area:
which is impossible,
for both are medial [x. 21], and a medial area does not exceed
a medial by a rational area. [x. 26]
Therefore no other rational straight line can be annexed
to A8 which is commensurable with the whole in square only.
Therefore only one rational straight line can be annexed
to an apotome which is commensurable with the whole in
square only.
Q E. D.

This proposition proves the equivalent of the well-known theorem of surds
hat,
ifa— Jb=x—/y,thena=x, b=y;
and, if JJa— Jb= Jx - Jy, then a=x, b=y.

The method of proof corresponds to that of x. 42 for positive signs.

Suppose, if possible, that an apofome can be expressed as (x - y) and also
as (x"—y'), where x, y are rational straight lines commensurable in square only,
and ¥, ¥ are so also.

Of x, &/, let x be the greater.
Now, since x—y=x -y,
a4y — (2147 = 22y — 247y
But (2? +3%), (2™ +»®) are both rational, so that their difference is a
rational area.

On the other hand, 2xy, 2x'y' are both medial areas, being of the form
therefore the difference between two medial areas is rational :
which is impossible [x. 26].

Therefore etc.

ProrosiTION 8o0.

To a first apotome of a medial straight line only one
medial straight line can be annexed which is commensurable
with the whole in square only and whick contains with the
whole a rational rectangle.
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For let A8 be a first apotome of a medial straight line,
and let BC be an annex to A5 ;
therefore AC, CB are medial 2 2 s
straight lines commensurable in
square only and such that the rectangle 4C, CB which they
contain is rational ; (x. 74]
I say that no other medial straight line can be annexed to
AB which is commensurable with the whole in square only
and which contains with the whole a rational area.

For, if possible, let D25 also be so annexed ;

therefore AD, DB are medial straight lines commensurable
in square only and such that the rectangle 4.0, DB which
they contain is rational. [x. 74]

Now, since the excess of the squares on 4D, DB over
twice the rectangle 4D, DA is also the excess of the squares
on AC, CB over twice the rectangle 4C, C5,

for they exceed by the same, the square on 425, [ 7]

therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is also the excess of twice the
rectangle AD, DB over twice the rectangle AC, CB.

But twice the rectangle 4D, DB exceeds twice the rect-
angle AC, CB by a rational area,

for both are rational.

Therefore the squares on 4D, DA also exceed the squares
on AC, CB by a rational area:

which is impossible,

for both are medial [x. 15 and 23, Por.], and a medial area does

not exceed a medial by a rational area, [x. 26]
Therefore etc.

Q. E. D.

Suppose, if possible, that the same first apotome of a medial straight line

can be expressed in terms of the required character in two ways, so that
x=y= x T s

and suppose that x > x',

In this case &* + 3%, (™ + »7) are both medial areas, and 2xy, 2x"y" are both
rational areas ;
and A4yt — (x4 y?) = 22y — 25y

Hence x. 26 is contradicted again ;
therefore etc.
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ProrosiTion 81.

7o a second apotome of a medial straight line only one
medial straight line can be annexed which is commensurable
with the whole in squarve only and whick contains with the
whole a medial rectangle.

Let AB be a second apotome of a medial straight line
and BC an annex to A5 ;
therefore 4C, CB are medial straight 4 8 ¢ D
lines commensurable in square only and
such that the rectangle AC, CB which
they contain is medial. [x. 75)

I say that no other medial straight line
can be annexed to 48 which is commen-
surable with the whole in square only and
which contains with the whole a medial
rectangle.

For, if possible, let BD also be so
annexed ;
therefore 40, DB are also medial straight
lines commensurable in square only and
such that the rectangle 40, DB which
they contain is medial. [x. 75])

Let a rational straight line £/ be set out,

let £G equal to the squares on 4C, CB be applied to EF,
producing ZM as breadth,

and let ZG equal to twice the rectangle 4C, CB be sub-
tracted, producing M as breadth ;

therefore the remainder £L is equal to the square on A5,

: ; [1. 7]
so that A8 is the “side” of EL.

Again, let £7 equal to the squares on 4.0, DB be applied
to £F, producing £ as breadth.
But £L is also equal to the square on A5 ;

therefore the remainder A/ is equal to twice the rectangle
AD, DB. (1. 7]

Now, since AC, CB are medial straight lines,
therefore the squares on AC, CB are also medial.

(e}

zrm
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And they are equal to £G;
therefore £G is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line £, producing
EM as breadth ;

therefore £M is rational and incommensurable in length
with EF. [x. 22]

Again, since the rectangle 4C, CAB is medial,

twice the rectangle 4C, CAB is also medial. [x. 23, Por.]
And it is equal to ZG;

therefore G is also medial.

And it is applied to the rational straight line £, producing
HM as breadth;

therefore /7 is also rational and incommensurable in length
with £F. [x. 22]

And, since AC, CB are commensurable in square only,
therefore 4C is incommensurable in length with CA5.

But, as AC is to C2, so is the square on AC to the rect-
angle AC, CB;

therefore the square on AC is incommensurable with the
rectangle AC, CAB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC,

while twice the rectangle 4C, CB is commensurable with the

rectangle AC, CB; [x. 6]
therefore the squares on AC, CB are incommensurable with
twice the rectangle AC, CA. [x. 13]

And EG is equal to the squares on AC, CB,
while G/ is equal to twice the rectangle 4AC, C5;
therefore £G is incommensurable with ZG.
But, as £G is to HG, so is EM to HM ; [vt. 1]
therefore £M is incommensurable in length with 4. [x. 11]
And both are rational ;

therefore £M, M H are rational straight lines commensurable
in square only ;

therefore £/ is an apotome, and /M an annex to it. [x. 73]
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Similarly we can prove that AV is also an annex to it;

therefore to an apotome different straight lines are annexed
which are commensurable with the wholes in square only :

which is impossible. (x. 79]
Therefore etc.
Q. E. D.

As the irrationality of the second apolome of a medial straight line was
deducege‘gx. 75] from the irrationality of an apotome, so the present theorem
is reduced to x. 79.

Suppose, if possible, that (x—y), (#'~y') are the same second apotome of
a medial straight line ;
and let (say) x be greater than x'.

Apply (#*+y%), 2xy and also (x" +»"), 2x’y' to a rational straight line o,
i.e.

o a+yi=ou x4yt =au

} and A% } i
2%y = 0¥ 2x"y = ot/

Dealing with (x - y) first, we have:

(«*+ ") is a medial area, and 2xy is also a medial area.

Therefore u, v are both rational and v o ... (1)
Also, since x ~ y, x vy,

so that 2o ay,

whence, as usual, a4y o 23y,

that is, ol v ov,

and therefore R RO B SRR e (2).

Thus [(1) and (2)] #, v are rational and ~,

so that (#— v) is anh apotome.
Similarly (#' - #') is proved to be the same apotome.
Hence this apotome is formed in two ways:

which contradicts x. 79.

Therefore the original hypothesis is false, and a sewnd apotome of a
medial straight line is uniquely formed.

ProrosiTioN 82.

To a minor straight line only one straight line can be
annexed whick is incommensurable in squarve with the whole
and whick makes, with the whole, the sum of the squares on
them rational but twice the rectangle contained by them medial.

Let A8 be the minor straight line, and let BC be an
annex to A5,

therefore AC, CB are straight A__ 8 9.0
lines incommensurable in square
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which make the sum of the squares on them rational, but
twice the rectangle contained by them medial. [x. 76]
I say that no other straight line can be annexed to 42
fulfilling the same conditions.
For, if possible, let BD be so annexed ;
therefore 4D, DB are also straight lines incommensurable
in square which fulfil the aforesaid conditions. [x. 76]
Now, since the excess of the squares on 4D, DB over
the squares on AC, CA is also the excess of twice the rect-
angle AD, DB over twice the rectangle 4C, CB,
while the squares on 4D, DB exceed the squares on AC,
CBAB by a rational area,

for both are rational,

therefore twice the rectangle 4D, DA also exceeds twice
the rectangle AC, CB by a rational area:
which is impossible, for both are medial. [x. 26]

Therefore to a minor straight line only one straight
line can be annexed which is incommensurable in square with
the whole and which makes the squares on them added
together rational, but twice the rectangle contained by them
medial.

Q. E. D.

Suppose, if possible, that, with the usual notation,
x—y=x~y;

and let x (say) be greater than «,

In this case (x*+%), (2 + ") are both rational areas,
and 2xy, 22"y’ are both medial areas.

But, as before,  (a®+y%) — (2" +3?) = 22y — 22/,
so that the difference between two medial areas is rational :
which is impossible [x. 26].

Therefore etc.

ProrosiTioN 83.

70 a straight line whick produces with a rational area a
medial whole only one straight line can be annexed whick is
incommensurable in squarve with the whole straight line and
which with the whole straight line makes the sum of the squares
on them medial, but twice the rectangle contained by them
rational.
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Let A28 be the straight line which produces with a rational
area a medial whole,
and let BC be an annex to A5 ; A B ¢ D
therefore AC, CB are straight lines
incommensurable in square which fulfil the given conditions. :
_ [x. 77
I say that no other straight line can be annexed to A8
which fulfils the same conditions.
For, if possible, let 2D be so annexed ;
therefore 4D, DB are also straight lines incommensurable in
square which fulfil the given conditions. [x. 77]
Since then, as in the preceding cases,
the excess of the squares on 4D, DB over the squares on
AC, CB is also the excess of twice the rectangle 4D, DB
over twice the rectangle 4C, CB,

while twice the rectangle 4D, DB exceeds twice the rectangle
AC, CB by a rational area,

for both are rational,

therefore the squares on 4D, DB also exceed the squares

on AC, CB by a rational area:

which is impossible, for both are medial. [x. 26]
Therefore no other straight line can be annexed to A8

which is incommensurable in square with the whole and which
with the whole fulfils the aforesaid conditions ;

therefore only one straight line can be so annexed.
Q. E. D.

Suppose, with the same notation, that
x—y=a" -y (x>2)
Here, (x*+3%), (#™+»") being both medial areas, and 2xy, 2x’y’ both
rational areas,
while (' +%) = (2" +57) = 22y — 2xy,
X. 26 is contradicted again.
Therefore etc.

ProrosiTiON 84.

To a straight line whick produces with a medial area a
medial whole only onme straight line can be annexed whickh is
incommensurable in square with the whole straight line and
whick with the whole straight line makes the sum of the squares
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on them medial and twice the rectangle contained by them both
niedial and also incommensurable with the sum of the squares
on them.

Let A B be the straight line which produces with a medial
area a medial whole,

and BC an annex to it;
therefore AC, CB are straight lines incommensurable in square

which fulfil the aforesaid conditions. [x. 78]
A § cC D
E H ™ N
FL a

I say that no other straight line can be annexed to A2
which fulfils the aforesaid conditions.
For, if possible, let 2D be so annexed,
so that 4D, DB are also straight lines incommensurable in
square which make the squares on A0, DB added together
medial, twice the rectangle 40, DB medial, and also the
squares on 40D, DB incommensurable with twice the rectangle
AD, DB. [x. 78]
Let a rational straight line £ be set out,
let £G equal to the squares on 4C, CB be applied to £F,
producing £M as breadth,
and let //G equal to twice the rectangle AC, CB be applied
to EF, producing /M as breadth ;
therefore the remainder, the square on 428 [u. 7], is equal
to £/
therefore 425 is the “side” of £L.

Again, let £7 equal to the squares on 4.0, DB be applied
to £F, producing £/ as breadth.

But the square on 42 is also equal to £L;
therefore the remainder, twice the rectangle 40D, DB [u. 7],
is equal to A/.
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Now, since the sum of the squares on 4C, CB is medial
and is equal to £G,
therefore £G is also medial.

And it is applied to the rational straight line £, pro-
ducing EM as breadth ;
therefore £/ is rational and incommensurable in length
with EF, [x. 22]

Again, since twice the rectangle 4AC, CB is medial and is
equal to G,

therefore /G is also medial.

And it is applied to the rational straight line £, pro-
ducing AZM as breadth;
therefore /M is rational and incommensurable in length
with EF. [x. 22]

And, since the squares on AC, CAB are incommensurable
with twice the rectangle AC, CB,

EG is also incommensurable with /7G ;
therefore £/ is also incommensurable in length with M/ A.
[ve 1, x. 11]
And both are rational ;

therefore £M, MH are rational straight lines commensurable
in square only ;

therefore £/ is an apotome, and A an annex to it. [x. 73]

Similarly we can prove that £/ is again an apotome and
AN an annex to it.

Therefore to an apotome different rational straight lines
are annexed which are commensurable with the wholes in
square only :

which was proved impossible. [x. 79]

Therefore no other straight line can be so annexed to A5.
Therefore to A8 only one straight line can be annexed
which is incommensurable in square with the whole and which
with the whole makes the squares on them added together
medial, twice the rectangle contained by them medial, and
also the squares on them incommensurable with twice the

rectangle contained by them.
Q. E. D.
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With the usual notation, suppose that

x-y=s-y. (x> )
Let x'+y’=.m d x"+y"=|n{
2%y = o0 } 2xy = ot/ }

Consider (x—y) first;
it follows, since (x* + y‘), 2xy are both medial areas, that

4, v are both rationaland v o ....... e — ) |
But x’+y’u z.ty,

that is, ou v o,

and therefore [TRVE ERURER—— |- | |

Therefore [(:) and (z)] », v are rational and ~s
hence (% - ) is an apotome.
Similarly (¢’ ~’) is proved to be the same apotome.
Thus the same apotome is formed as such in two ways:
which is impossible [x. 79].
Therefore, etc.
DEFINITIONS III.

1. Given a rational straight line and an apotome, if the
square on the whole be greater than the square on the annex
by the square on a straight line commensurable in length with
the whole, and the whole be commensurable in length with
the rational straight line set out, let the apotome be called a
first apotome,

2. But if the annex be commensurable in length with
the rational straight line set out, and the square on the whole
be greater than Ehat on the annex by the square on a straight
line commensurable with the whole, let the apotome be called
a second apotome.

3. But if neither be commensurable in length with the
rational straight line set out, and the square on the whole be
greater than the square on the annex by the square on a
straight line commensurable with the whole, let the apotome
be called a third apotome.

4. Again, if the square on the whole be greater than
the square on the annex by the square on a straight line
mcommensurable with the whole, then, if the whole com-
mensurable in length with the rational straight line set out,
let the apotome be called a fourth apotome;

5. if the annex be so commensurable, a fifth ;
6. and, if neither, a sixth.
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ProrosiTiON 85.

To find the first apotome.

Let a rational straight line A4 be set out,
and let BG be commensurable in length with A4 ;
therefore BG is also rational.

A B ¢© G

H

E F D
Let two square numbers DE, EF be set out, and let their
difference /D not be square ;

therefore neither has £D to DF the ratio which a square
number has to a square number.

Let it be contrived that,
as £D is to DF, so is the square on B¢ to the square on GC;

[x. 6, Por.]
therefore the square on BG is commensurable with the square
on GC. [x. 6]

But the square on B is rational ;
therefore the square on GC is also rational ;
therefore G'C is also rational.
And, since £D has not to DF the ratio which a square
number has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore ZC is an apotouc. [x. 73]

I say next that it is also a first apotome.

For let the square on /7 be that by which the square on
BG is greater than the square on GC.

Now since. as £D is to /D, so is the square on BG to
the square on GC,
therefore also, converiendo, [v. 19, Por.]

as DE is to £F, so is the square on G2B to the square on /.
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But DE has to £F the ratio which a square number has
to a square number,

for each is square ;

therefore the square on G5 also has to the square on /A the
ratio which a square number has to a square number ;

therefore BG is commensurable in length with /. [x. 9]

And the square on BG is greater than the square on GC
by the square on #;
therefore the square on BG is greater than the square on GC

by the square on a straight line commensurable in length
with BG.

And the whole BG is commensurable in length with the
rational straight line 4 set out.
Therefore BC is a first apotome. [x. Deff. n. 1]
Therefore the first apotome BC has been found.
(Being) that which it was required to find.

Take 4p commensurable in length with p, the given rational straight line.
Let % #* be square numbers such that (»*—#?) is not square.

Take x such that e (=)= Mpt i At (D),
so that x=kp J“:; #!
=kp N1=N, say.

Then shall &p—x, or kp—Ap /1 — A%, be a first apotome.

For (a) it follows rrom (1) that « is rational but incommensurable with Zp,
whence 4p, x are rational and ~,
so that (#p - x) is an apotome.
(B) 1Ify*=A%'—2" then, by (1), convertendo,

m® ;= Fp': y},

whence y, that is, v/#p? = 2%, is commensurable in length with p.

And kp-~p;
therefore %p — x i< a first apolome.

As explained in the note to X. 48, the first apotome

ko—ko TN
is one of the roots of the equation
a—2kp.x + X&' =0,
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ProrosiTiON 86.
70 find the second apotome.

Let a rational straight line 4 be set out, and GC com-
mensurable in length with A4 ;
therefore GC is rational.

Let two square numbers DE, 8 _¢© a
EF be set out, and let their H
difference DF not be square.

Now let it be contrived that, g =f= oD
as FD is to DE, so is the square
on CG to the square on GA. [x. 6, Por.]

Therefore the square on CG is commensurable with the
square on G5. [x. 6]

But the square on CG is rational ;
therefore the square on G2 is also rational ;
therefore B¢ is rational.

And, since the square on GC has not to the square on GB
the ratio which a square number has to a square number,

CG is incommensurable in length with G2B. [x. 9]

And both are rational ;
therefore CG, GB are rational straight lines commensurable
in square only ;
therefore ZC is an apotome. [x. 73]

I say next that it is also a second apotonre.

For let the square on /7 be that by which the square on
BG is greater than the square on GC.

Since then, as the square on BG is to the square on GC,
so is the number £D to the number DF;,
therefore, convertendo, i

as the square on BG is to the square on /, so is DE to EF.

[v. 19, Por.]
And each of the numbers DE, EF is square ;
therefore the square on BG has to the square on / the ratio
which a square number has to a square number ;
therefore BG is commensurable in length with /. [x. 9]
And the square on BG is greater than the square on GC
by the square on A ;
therefore the square on BG is greater than the square on GC
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by the square on a straight line commensurable in length
with BG.

And CG, the annex, is commensurable with the rational
straight line 4 set out.

herefore BC is a second apotome. [x. Deff. m. 2]
Therefore the second apotome BC has been found.
Q E. D.

Take, as before, 2p commensurable in length with p.
Let m% »* be again square numbers, but (m’—n’) not square

Take x such that (m*—n") :m* = k’p’ o SRS RR 2 )
whence x=hkp ——-
o
T,
s e il
Thus x is greater than %p.

Then x - &p, or 'Jé 5 kp, is a second apotome.

For (a), as before, x is rational and ~ Zp.
(B) If x*= A%® = »*, we have, from (1),
it =%yt
Thus y, or ~/x? = 4%?, is commensurable in length with x.
And &pis ~ p.
Therefore x — %p is a second apotome.
As explained in the note on X. 49, the second apotome

kp
3 1-A? A
is the lesser root of the equation
zlp

A.’
BT e

ProrosiTioN 87.
To find the third apotome.

Let a rational straight line 4 be set out,
let three numbers £, BC, CD be
set out which have not to one
another the ratio which a square ©__H 9
number has to a square number, ¥
but let CB have to BD the ratio e
which a square number has to a Aol aa
square number. .

Let it be contrived that, as £ 8 > ¢
is to BC, so is the square on 4 to the square on ~G,
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and, as BC is to CD, so is the square on FG to the square
on GH. [x. 6, Por.]

Since then, as £ is to BC, so is the square on A to the
square on FG,

therefore the square on 4 is commensurable with the square
on FG. [x. 6]

But the square on A4 is rational ;
therefore the square on G is also rational ;
therefore G is rational.

And, since £ has not to BC the ratio which a square
number has to a square number,
therefore neither has the square on A to the square on FG
the ratio which a square number has to a square number ;
therefore A4 is incommensurable in length with 7G. [x 9]

Again, since, as BC is to CD, so is the square on FG to
the square on GH,

therefore the square on /G is commensurable with the square
on GH. [x. 6]

But the square on FG is rational ;
therefore the square on G/ is also rational ;
therefore GH is rational.

And, since BC has not to CD the ratio which a square
number has to a square number,

therefore neither has the square on #G to the square on GH

the ratio which a square number has to a square number ;

therefore #G is incommensurable in length with GA.  [x. 9]
And both are rational ;

therefore #G, GH are rational straight lines commensurable

in square only ;

therefore F/ is an apotome. [x. 73]

I say next that it is also a third apotome.
For since, as £ is to BC, so is the square on A4 to the
square on FG,

and, as BC is to CD, so is the square on FG to the square
on HG,

therefore, ex aeguali, as E is to CD, so is the square on A4
to the square on AG. [v. 22]
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But £ has not to CD the ratio which a square number
has to a square number ;
therefore neither has the square on 4 to the square on GH
the ratio which a square number has to a square number;
therefore A4 is incommensurable in length with GA. [x. 9]

Therefore neither of the straight lines FG, GH is
commensurable in length with the rational straight line 4

set out.
Now let the square on A be that by which the square on

FG is greater than the square on G/.

Since then, as BC is to CD, so is the square on FG to
the square on G/,
therefore, convertendo, as BC is to BD, so is the square on
FG to the square on X. [v. 19, Por.]

But BC has to BD the ratio which a square number has
to a square number ;

therefore the square on #G also has to the square on X the
ratio which a square number has to a square number.

Therefore /G is cornmensurable in length with X, [x. 9]

and the square on FG is greater than the square on GA by
the square on a straight line commensurable with 7~G.

And neither of the straight lines G, G/ is commen-
surable in length with the rational straight line 4 set out;

therefore 7/ is a third apotome. [x. Deff. m1. 3]
Therefore the third apotome /A has been found.
Q. E. D.

Let p be a rational straight line.

Take numbers g, gm®, 7 (m* — »%) which have not to one another the ratio
of square to square.

Now let x, y be such that

Diagmimpt: 2V Gl i (1)

and gm g (M —n) =2 1 PP, (2).

Then shall (x - y) be a #kird apotome.

For (a), from (1
xis rational but v p ............ R LT, % ).

And, from (2), y is ra.honal but S

Therefore x, y are rational and ~,

so that (x — y) is an apotome.
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(B) By (1), (2), ex acquali,
2ig(m—n’)=p': 5
whence y v p.

Thus, by this and (3), , yare both v p ...ooeviiiiiiiiiiiinid (4).
Lastly, let 5* = x* — 3 so that, from (2), convertendo,
gm® i gn*=x*: 2%;
therefore 5, or V=) A x .ooouveinn, w5)

Thus [(4) and (5)] (=) isa Mtra‘apom
Tt Bkt st oo 1) 80g (03

y=p. _”"%{z!
so that x-y:,\/g.p(m-m.

This may be written in the form
mJk.p—mJk.pN1 =\
As explained in the note on X. 50, this is the lesser root of the equation
22— 2m k. px + Nmhp® = o.

ProrosiTion 88.

To find the fourth apotome.

Let a rational straight line 4 be set out, and BG com-
mensurable in length with it;

therefore BG is also rational.

A—— Sos W B0

H

Let two numbers DF, FE be set out such that the whole
DE has not to either of the numbers DF, EF the ratio
which a square number has to a square number.

Let it be contrived that, as DZ£ is to £F, so is the square

on BG to the square on GC; [x. 6, Por.]
therefore the square on BG is commensurable with the square
on GC. [x. 6]

But the square on BG is rational ;
therefore the square on GC is also rational ;
therefore GC is rational.
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Now, since DE has not to EF the ratio which a square
number has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]

Now let the square on /A be that by which the square on
BG is greater than the square on GC.

Since then, as DE is to EF, so is the square on BG to
the square on GC,
therefore also, convertendo, as ED is to DF, so is the square
on G2A to the square on /. [v. 19, Por.]

But £D has not to DF the ratio which a square number
has to a square number ;
therefore neither has the square on GAB to the square on A
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with /. [x- 9]

And the square on BG is greater than the square on GC
by the square on /;
therefore the square on BG is greater than the square on GC
by the square on a straight line incommensurable with BG.

And the whole BG is commensurable in length with the
rational straight line 4 set out.

Therefore BC is a fourth apotome. [x. Deff. m1. 4]

Therefore the fourth apotome has been found.

Q. E.D.

Beginning with p, %p, as in x. 85, 86, we take numbers m, n such that
(m + n) has not to either of the numbers m, # the ratio of a square number to
a square number.

Take x such that () s Mo i 8T oonrncorersbatsivess sadusi (1),
n
whence x=4kp ===
Iy
Ni+d' %

Then shall (4p — x), or (&p - ), be a fourth apotome.

. .2
JrEa
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For, by (1), x is rational and ~ #.
Also v #p® - a? is incommensurable with £p, since
(m + n) : m=Fp : (Bp?—2aY),
and the ratio (7 + #) : m is not that of a square number to a square number.
And &p op.
As explained in the note on X. 51, the fourtk apotome

o 4p
31+&
is the lesser root of the quadratic equation
A
x'—zkp.x+mé'p'=o.

ProrosiTiON 89.

7o find the fifth apotome.

Let a rational straight line 4 be set out,
and let CG be commensurable in length

with A4 ; B |°
therefore CG is rational.
Let two numbers DF, FE be set out c

such that DE again has not to either of the |A
numbers DF, FE the ratio which a square
number has to a square number ; Q
and let it be contrived that, as #£ is to £D,
so is the square on CG to the square on GAB. £
Therefore the square on GB is also
rational ; [x. 6]
therefore BG is also rational.
Now since, as DE is to £F, so is the square on BG to
the square on GC,
while DE has not to ZF the ratio which a square number
has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square wumber has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]

-
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I say next that it is also a fifth apotome.

For let the square on /& be that by which the square on
BG is greater than the square on GC.

Since then, as the square on BG is to the square on GC,
so is DE to EF,

therefore, convertendo, as ED is to DF, so is the square on
BG to the square on /. [v. 19, Por.]

But £D has not to DF the ratio which a square number
has to a square number ;
therefore neither has the square on BG to the square on /A
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with /7. [x. 9]

And the square on BG is greater than the square on GC
by the square on /7;

therefore the square on GB is greater than the square on GC
by the square on a straight line incommensurable in length
with GB.

And the annex CG is commensurable in length with the
rational straight line A4 set out ;

therefore BC is a fifth apotome. [x. Deff, 1. 5]
Therefore the fifth apotome BC has been found.
Q. E. D.
Let p, 4p and the numbers m, » of the last proposirion be taken.
Take x such that ni(man)=kp*:a? i, (1).
In this case x > &p, and *Jp\/”+”
=ApNT+X, say.

Then shall (x - Zp), or (kw1 + ép), be a fifth apotome.
For, by (1), x is rational an
And smee, by (1 () (2 ),
N2*— B¢ is incommensurable with x.
AI'O ko rp
As explained in the note on X. 52, the fifth apotome
ko1 +X - kp
is the lesser root of the quadratic

& —2kpN 1+ A x4+ At =0
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PRrOPOSITION goO.

To find the sixth apotome.

Let a rational straight line 4 be set out, and three
numbers £, BC, CD not having
to one another the ratio which A
a square number has to a square
number ;

and further let CA also not have
to BD the ratio which a square

number has to a square number, e R

Let it be contrived that, as
E is to BC, so is the square on 4 to the square on FG,

and, as BC is to CD, so is the square on FG to the square
on GH. [x. 6, Por.]

Now since, as £ is to BC, so is the square on A4 to the
square on FG,

therefore the square on A4 is commensurable with the square
on FG. [x. 6]

But the square on A is rational ;
therefore the square on FG is also rational ;
therefore /G is also rational.

And, since £ has not to BC the ratio which a square
number has to a square number,

therefore neither has the square on A4 to the square on FG
the ratio which a square number has to a square number ;

therefore A is incommensurable in length with 7G. [x 9]

Again, since, as BC is to CD, so is the square on FG to
the square on G/A,

therefore the square on G is commensurable with the square
on GH. [x. 6]

But the square on FG is rational ;
therefore the square on G/ is also rational ;
therefore G/ is also rational.

And, since BC has not to CD the ratio which a square
number has to a square number,
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therefore neither has the square on G to the square on GH

the ratio which a square number has to a square number ;

therefore #G is incommensurable in length with GA.  [x. 9]
And both are rational ;

therefore #G, GH are rational straight lines commensurable

in square only ;

therefore /A is an apotome. [x. 73]

I say next that it is also a sixth apotome.

For since, as £ is to BC, so is the square on A4 to the
square on FG,
and, as BC is to CD, so is the square on FG to the square
on GH,
therefore, ex aeguali, as E is to CD, so is the square on 4 to
the square on GA. [v. 22]

But £ has not to CD the ratio which a square number
has to a square number ;

therefore neither has the square on A to the square on GH
the ratio which a square number has to a square number ;

therefore A is incommensurable in length with GA';  [x. 9]

therefore neither of the straight lines /G, GA is commen-
surable in length with the rational straight line 4.

Now let the square on X be that by which the square on
FG is greater than the square on GA.

Since then, as BC is to CD, so is the square on FG to
the square on G/,

therefore, convertendo, as CB is to BD, so is the square on
FG to the square on X [v. 19, Por.]

But C2 has not to ZD the ratio which a square number
has to a square number ;

therefore neither has the square on FG to the square on X
the ratio which a square number has to a square number ;

therefore G is incommensurable in length with X [x. 9]

And the square on FG is greater than the square on GA
by the square on X';
therefore the square on FG is greater than the square on GA

by the square on a straight line incommensurable in length
with 7G.



190 BOOK X [x. 9o, o1

And neither of the straight lines #G, GH is commen-
surable with the rational straight line 4 set out.

Therefore #H is a sixth apotome. [x. Deff. 1. 6]
Therefore the sixth apotome #/ has been found.
Q. E. D.

Let p be the given rational straight line.

Take numbers g, (7 + ), » which have not to one another the ratio of a
square number to a square number, m, » being also chosen such that the
ratio (m + n) : m is not that of square to square.

Take x, y such that Pimen)y=p"iat. (1),
(man):in=2%:9.. ..occoeiiennnnncn(2)

Then shall (x - y) be a sixth apotome.
For, by (1), xis rational and v p .e.evuviiniiiiiniiiiiiiiiii (3)-
By (2), since x is rational,

yisrational and v & ....oovviiiiiiiininns ceee(4)
Thus [(3), (4)] (x —») is an apotome.
Again, ex aequalli, - prim=p':y}

whence y v p.

Thus x, y are both v p.
Lastly, convertendo from (2),
(m+nm) :m=2": (a*—»"),
whence /2 =y v .
Therefore (x—y) is a sixth apotome.

From (1) and (2) we have
kil [m+n :
2
e
so that the sixth apotome may be written
S,
P ? =, } »

or, more simply, NE.p—JA.p.
As explained in the note on X. 53, the sixtk apofome is the lesser root of

the equation
a—2,Jk.px+ (k=N p'=o.

ProrosiTION 91.
If an area be contained by a rational straight line and a
Jirst apotome, the “side” of the area is an apotome.

For let the area 4B be contained by the rational straight
line AC and the first apotome 4D ;

I say that the ““side” of the area 423 is an apotome.
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For, since AD is a first apotome, let DG be its annex ;
therefore 4G, GD are rational straight lines commensurable
in square only. [x. 73]

And the whole 4G is commensurable with the rational
straight line AC set out,

and the square on AG is greater than the square on GD
by the square on a straight line commensurable in length
with 4G ; [x. Deff. m1. 1]

if therefore there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square

figure, it divides it into commensurable parts. [x. 17]
A D E F G
C B N H K
L P
Ly
il
s AP
s
R S

Let DG be bisected at £,

let there be apglied to AG a parallelogram equal to the square
on £G and deficient by a square figure,

and let it be the rectangle AF, FG ;
therefore 4F is commensurable with ~G.

And thrngh the points £, F, G let EH, FI; GK be drawn
parallel to 4C.

Now, since AF is commensurable in length with FG,

therefore AG is also commensurable in length with each of
the straight lines AF, FG. [x. 15]

But 4G is commensurable with AC;

therefore each of the straight lines A%, G is commensurable
in length with 4C. [x. 12]
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And A4C is rational ;
therefore each of the straight lines 4F, FG is also rational,
so that each of the rectangles 47, FK is also rational. [x. 19]
Now, since D £ is commensurable in length with £G,

therefore DG is also commensurable in length with each of

the straight lines DE, EG. [x. 5]
But DG is rational and incommensurable in length

with 4C;

therefore each of the straight lines D, EG is also rational

and incommensurable in length with 4C; [x. 13]

therefore each of the rectangles DA, EK is medial.  (x. 21]

Now let the square LM be made equal to 47, and let
there be subtracted the square VO having a common angle
with it, the angle ZPM, and equal to FK;
therefore the squares LM, NO are about the same diameter.

[v1. 26]

Let PR be their diameter, and let the figure be drawn.

Since then the rectangle contained by 4, /G is equal to
the square on £G,

therefore, as AF is to £G, so is EG to FG. [v1. 17)
But, as AF is to £G, sois Al to EK,
and, as EG is to FG, so is EX to KF; [vr. 1]

therefore £X is a mean proportional between 47, KF. [v. 11]

But MAN is also a mean proportional between LM, NO,
as was before proved, [Lemma after x. 53]

and A/ is equal to the square LM, and KF to NO;
therefore MV is also equal to £X.

But £X is equal to DA, and MN to LO;
therefore DK is equal to the gnomon UVW and NO.
But AKX is also equal to the squares LM, NO;
therefore the remainder 45 is equal to S7.

But S7 is the square on LNV ;
therefore the square on LNV is equal to A5 ;
therefore LV is the “side” of 4 5.
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I say next that LNV is an apotome.
For, since each of the rectangles 47, FKX is rational,

and they are equal to LM, NO,

therefore each of the squares LM, N O, that is, the squares on
LP, PN respectively, is also rauona!

therefore each of the straight lines LP, PN is also rational,
Again, since D/ is medial and is equal to L0,

therefore ZO is also medial.
Since then L0 is medial,

while MO is rational,

therefore L0 is incommensurable with NVO.
But, as LO is to NO, sois LP to PN ; [vi. 1]

therefore L2 is incommensurable in length with 2V, [x. 11]
And both are rational ;

therefore LP, PN are rational straight lines commensurable

in square only ;

therefore LV is an apotome. [x. 73]
And it is the “side” of the area A5 ;

therefore the “side” of the area 4B is an apotome.
Therefore etc. :
This proposition corresponds to X. 54, and the problem solved in it is to

find and to classify the side of a square equal to the rectangle contained by a
;fm apotome and p, or (algebraically) to find

Vp (kp - kp JT—00).

First find #,  from the equations

u+v="kp
W=ié’p‘(n—&’}} ........................ (1),
If u, v represent the values so found, put
x'=pu
p s }(-.»),

and (x —y) shall be the square root required.
To prove this Euclid argues thus.

By (1), K:ikal_—i§=iépJI——_l\§:T’,
whence pu %/{'p'JI—;\i=ékp'J1—h’:pw,
or 2t bhpt T =N =30 I =N 1y

But [Lemma after x. 53]
alaxy=xy :y’,.
so that Xy =3 NI =R i (3)-


file://u:/kp
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Therefore (x—y)P=x"+y" - 2xy
=p(u+v)- & NEPS T
=kp*—kp* a1 — A%
Thus (x — ) is equal to «/p (&p — kp /1 =XY).
It has next to'be proved that (x —y) is an apotome.
From (1) it follows, by x. 17, that
unv;
thus », v are both commensurable with (# +v) and therefore with p...... (4)-
Hence #, v are both rational,
so that pu, pv are rational areas ;
therefore, by (2), a* »* are rational and commensurable .................. (5)
whence also «, y are rational straight lines ............ccooiviiiinnne . (6).
Next, 2p »/1 = A? is rational and v p;
therefore 34p*~'1—A? is a medial area.

That is, by (3), xy is a medial area.
But [(5)] »* is a rational area ;

therefore ay v ¥4,
or x vy
But [(6)] «, » are both rational.
Therefore x, y are rational and ~;
so that (x—y) is an apofome.
To find the form of (x — y) algebraically, we have, by solving (1),
u="44p(1+X),
v=4kp (1=A),

whence, from (2), x=p ,\/g (; +_-)\_),
y=p \/f I"A)!
and x-y=p\/§(l+h)—-p\/§(l—k).

As explained in the note on X. 54, (¥ — ) is the lesser positive root of the
biquadratic equation

at—2kp?. B+ N Hpl=0.

£ ROPOSITION Q2.

If an area be contained by a vational straight line and a
second apotome, the “side” of the area is a first apotome of a
medial straight line.

For let the area 43 be contained by the rational straight
line AC and the second apotome 4D ;



X. 92] PROPOSITIONS 91, 92 195

I say that the “side” of the area A7 is a first apotome of a
medial straight line.

A D E F Q
c B 4
N H K
L P
W/ 1 \
S (€Y, o
=
R T ™

For let DG be the annex to AD;
therefore 4G, GD are rational straight lines commensurable
in square only, [x 73]
and the annex DG is commensurable with the rational straight
line AC set out,
while the square on the whole 4G is greater than the square
on the annex GD by the square on a straight line commen-
surable in length with 4G. [x. Deff. 1. 2]
Since then the square on 4G is ter than the square
on GD by the square on a straight line commensurable
with 4G,
therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on GD and deficient by a square
figure, it divides it into commensurable parts. [x. 17]
Let then DG be bisected at £,
let there be applied to 4G a parallelogram equal to the square
on £G and deficient by a square figure,
and let it be the rectangle AF, FG;
therefore AF is commensurable in length with 7G.
Therefore AG is also commensurable in length with each

of the straight lines AF, FG. [x. 15]
But AG is rational and incommensurable in length

with 4C;
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therefore each of the straight lines A, FG is also rational
and incommensurable in length with 4C; [x. 13)
therefore each of the rectangles 47, FK is medial. [x. 21]
Again, since DE is commensurable with £G,
therefore DG is also commensurable with each of the straight
lines DE, EG. [x. 15]
But DG is commensurable in length with 4C.
Therefore each of the rectangles DA, £K is rationail. :
X. 19
Let then the square LM be constructed equal to A7,
and let there be subtracted VO equal to #X and being about
the same angle with Z/, namely the angle LZPM ;
therefore the squares LM, NO are about the same diaTeter.]
VL. 26
Let PR be their diameter, and let the figure be drawn.
Since then 47, FK are medial and are equal to the squares
on LP, PN,
the squares on L2, PN are also medial ;

therefore LP, PN are also medial straight lines commen-
surable in square only.

And, since the rectangle A%, FG is equal to the square
on EG,

therefore, as AF is to £G, so is £G to FG, [vr. 17]
while, as AF'is to £G, so is Al to EK,
and, as £G is to FG, so is EK to FK ; [v. 1]

therefore £K is a mean proportional between 47, FK. [v. 1]

But M is also a mean proportional between the squares
LM, NO,

and A/ is equal to LM, and FK to NO;
therefore MV is also equal to £X.
But DA is equal to £K, and LO equal to MV ;

therefore the whole DX is equal to the gnomon UVW
and NVO.

Since then the whole 4X is equal to ZM, NO,
and, in these, DX is equal to the gnomon UV W and NO,
therefore the remainder 425 is equal to 7°S.
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But 7S is the square on LNV ;
therefore the square on LV is equal to the area 45;
therefore LV is the “side” of the area AZ5.

I say that LV is a first apotome of a medial straight line.
For, since £K is rational and is equal to LO,

therefore L0, that is, the rectangle L2, PN, is rational.

But NO was proved medial ;
therefore O is incommensurable with MV O.

But, as LO is to NO, sois LP to PN ; vt 1]
therefore LP, PNV are incommensurable in length. [x. 11]

Therefore LP, PN are medial straight lines commen-
surable in square only which contain a rational rectangle ;

therefore LV is a first apotome of a medial straight line.
[x. 74]
And it is the “side” of the area A 5. .
Therefore the “side” of the area 4B is a first apotome
of a medial straight line.
Q. E. D.

There is an evident flaw in the text in the place (Heiberg, p. 282,
1l. 17—2o0: translation p. 196 above) where it is said that “since then 47, FK
dre medial and are equal to the squares on Z7, PN, the squares on LP, PN
are also medial ; therefore LP, PN are also medial straight lines commensurable
in square only.” Itis not till the last lines of the proposition (Heiberg, p. 284,
1. 17, 18) that it is proved that LP, PV are incommensurabdle in length. What
should have been proved in the former passage is that the sgwares on LP, PV
are commensurable, so that L7, PN are commensurable in square (not
commensurable in square on/y). 1 have supplied the step in the note below :
“ Also x* ~ 3#, since u# ~2.” Theon seems to have observed the omission and
to have put “and commensurable with one another” after * medial” in the
passage quoted, though even this does not show w4y the squares on LP, PN
are commensurable. One Ms. (V) also has “only” (uovor) erased after
“commensurable in square.”

This proposition amounts to finding and classifying

The method is that of the last proposition. Euclid solves, first, the
equations

u+v= a_—é_pz
TR P e (1).
uy = 1 &p*
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Then, using the values of #, » so found, he puts

;: : ";: } .............................. (2),

and (x — y) is the square root required.

That (F=2=4/ P(in_x,’*h)

is proved in the same way as is the corresponding fact in X. g1.

From (1) u:dhp=23kp:7,
so that pu: kot =1 k" : po.
But Arxy=axy:y,
whence, by (2), E oLt o R AR (3)
Therefore- (x—y)=a+y'—2xy
=p(u+2)=Ap*

—p(Jl_ kﬂ)

Next, we have to prove that (x —y) is a firs? apotome of a medial straight
line.

From (1) it follows, by x. 17, that

WO LT R e (4),
therefore », v are both ~ (% + ).

But [(1)] (% + o) is rational and v p;

therefore #, v are both rational and v p ..oovvvieieniii (5).
Therefore pu, py, or x% 3 are both medial areas, and x, y are medial

PR E S A ST PR SR TR SR (6).
Also 2* ~ 3% SInce # A U [(4)]reenneeeremiiniee i (7).
Now xy, or Y4p%, is a rational area ;

therefore xy v ¥,

and x vy

Hence [(6), (7), (3)] %, » are medial straight lines commensurahle in square
only and containing a rational rectangle ;

therefore (x —y) is a first apotome of a medial straight line.
Algebraical solution of the equations gives

I+A
=

1-A
= *J_A.’ Py

\/.e :+a k
and x—y=p

1 + )\
As explained in the note on x. 55, this is the lesser positive root of the
equation
2
M. A A T W
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PROPOSITION 93.

If an area be contained by a rational straght line and a
third apotome, the “‘side” of the area is a second apotome of a
medial straight line.

For let the area 42 be contained by the rational straight
line AC and the third apotome 4D ;

I say that the ‘‘side” of the area 42 is a second apotome of
a medial straight line.

For let DG be the annex to AD ;
therefore 4G, GD are rational straight lines commensurable
in square only,
and neither of the straight lines 4G, GD is commensurable
in length with the rational straight line 4C set out,
while the square on the whole 4G is greater than the square
on the annex Z2G by the square on a straight line commen-

surable with 4G. [x. Deff. m. 3]
A D E F G
f|.‘. B H K
L o P
s—— ¢ %—o
wr’

Since then the square on 4 G‘ is greater than the square
on GD by the square on a straight line commensurable
with 4G,
therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square
figure, it will divide it into commensurable parts. [x 17]

Let then DG be bisected at £,

let there be applied to 4G a parallelogram equal to the
square on £G and deficient by a square figure,

and let it be the rectangle AF, FG.
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Let EH, F/, GK be drawn through the points £, F, G
parallel to 4C.
Therefore AF, FG are commensurable ;

therefore 47 is also commensurable with FX. [vi. 1, X 11]
And, since A F, FG are commensurable in length,

therefore AG is also commensurable in length with each of
the straight lines A%, FG. [x. 15]

But AG is rational and incommensurable in length
with 4C;

so that AF, FG are so also. [x. 13]
Therefore each of the rectangles 47, FK is medial. [x. 21]

Again, since DZ is commensurable in length with £G,

therefore DG is also commensurable in length with each of
the straight lines DE, EG. [x. 15]

But GD is rational and incommensurable in length
with AC;

therefore each of the straight lines DZ, EG is also rational
and incommensurable in length with 4C; [x. 13]
therefore each of the rectangles DA, EK is medial.  [x. 21]
And, since 4G, GD are commensurable in square only;
therefore 4G is incommensurable in length with GD.

But 4G is commensurable in length with A%, and DG
with £G;

therefore 4 F is incommensurable in length with £G. [x. 13]
But, as AF is to £G, sois A/ to £EK; [vr 1]
therefore 4/ is incommensurable with £X. [x 11]

Now let the square ZA/ be constructed equal to 47,

and let there be subtracted VO equal to FK and being about
the same angle with LA/ ;

therefore LM, NO are about the same diameter. [v1. 26)

Let PR be their diameter, and let the figure be drawn.
Now, since the rectangle AF, FG: is equal to the square
on £G,

therefore, as AF is to EG, so is EG to FG. [vt. 17]
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But, as AF is to £EG, so is A/ to EK,
and, as £G is to FG, so is EK to FK ; [vr. 1]
therefore also, as A/ is to £K, so is EK to FK ; [v. 11]
therefore £K is a mean proportional between A7, FK.

But M is also a mean proportional between the squares
LM, NO,
and A4/ is equal to LM, and FK to NO;
therefore £X is also equal to M//V.

But MN is equal to LO, and £K equal to DH ;
therefore the whole DX is also equal wo the gnomon UV
and NO.

But AK is also equal to LM, NO;
therefore the remainder 425 is equal to S7, that is, to the
square on LNV ;
therefore LV is the “side” of the area 4 5.

I say that LNV is a second apotome of a medial straight
line.

For,since A7, FK were proved medial, and are equal to the
squares on LP, PN,
therefore each of the squares on L2, PV is also medial ;
therefore each of the straight lines L2, PNV is medial.

And, since A7 is commensurable with 7K, [ve. 1, x. 11]
therefore the square on L2 is also commensurable with the
square on PN.

Again, since 47 was proved incommensurable with £X,
therefore LM is also incommensurable with MV,
that is, the square on L2 with the rectangle L2, PN ;

so that L2 is also incommensurable in length with PV ;

[vr. 1, x. 11]
therefore L P, PN are medial straight lines commensurable in
square only.

I say next that they also contain a medial rectangle.

For, since £K was proved medial, and is equal to the
rectangle LP, PN,
therefore the rectangle L2, PNV is also medial,
so that Z P, PN are medial straight lines commensurable in
square only which contain a medial rectangle.
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Therefore ZNV is a second apotome of a medial straight
line; [x. 75]
and it is the “side” of the area 45.

Therefore the “side” of the area 45 is a second apotome
of a medial straight line.
Q. E. D.

Here we are to find and classify the irrational straight line

Np(Jk.p=Jh.pT =X
Following the same method, we put
u+v= [k.p
w0 =1 Ag* (1 - X) } ........................... (1).
Next, #, v being found, let
2= pu }
..... O T (ENBSHR | ) 1
F=p )
then (x—y) is the square root required and is a second apotome of a medial
straight line.

That (x — y) is the square root required and that x° y* are medial areas, so
that x, y are medial straight lines, is proved exactly as in the last proposition.

The rectangle xy, being equal to § /4. p* /1 — A%, is also medial.

Now, from (1), by x. 17, un,
whence U+v o

But (u+), or Jk.py v} Jl.pJT=A;
therefore oy JkopT=N,
and consequently puv b JE. TN,
or 2w xy,
whence x v Y.

And, since # ~ 7, pu ~ pv,
or x eyt

Thus x, y are medial straight lines commensurable in square only.
And xy is a medial area.

Therefore (x — y) is a second apotome of a medial straight line.

Its actual form is found by solving equations (1), (2);

thus u=4(Jk.p+ A Jk. p),
v=é(~f‘é.p-—l~/k.;?, .
and x—y:pJ¥(1+k)—pJ{f(l—A).

As explained in the note on X. 56, this is the lesser positive root of the
equation
xt— 2 Jk.p'x® + Nhp=o0.
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PROPOSITION 04.

If an arvea be contained by a rational straight line and a
Sourth apotome, the ‘“side” of the area is minor.

For let the area 4.8 be contained by the rational straight
line AC and the fourth apotome 4D ;
I say that the “side” of the area 43 is minor.

For let DG be the annex to AD ;
therefore 4G, GD are rational straight lines commensurable
in square only,
AG is commensurable in length with the rational straight line
AC set out,

and the square on the whole 4G is greater than the square
on the annex DG by the square on a straight line incommen-

surable in length with 4G, [x. Deff. 111. 4]

A D E F @
c B H K

L " P

Pi \
s v °
e
R T M

Since then the square on 4G is greater than the square
on GD by the square on a straight line incommensurable
in length with 4G,
therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square
figure, it will divide it into incommensurable parts. [x. 18]

Let then DG be bisected at £,
let there be applied te 4G a parallelogram equal to the square
on £G and deficient by a square figure,
and let it be the rectangle 4%, FG ;
therefore A F is incommensurable in length with 7G.
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Let £H, FI, GK be drawn through £, F, G parallel to
AC, BD.

Since then AG is rational and commensurable in length
with 4C,
therefore the whole 4 X is rational. [x. 19]
Again, since DG is incommensurable in length with 4C,
and both are rational,
therefore DX is medial. [x. 21]
Again, since A F is incommensurable in length with 7G,
therefore A7 is also incommensurable with X,  [vr 1, x. 11)
Now let the square L M be constructed equal to 47,
and let there be subtracted VO equal to FK and about the
same angle, the angle LPM.

Therefore the squares LM, NO are about the same
diameter, [v1. 26]
Let PR be their diameter, and let the figure be drawn.

Since then the rectangle AF, FG is equal to the square
on EG,

therefore, proportionally, as AF is to £G, so is £G to FG.

VI. 1

But, as AFis to EG, so is A] to EK, e #2}
and, as £G is to FG, so is £EK to FK ; [v1. 1]
therefore £X is a mean proportional between 47, FK. [v. 11]

But M is also a mean proportional between the squares
LM, NO,
and A7 is equal to LM, and FK to NO;
therefore £X is also equal to M.

But DH is equal to £K, and LO is equal to M N ;
therefore the whole DX is equal to the gnomon UVW
and NVO.

Since, then, the whole 4K is equal to the squares
LM, NO,
and, in these, DX is equal to the gnomon UVW and the
square N O,
therefore the remainder 425 is equal to S7, that is, to the
square on LNV ;
therefore LV is the “side” of the area 4.5.
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I say that LNV is the irrational straight line called minor.

For, since AKX is rational and is equal to the squares on
LP; PN,

therefore the sum of the squares on L2, PN is rational.
Again, since DK is medial,
and DX is equal to twice the rectangle L2, PN,
therefore twice the rectangle L2, PN is medial.
And, since A7 was proved incommensurable with X,

therefore the square on L2 is also incommensurable with the
square on PN,

Therefore LP, PN are straight lines incommensurable in
square which make the sum of the squares on them rational,
but twice the rectangle contained by them medial.

Therefore LN is the irrational straight line called minor;

e e akos [x. 76]
and it is the “side” of the area 45.
Therefore the ‘““side” of the area A5 is minor.
Q. E. D.
We have here to find 4nd classify the straight line
kp
y I
Ve (- g2
As usual, we find », v from the equations
u+v==~kp
Loy B Rl sasesvassiesinniin (1),
o= 1+A }
and then, giving #, v their values, we put
x=pu
£/l } T e Y

Then (x —y) is the required square root.
This is proved in the same way as before, and, as before, it is proved that

A

il ey
Now, from (1), by x. 18, 4w
therefore pl v pv,
or at vy',

so that x, y are incommensurable in square.
And 2® + ", or p (v + ), is a rational area (kp?).

_ & s :
But 2xy = s which is a medial area.
Hence [x. 76] (x - y) is the irrational straight line called minor.
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Algebraical solution gives

u=4kp (I + \/;—-:—_;),
whence a—-y=p \/g (1 * A ?%T\)“P‘\/g(‘ - \/;—:-1).

As explained in the note on X. 57, this is the lesser positive root of the
equation

A
" 7 L8 -0,
A= 2kp® & +1+)LP‘° o

ProrosiTION 95.

Lf an area be contained by a rational straight line and a
Jifth apolome, the “ side” of the area is a straight line which
produces with a rational area a medial whole.

For let the area 42 be contained by the rational straight
line AC and the fifth apotome 4.0 ;

I say that the “side” of the area 428 is a straight line which
produces with a rational area a medial whole.

For let DG be the annex to 4D ;
therefore 4G, GD are rational straight lines commensurable
in square only,

A D E F_ G

(o]
L=
I

[+1]

c

T D
o

the annex GD is commensurable in length with the rational
straight line 4C set out,

and the square on the whole AG is greater than the square
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on the annex DG by the square on a straight line incommen-

surable with 4G. [x. Deff. 1. 5]
Therefore, if there be applied to 4G a parallelogram

equal to the fourth part of the square on DG and deficient

by a square figure, it will divide it into incommensurable

parts. [x. 18]
Let then DG be bisected at the point £,

let there be applied to 4G a parallelogram equal to the

square on £G and deficient by a square figure, and let it be

the rectangle AF, FG;

therefore 4/ is incommensurable in length with £#G.

Now, since 4G is incommensurable in length with C4,
and both are rational,

therefore 4K is medial. [x. 21]
Again, since DG is rational and commensurable in length

with AC,

DK is rational. [x. 19]

Now let the square LM be constructed equal to 47, and
let the square VO equal to 7K and about the same angle, the
angle LM, be subtracted ;

therefore the squares LM, NO are about the same diameter.
[vi. 26]

Let PR be their diameter, and let the figure be drawn.
Similarly then we can prove that LAV is the “side” of the
area AB.

I say that LV is the straight line which produces with a
rational area a medial whole.

For, since AKX was proved medial and is equal to the
squares on LP, PN,

therefore the sum of the squares on L2, PN is medial.
Again, since DK is rational and is equal to twice the
rectangle LP, PN,
the latter is itself also rational,
And, since A7 is incommensurable with 7K

therefore the square on L2 is also incommensurable with the
square on PN ;

therefore LP, PN are straight lines incommensurable in
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square which make the sum of the squares on them medial
but twice the rectangle contained by them rational.

Therefore the remainder LV is the irrational straight line
called that which produces with a rational area a medial
whole ; (x. 77]

and it is the “side” of the area 4 B.

Therefore the “side” of the area 4B is a straight line
which produces with a rational area a medial whole.
Q. E. D.

Here the problem is to find and classify
Np (ko ST+ X = kp).

utv=rbpAlT A )
uﬂ:*k’p‘ } --------------------------- y
and, », v being found, we take

As usual, we put

2= pu }

.............................. 2).
y=pv @)

Then (x - y) so found is our required square root.

This fact is proved as before, and, as before, we see that

xy = $Ap'.
Now from (1), by x. *8, v,
whence pu v pv,
or a? vy,

and x, y are incommensurable in square.

Next (x*+y*) = p (u + v) = Ap* /1 + A, which is a medial area.

And 2xy = £p* which is a rational area.

Hence (x - y) is the “side” of a medial, minus a rational, area. [X. 77]
Algebraical solution gives

u= kf (FT+X+.JA),
f:=k—:(v‘t +A=,/A),
and therefore

B0 \/ﬁtv’mu N =p A/ 2WTER- ),

which is, as explained in the note to x. 58, the lesser positive root of the
equation

at— 2kt NTH A, 2% 4 Mt =o0.
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ProrosiTiON 96,

~ If an area be contained by a rational straight line and a
swxth apotome, the “ side” of the area is a straight line which
produces with a medial area a medial whole.

For let the area A8 be contained by the rational straight
line AC and the sixth apotome 40 ;

[ say that the ““side” of the area 42 is a straight line which
produces with a medial area a medial whole,

A D E F a
c B L 1K
L P
s Aa—°

wt’
R T M

For let DG be the annex to AD ;

therefore AG, GD are rational straight lines commensurable
in square only,

neither of them is commensurable in length with the rational
straight line 4C set out,

and the square on the whole 4G is greater than the square
on the annex DG by the square on a straight line incommen-
surable in length with 4G. [x. Deff. m. 6]

Since then the square on 4G is greater than the square
on GD by the square on a straight line incommensurable in

length with 4G,

therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square
figure, it will divide it into incommensurable parts. [x. 18

Let then DG be bisected at £,
let there be applied to 4G a parallelogram equal to the square



210 BOOK X [x. 96

on £G and deficient by a square figure, and let it be the
rectangle AF, FG;

therefore A7 is incommensurable in length with 7G.
But, as AF is to FG, so is AL to FK; [vi.1]
therefore A7 is incommensurable with #X. [x. 11]
And, since 4G, AC are rational straight lines commensur-
able in square only,
AK is medial. [x. 21]
Again, since AC, DG are rational straight lines and
incommensurable in length,
DK is also medial. [x. 21]
Now, since 4G, GD are commensurable in square only,
therefore 4G is incommensurable in length with GD.
But, as AGisto GD, sois AK to KD ; [vr. 1]
therefore A A is incommensurable with XD, [x. 11]

Now let the square LM be constructed equal to A7,
and let VO equal to 7K, and about the same angle, be

subtracted ;

therefore the squares LM, NO are about the same diameter.
[v1. 26]

Let PR be their diameter, and let the figure be drawn.
Then in manner similar to the above we can prove that
LN is the “side” of the area 45,

I say that LNV is a straight line which produces with a
medial area a medial whole.

For, since AK was proved medial and is equal to the
squares on LP, PN,

therefore the sum of the squares on L2, PN is medial.

Again, since DK was proved medial and is equal to twice
the rectangle L2, PN,

twice the rectangle L2, PN is also medial.
And, since 4K was proved incommensurable with DX,

the squares on L2, PN are also incommensurable with twice
the rectangle L2, PN.

And, since A/ is incommensurable with 7K,

therefore the square on L2 is also incommensurable with the
square on PNV ;
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therefore LP, PN are straight lines incommensurable in
square which make the sum of the squares on them medial,
twice the rectangle contained by them medial, and further the
squares on them incommensurable with twice the rectangle
contained by them.

Therefore LN is the irrational straight line called that
which produces with a medial area a medial whole; [x. 78]

and it is the “side” of the area 425.

Therefore the “side” of the area is a straight line which
produces with a medial area a medial whole.

Q. E. D.
We have to find and classify
Np(JE.p—JA. p).
Put, as usual,
u+v=,Jk.p
i } .............................. (1),
and, », v being thus found, let
2 =pu
e } .................................... ().
Then, as before, (x — y) is the square root required.
For, from (1), by x. 18, TRVE X
whence pu w pv,
or vy

and x, y are incommensurable in square.
Next, 2*+y*=p(n +v)= ,,M . p*, which is a medial area.
Also 2xy = ,/A. p% which is again a medra/ area.
Lastly, /. p, J/A. p are by hypothesis ~, so that

Jh.po JA.p,
whence SJEpt o AP
or (2 + %) v 22y,

Thus (x — y) is the “side” of a medial, minus a medial, area [x. 78).
Algebraical solution gives

u=E (Vo JEZD),
v=L (k- VE=,

whence x—y=pJ§(J&+J&—A)-pJ&(J&-Jk—;\).
This, as explained in the note on X. 59, is the lesser positive root of the

equation
ah=2Jk.pia+ (k- N) pt=0.
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ProrosiTION 97.
The square on an apotome applied to a rational straight
line produces as breadth a first apotome.

Let 4.8 be an apotome, and CD rational,

and to CD let there be applied C£ equal to the square on
A B and producing CF as breadth ;

I say that CF is a first apotome.

A B G
ARl DA LR,
c F N K M
D 3 o H L

For let BG be the annex to A5 ;
therefore AG, GB are rational straight lines commensurable
in square only. [x. 73]

To CD let there be applied CH equal to the square on
AG, and KL equal to the square on BG.

Therefore the whole CLZ is equal to the squares on 4G, G5,
and, in these, CZ is equal to the square on A25;

therefore the remainder /L is equal to twice the rectangle

AG, GB. [ 7]
Let 7M be bisected at the point 2V,

and let VO be drawn through A parallel to CD;

therefore each of the rectangles 7O, LN is equal to the
rectangle 4G, GB.

Now, since the squares on 4G, G2 are rational,
and DM is equal to the squares on AG, G5B, .
therefore DM is rational.

And it has been applied to the rational straight line CD,
producing CM as breadth ;
therefore CM is rational and commensurable in length with
CD. [x. 20]
Again, since twice the rectangle 4G, GB is medial, and
FL is equal to twice the rectangle 4G, G5,

therefore /L is medial.
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And it is applied to the rational straight line CD, producing
FM as breadth ;

therefore #M/ is rational and incommensurable in length with
CD. [x. 22]

And, since the squares on 4G, GB are rational,
while twice the rectangle 4G, G5 is medial,

therefore the squares on 4G, GB are incommensurable with
twice the rectangle 4G, GB.

And CL is equal to the squares on 4G, G5,
and FL to twice the rectangle AG, G5B ;
therefore DM is incommensurable with #Z.
But, as DM is to FL, sois CM to FM ; [vi. 1]
therefore CM/ is incommensurable in length with ZM. [x. 11]
And both are rational ;
therefore CM, MF are rational straight lines commensurable
in square only ;
therefore CF' is an apotome. [x. 73]

I say next that it is also a first apotome.
For, since the rectangle 4G, GB is a mean proportional
between the squares on AG, G5,

and CH is equal to the square on AG,
KL equal to the square on BG,
and VL equal to the rectangle 4G, GB,
therefore VL is also a mean proportional between CH, KL ;
therefore, as CH is to VL, sois NL to KL.
But, as CH is to VL, so is CK to NM,
and, as VL is to KL, so is NM to KM ; [vi. 1]

therefore the rectangle CA, AM is equal to the square on
NM [vi. 17), that is, to the fourth part of the square on #//.

And, since the square on AG is commensurable with the
square on G2,

CH is also commensurable with KL.
But, as CH is to KL, sois CK to KM ; [vi. 1]
theretore CK is commensurable with AM/. [x 11]
Since then CM, MF are two unequal straight lines,
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and to CM there has been applied the rectangle CK, KM
equal to the fourth part of the square on #/ and deficient by
a square figure,

while CX is commensurable with KM,

therefore the square on CH/ is greater than the square on MF
by the square on a straight line commensurable in length
with CM. [x. 17]
And CM is commensurable in length with the rational
straight line CD set out;
therefore CF is a first apotome. [x. Deff. 1. 1]
Therefore etc.
Q. E. D.
Here begins the hexad of propositions solving the problems which are the
converse of those in the hexad just concluded. Props. 97 to 102 correspond

of course to Props. 60 to 65 relating to the binomials etc.
We have in X. 97 to prove that, (p — ,/£. p) being an apofome,

(o~ JE-p)

is a first apotome, and we have to find it geometrically.

Euclid's procedure may be represented thus.
Take x, y, z such that

ox=p'
oy = kp* } .............................. (1).
o.2z=2,/k.p

Thus (x+y)-zs=£"—':%£-)—’,

and we have to prove that (x+y) — 23 is a first apotome.
() Now p* + &% or o (x +y), is rational ;

therefore (x + y) is rational and A & ....vvevvirniiniiiiiiiniin s (2).
And 2,/k. p* or o. 25, is medial :
therefore 2z is rational and v o......... Fssassdim (g

But, o (x +y) being rational, and o . 22 medial,
o(r+y)vo.2s,
whence (x+y) v 23
Therefore, since (x + y), 2z are both rational [(2), (3)],
(x+y), 25 are rational and A= .....c.ccoviiiiiiniiiiiiiiie e e rens (4).
Hence (x +y) = 25 is an apofome.
(B) Since ,/%. p? is a mean proportional between p?, &p’,
oz is a mean proportional between ox, ay [by (1)}
That is, . ox : 0z =02 ay,
or xIE=ELY,
and xy=35% or $(25) ..vviieiiirnniiiininnninnnn (5)
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And, since p* ~ £p?, ax ~ oy,
or DV, apmvonprinttsnsrapssasmsaandoiiams (6).
Hence [(5), (6)], by x. 17,
VE+ I =(22) ~ (2 +).
And [(4)] (x +y), 2z are rational and ~,
while [(2)] (x+3) ~ o}
therefore (x + y) — 22 is a_first apotome.
The actual value of (x +y) - 23 is of course

§K1+@-2Jﬂ.

ProrosiTiON 98.

The square on a first apotome of a medial straight line
applied to a rational straight line produces as breadth a second
apolome. '

Let AB be a first apotome of a medial straight line and
CD a rational straight line,
and to CD let there be applied CE equal to the square on
AB, producing CF as breadth ;

I say that CF is a second apotome.

For let BG be the annex to A5;,

therefore 4G, GB are medial straight lines commensurable in

square only which contain a rational rectangle. [x. 74]
A B G
c F N K ™M
b ; (0 H L

To CD let there be applied C/ equal to the square on
AG, producing CK as breadth, and KL equal to the square
on G B, producing KM as breadth ;
therefore the whole CZ is equal to the squares on 4G, GB ;
therefore CL is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line CD, pro-
ducing CM as breadth;
therefore CM is rational and incommensurable in length with
CD. [x. 22]
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Now, since CL is equal to the squares on 4G, G5,
and, in these, the square on 42 is equal to CE,
therefore the remainder, twice the rectangle 4G, GB, is equal
to FL. [ 7]
But twice the rectangle 4G, G is rational ;
therefore /L is rational.
And it is applied to the rational straight line #£, producing
FM as breadth ;
therefore 7~/ is also rational and commensurable in length
with CD. [x. 20]
Now, since the sum of the squares on 4G, GB, that is,
CL, is medial, while twice the rectangle AG, G5, that is, /L,
is rational,
therefore CL is incommensurable with FLZ,
But, as CL is to FL, sois CM to FM ; [vi. 1]
therefore CAZ is incommensurable in length with FM/. [x. 11]
And both are rational ;
therefore CM, MF are rational straight lines commensurable
in square only ;
therefore CF is an apotome. [x. 73]

I say next that it is also a second apotome.
For let M be bisected at 2V,

and let VO be drawn through A parallel to CD ;

therefore each of the rectangles 70O, VL is equal to the
rectangle AG, GB.

Now, since the rectangle 4G, GB is a mean proportional
between the squares on AG, G5,

and the square on 4G is equal to CH,
the rectangle 4G, GB to NL,
and the square on BG to KL,
therefore VL is also a mean proportional between CH, KL;
therefore, as CH is to NL, so is NL to KL.
But, as CH is to VL, so is CK to NM,
and, as VL is to KL, so is NM to MK ; [vr. 1]
therefore, as CK is to NM, so is NM to KM ; [v. 11]

therefore the rectangle CK, KM is equal to the square on
NM [v1. 17), that is, to the fourth part of the square on /7,
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Since then CM, MF are two unequal straight lines, and
the rectangle CK, KM equal to the fourth part of the square
on MF and deficient by a square figure has been applied to
the greater, C/M/, and divides it into commensurable parts,
therefore the square on CM/ is greater than the square on M F
by the square on a straight line commensurable in length with

[x. 17]

And the annex <M is commensurable in length with the
rational straight line CD set out ;
therefore CF is a second apotome. [x. Defl. u1. 2]

Therefore etc.
Q. E, D.

In this case we have to find and classify

Take x, y, z such that
oxX = kﬁff
oy = Bt oo (1).
a.25=2kp"
(a) Now #p?, 257 are medial areas ;
therefore o (x +y) is medial,
whence (x + y) is rational and v o ..... R L e vt e gt (2).
But 24p% and therefore o . 23, is rational,
whence 2z is rational and A @ ... (3):
And, o (x +y) being medial, and e . 25 rational,
o(x+y) vo.2s
or (x+y) v 23
Hence (x +y), 22 are rational straight lines commensurable in square only,
and therefore (a+y)— 23 is an apolome.
(8) We prove, as before, that
FS T o 1) R PP S SRRt 1 | »
Also &% ~ éap’, or ox ~ o),
so that &0 NS Gk e AR IR (5)
[i’I‘his step is omitted in P, and Heiberg accordingly brackets it. The
result is, however, assumed.]
Therefore [(4), (5)}, by x. 17,
V(& + )P = (@8 ~ (5 + )
And 2z ~ .
Therefore (x + y) — 23 is a second apotome.

Obviously (x42) = 2= (b (1 + B) = 28}
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ProrosiTION 99.

The square on a second apotome of a medial straight line
applied to a rational straight line produces as breadth a third
apotome.

Let AB be a second apotome of a medial straight line,
and CD rational,

and to CD let there be applied CE equal to the square on
AB, producing CF as breadth;

I say that CF'is a third apotome.

A B G

D E [+] H L

For let ZG be the annex to A5 ;
therefore 4G, GB are medial straight lines commensurable
in square only which contain a medial rectangle. [x. 75]

Let CH equal to the square on AG be applied to CD,
producing CK as breadth,

and let AL equal to the square on BG be applied to KH,
producing KM as breadth ;

therefore the whole CL is equal to the squares on 4G, GB;
therefore CL is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line CD, producing
CM as breadth ;

therefore CM is rational and incommensurable in length with
CD. [x. 22]

Now, since the whole CL is equal to the squares on AG,
GB, and, in these, CE is equal to the square on 425,

therefore the remainder L/ is equal to twice the rectangle

AG, GB. (1. 7]
Let then 7/ be bisected at the point V,

and let VO be drawn parallel to CD ;

therefore each of the rectangles 7O, NL is equal to the rect-
angle 4G, GB.
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But the rectangle AG, GAB is medial ;
therefore FL is also medial.

And it is applied to the rational straight line £, producing
FM as breadth ;

therefore /M is also rational and incommensurable in length
with CD. [x. 22]

And, since 4G, GB are commensurable in square only,
therefore 4G is incommensurable in length with G5B

therefore the square on 4G is also incommensurable with the
rectangle 4G, GB. [ve. 1, x. 11]

But the squares on 4G, GB are commensurable with the
square on 4G,

and twice the rectangle 4G, G2 with the rectangle 4G, GB;

therefore the squares on 4G, G2 are incommensurable with
twice the rectangle 4G, GA. [x. 13]

But CLZ is equal to the squares on 4G, G5,
and FL is equal to twice the rectangle 4G, GB ;
therefore CL is also incommensurable with ~Z.
But, as CL is to FL, sois CM to FM ; [vt. 1]
therefore CM/ is incommensurable in length with ZM. [x. 11]
And both are rational ;

therefore CM, MF are rational straight lines commensurable
in square only ;

therefore CF is an apotome. [x. 73]

I say next that it is also a third apotome.
For, since the square on 4G is commensurable with the
square on G5,

therefore CH is also commensurable with X7,
so that CK is also commensurable with AW, [vi. 1, x. 11]

And, since the rectangle 4G, GB is a mean proportional
between the squares on 4G, G5,

and CH is equal to the square on 4G,

KL equal to the square on G5,

and VL equal to the rectangle 4G, G5,

therefore VL is also a mean proportional between CH, KL ;
therefore, as CH is to N, so is NL to KL.
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But, as CH is to NL, so is CK to NM,
and, as VL is to KL, sois NM to KM ; [vi. 1]
therefore, as CK is to MN, so is MN to KM ; [v. 11]

therefore the rectangle CA, KM is equal to [the square on
MN, that is, to] the fourth part of the square on /.

Since then CM, MF are two unequal straight lines, and
a parallelogram equal to the fourth part of the square on FM
and deficient by a square figure has been applied to CAZ, and

divides it into commensurable parts,

therefore the square on CH/ is greater than the square on

MF by the square on a straight line commensurable with

CM. [x. 17]
And neither of the straight lines CM, MF is commensur-

able in length with the rational straight line CD set out ;

therefore CF is a third apotome. [x. Deff. 1. 3]

Therefore etc.
Q. E. D.

We have to find and classify
1 ,J A. p)'

ox = Jk.p
A' 2
ﬂy.——jé,p
o.25=2,/A.p?

(a) Then o (2 +y) is a medial area,

whence (x + ) is rational and v & ...ooviiii (1).
Also o . 23 is medial,

whence 23 is rational and v o ...........

JA.p

kt ’
whence JE o NP

And Jﬁ.p’ﬂ(,‘/ﬁ.p’+%p’),
while NSV ) S
therefore (va.p ipﬂ) SEIN P
Jk :

or oc(x+y)vo,2s
and (Z+ 7)) 0 28 aeiiiinriiiisiiiisionnr sisnasoress (3)

Take x, y, z such that

Again k*p ~
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Thus [(1), (2), (3)] (x +»), 22 are rational and ~,
so that (x +y) — 25 is an apotome.

(B) ax ~ay, so that x ~ y,
And, as before, xy =} (22)%

Therefore [x. 17] N+ = (23 ~ (x + ).
And neither (x +y) nor 2z is ~ 0.
Therefore (x + y) — 22 is a third apotome.

It is of course equal to
? (k+ A
S -

ProrosITION 100.

The square on a minor straight line applied to a rational
straight line produces as breadth a fourth apotome.

Let AB be a minor and CD a rational straight line, and
to the rational straight line CD let CE be applied equal to the
square on A2 and producing CF as breadth ;

I say that CF is a fourth apotome.

A B G
c F N K M
E o H L

For let BG be the annex to A5 ;

therefore 4G, GB are straight lines incommensurable in
square which make the sum of the squares on 4G, GB
rational, but twice the rectangle 4G, GB medial.  [x. 76]

To CD let there be applied CH equal to the square on
AG and producing CK as breadth,

and XL equal to the square on BG, producing KM as breadth;
therefore the whole CL is equal to the squares on 4G, GB.

And the sum of the squares on 4G, G B is rational ;
therefore CL is also rational.

And it is applied to the rational straight line CD, producing
CM as breadth ;

therefore CH/ is also rational and commensurable in length
with CD. [x. 20]
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And, since the whole CZ is equal to the squares on 4G,
GA, and, in these, C£ is equal to the square on 425,

therefore the remainder /L is equal to twice the rectangle
AG, GB. [ 7]
Let then ZM be bisected at the point 2V,

and let VO be drawn through N parallel to either of the
straight lines CD, ML ;

therefore each of the rectangles 7O, VL is equal to the rect-
angle AG, GA.
And, since twice the rectangle 4G, G2B is medial and is
equal to FL,
therefore /L is also medial.
And it is applied to the rational straight line /£, producing
FM as breadth ;
therefore /M is rational and incommensurable in length with
cD. [x. 22]
And, since the sum of the squares on AG, G2 is rational,
while twice the rectangle 4G, G B is medial,
the squares on 4G, GB are incommensurable with twice the
rectangle AG, GB.
But CL is equal to the squares on 4G, G5,
and FL equal to twice the rectangle AG, GB;
therefore CL is incommensurable with L.
But, as CL is to FL, so is CM to MF; [vr. 1]
therefore CM is incommensurable in length with MF. [x. 11]
And bath are rational ;
therefore CM, MF are rational straight lines commensurable
in square only ;
therefore CF is an apotome. [x. 73]

I say that it is also a fourth apotome.
For, since AG, GB are incommensurable in square,

therefore the square on AG is also incommensurable with the
square on G 5.
And CH is equal to the square on 4G,
and XL equal to the square on G5 ;
therefore C/ is incommensurable with A'Z.
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But, as CH is to KL, so is CK to KM ; [vi. 1]
therefore CK’ is incommensurable in length with KM, [x. 11]

And, since the rectangle 4G, GAB is a mean proportional
between the squares on AG, GB,

and the square on 4G is equal to CH,
the square on G5 to KL,
and the rectangle 4G, GB to NL,
therefore VL is a mean proportional between CH, KL ;
therefore, as CH is to NL, sois NL to KL.
But, as CH is to NL, sois CK to NM,
and, as VL is to KL, so is NM to KM ; [v1. 1)
therefore, as CK is to MN, so is MN to KM ; [v. 11]

therefore the rectangle CX, KM is equal to the square on
MN [v1. 17), that is, to the fourth part of the square on <M.

Since then CM, MF are two unequal straight lines, and
the rectangle CK, KM equal to the fourth part of the square
on MF and deficient by a square figure has been applied to
CM and divides it into incommensurable parts,

therefore the square on CH/ is greater than the square on
MF by the square on a straight line incommensurable with
CM. [x 18]

And the whole CM/ is commensurable in length with the
rational straight line CD set out ;

therefore CF is a fourth apotome. [x. Deff. 111. 4]
Therefore etc.

We have to find and classify

5{5?\/‘ *f;»“%\/:‘fwf"

We will call this, for brevity,

5 (u - vy

ox=u’
oy=v" ¢,

Take x, y, z such that

o .28 = 28D

where it has to be remembered that #° 2* are incommensurable, (#* + ") is
rational, and 2#v medial.
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It follows that o (x + y) is rational and o . 2z medial,

so that (x + y) is rational and ~ @.........covviniiniiiiniii s (1),
while 2z isrational and v & ..... coooiiiiiiiiii e 2),
and o(x+y) vo. 2z

so that (2% ) EER T QR it s s R (3)-

Thus [(1), (2), (3)] (x +), 22 are rational and ~,
so that (x +y) — 2z is an apolome.

Next, since o
ox v 0y,
or X0
And it is proved, as usual, that
xy=2=} (as)".

Therefore [x. 18] Nx+yF—(29) o (x+y).
But (x+y) ~ o,
therefore x+y — 25 is a_fourth apotome.

i P 1
Its value is of course - (l —- —) =
IRy S

o

ProrosiTION 101.

The square on the straight line whick produces with a
rational area a medial whole, if applied to a rational straight
line, produces as breadth a fifth apotome.

Let 4B be the straight line which produces with a
rational arca a medial whole, and CD a rational straight line,
and to CD let CE be applied equal to the square on 458 and
producing CF as breadth ;

[ say that CF is a fifth apotome.

A B G
c F N K M
D E [*] H L

For let BG be the annex to A5 ;
therefore AG, GB are straight lines incommensurable in
square which make the sum of the squares on them medial
but twice the rectangle contained by them rational. [x. 77]
To CD let there be applied C/A equal to the square on
AG, and KL equal to the square on G5 ;
therefore the whole CL is equal to the squares on 4G, GB.
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But the sum of the squares on AG, GB together is
medial ;

therefore CL is medial.

And it is applied to the rational straight line €D, producing
CM as breadth ;

therefore CM is rational and incommensurable with CD. [x. 22]
And, since the whole CL is equal to the squares on AG, G5B,
and, in these, C£ is equal to the square on 425,

therefore the remainder #L is equal to twice the rectangle
AG, GB. (1. 7]

Let then #M be bisected at /V,

and through A& let NO be drawn parallel to either of the
straight lines CD, ML ;

therefore each of the rectangles 70, VL is equal to the rect-
angle 4G, GB.

And, since twice the rectangle 4G, GZB is rational and
equal to FL,

therefore &L is raconal,

And it is applied to the rational straight line £, producing
FM as breadth ;

therefore M is rational and commensurable in length with
CD. [x. 20]

Now, since CL is medial, and #Z rational,
cherefore CL is incommensurable with #L,
But, as CL is to FL, so is CM to MF; [vi. 1]
therefore CH/ is incommensurable in length with M7, [x. 11]
And both are rational ;

therefore CM, MF are rational straight lines commensurable
in square only ;

therefore CF is an apotome. [x. 73]

I say next that it is also a fifth apotome.

For we can prove similarly that the rectangle CX, XM
is equal to the square on VA, that is, to the fourth part of the
square on FM.

And, since the square on AG is incommensurable with the
square on G2,
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while the square on 4G is equal to CH,
and the square on G5B to KL,
therefore C/ is incommensurable with X'Z.
But, as CH is to KL, so is CK to KM ; [vi. 1]
therefore CK is incommensurable in length with XM, [x. 11]
Since then CM, MF are two unequal straight lines,
and a parallelogram equal to the fourth part of the square
on FM and de%cient by a square figure has been applied to
CA7, and divides it into incommensurable parts,
therefore the square on CA/ is greater than the square on
MF by the square on a straight line incommensurable with
M. [x. 18]
And the annex FM is commensurable with the rational
straight line C2 set out;

therefore C/ is a fifth apotome. |x. Deff. i1 5)
Q. E. D.
We have to find and classify
L {-—_— EAN— JJ1+k'+k-—— JJI+&’ k}
Jz (1+4) Na (1 + &)

Call this ; (n —2)% and take x, y, z such that
ox =11
oy =1* .

o. 22 =2uD

In this case #* 2* are incommensurable, (#* + ¢7) is a medial area and 2uv
a rational area. )
Since o (x + y) is medial and o . 22 rational,

(x +) is rational and v o,
2z is rational and ~ o,
while (x+y) v 2z
It follows that (a + y), 22 are rational and ~,
so that (x + y) — 2= is an apotome.

Again, as before, xy=12"=}(23),
and, since #* v ¢, ax v oy,
or £y
Hence [x. 18] V(x+y)P = (22) v (x +)).
And 2z ~ o

Therefore (x + y) — 22 is a fifth apotome.
It s of course equal to

g (m 1+k*)
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ProprosiTION 102.

The square on the straight lime whick produces with a
medial area a medial whole, if applied to a rational straight
line, produces as breadth a sixth apotome.

Let A8 be the straight line'which produces with a medial
area a medial whole, and CD a rational straight line,

and to CD let CE be applied equal to the square on 45 and
producing CF as breadth;

I say that CF is a sixth apotome.

A B G

o]

F N K M

D E o H L

For let BG be the annex to A5 ;

therefore 4G, GB are straight lines incommensurable in
square which make the sum of the squares on them medial,
twice the rectangle 4G, GB medial, and the squares on 4G,
G B incommensurable with twice the rectangle 4G, GB. [x. 78]

Now to CD let there be applied CH equal to the square
on AG and producing CK as breadth,

and XL equal to the square on BG;
therefore the whole CL is equal to the squares on 4G, GB5;
therefore CL is also medial.

And it is applied to the rational straight line CD, produc-
ing CM as breadth;

therefore CM/ is rational and incommensurable in length
with CD, [x. 22]

Since now CL is equal to the squares on 4G, GB,
and, in these, CZ is equal to the square on 4.5,

therefore the remainder #L is equal to twice the rectangle
AG, GB. (i 7]

And twice the rectangle 4G, GB is medial ;
therefore /'L is also medial.
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And it is applied to the rational straight line FZ, pro-
ducing FM as breadth ;

therefore M is rational and incommensurable in length
with CD. [x. 22]

And, since the squares on 4G, GB are incommensurable
with twice the rectangle AG, G5,

and CL is equal to the squares on 4G, G5B,
and L equal to twice the rectangle 4G, GB,
therefore CL is incommensurable with ~L.
But, as CL is to &L, so is CM to MF; [vi. 1]
therefore CA/ is incommensurable in length with /7. [x. 11]

And both are rational.
Therefore CM, MF are rational straight lines commen-
surable in square only;

therefore CF is an apotome. [x. 73]

I say next that it is also a sixth apotome.
For, since FL is equal to twice the rectangle 4G, GB,
let #AM be bisected at V,

and let VO be drawn through AV parallel to CD;

therefore each of the rectangles 70, VL is equal to the rect-
angle 4G, GB.

And, since AG, GB are incommensurable in square,

therefore the square on 4G is incommensurable with the
square on GAB.

But CH is equal to the square on 4G,
and KL is equal to the square on G5B ;
therefore CH is incommensurable with XL,

But, as CH isto KL, sois CK to KM ; [vi. 1]
therefore CKX is incommensurable with A/, [x. 11]

And, since the rectangle AG, GB is a mean proportional
between the squares on 4G, G5,

and CH is equal to the square on 4G,

KL equal to the square on G5,

and VL equal to the rectangle 4G, GB,

therefore VL is also a mean proportional between CH, KL ;
therefore, as CH is to N, sois NL to KL.
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And for the same reason as before the square on CM is
Freater than the square on M by the square on a straight
ine incommensurable with CH/. [x. 18]

And neither of them is commensurable with the rational
straight line CD set out :

therefore CF is a sixth apotome. [x. Deff. 111. 6]

Q. E. D.
We have to find and classify

S I A T A 2
A WL VAN Ay VR VA ;+k=}'

Call this > (- o)}, and put
ox =,
oy =77,
0. 25=2u.
Here #*, 7* are incommensurable,
(4 +2*), 2uw are both medial areas,
and (#* + 7*) » 20w
Since o (x + y), ¢. 2z are medial and incommensurable,
(x + y) is rational and v o,
2z is rational and v o,
and (x+y) v 22
Hence (x +y), 22 are rational and ~,
so that (x +¥) — 22 is an apotome.
Again, since &%, 9%, or o, oy, are incommensurable,
X v Y
And, as before, xy = 5" = } (22)"
Therefore [x. 18] NE+ Y= (250 © (x+).
And neither (x+y) nor 2zis ~ 5;
therefore (x + y) — 22 is a sixth apotome.

? A
It is of £ (el
is of course = (J ¥ e

ProrosITION 103.

A straight line commensurable in length with an apotome
is an apotome and the same in order.

Let AZB be an apotome,
and let CD be commensurable in A g_E
length with 45 ; » o F
I say that CD is also an apotome and )
the same in order with 425,
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For, since A7 is an apotome, let BZ be the annex to it;
therefore AE, EB are rational straight lines commensurable

in square only. [x. 73]

Let it be contrived that the ratio of ZZ to DF is the same
as the ratio of 45 to CD; [vr. 12]
therefore also, as one is to one, so are all to all ; [v. 12]

therefore also, as the whole 4 £ is to the whole CF, so is A8
to CD.

But 4B is commensurable in length with CD.
Therefore AF is also commensurable with CF, and BE
with DF. [x. 11]

And AE, EB are rational straight lines commensurable in
square only ;
therefore CF, FD are also rational straight lines commensur-
able in square only. [x. 13]

Now since, as A E is to CF, so is BE to DF,
alternately therefore, as A £ is to £5, so is CF to FFD. [v.16]

And the square on 4 £ is greater than the square on £58
either by the square on a straight line commensurable with
AE or by the square on a straight line incommensurable
with it.

If then the square on AE is greater than the square on
E B by the square on a straight line commensurable with 4 £,
the square on C/ will also be greater than the square on #D
by the square on a straight line commensurable with CFZ.

[x. 14]

And, if AE is commensurable in length with the rational

straight line set out,

CF is so also, [x. 12]
if BE, then DF also, [id.)
and, if neither of the straight lines 4Z, £25, then neither of
the straight lines CF, 7D. [x 13]

But, if the square on 4 £ is greater than the square on £5
by the square on a straight line incommensurable with 4Z,
the square on CF will also be greater than the square on #D
by the square on a straight line incommensurable with CF.

[x. 14]
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And, if AE is commensurable in length with the rational
straight line set out,
CF is so also,

if BE, then DF also, [x. 12]
and, if neither of the straight lines 4 £, £25, then neither of
the straight lines CF, FD. [x. 13]

Therefore CD is an apotome and the same in order
with A5.
Q. E. D.
This and the following propositions to 107 inclusive (like the correspond-

ing theorems X. 66 to 70) are easy and require no elucidation. They are
equivalent to saying that, if in any of the preceding irrational straight lines

m o . . . . . .
S Pis substituted for p, the resulting irrational is of the same kind and order

as that from which it is altered.

PROPOSITION 104.

A straight line commensurable with an apotome of a
medial straight line is an apolome of a medial straight line
and the same in order.

Let A7 be an apotome of a medial straight line,
and let CD be commensurable in
length with 45; A B E
I say that CD is also an apotome ofa € D F
medial straight line and the same in
order with 425.

For, since A8 is an apotome of a medial straight line, let
EB be the annex to it.

Therefore AE, £B are medial straight lines commensur-

able in square only. [x. 74, 75]
Let it be contrived that, as 4B is to CD, so is BE to DF;

[ve 12]

therefore A is also commensurable with CF, and BFE
with DF. [v. 12, x. 11]

But A, EB are medial straight lines commensurable in
square only ;

therefore CF, FD are also medial straight lines [x. 23] com-
mensurable in square only ; [x. 13]

therefore CD is an apotome of a medial straight line. [x. 74, 75]
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I say next that it is also the same in order with 4.5,
Since, as AE is to £B, so is CF to FD,

therefore also, as the square on A£ is to the rectangle 4Z,
EB, so is the square on CF to the rectangle CF, FD.

But the square on A£ is commensurable with the square
on CF;

therefore the rectangle AE, £B is also commensurable with

the rectangle CF, FD. [v. 16, x. 11]
Therefore, if the rectangle 4 £, £B is rational, the rect-
angle CF, FD will also be rational, [x. Def. 4]
and if the rectangle A£, £25 is medial, the rectangle CF, FD
is also medial. [x. 23, Por.]
Therefore CD is an apotome of a medial straight line and
the same in order with 4.5. [x. 74, 75]
Q. E. D.

ProrosiTION 105.
A straight line commensurable with a minor straight line
is minor,
Let 45 be a minor straight line, and CD commensurable
with A8 ;
I say that CD is also minor.
Let the same construction be made
as before ; o P F
then, since A, EB are incommensur-
able in square, [x. 76]
therefore CF, FD are also incommensurable in square. [x. 13)
Now since, as AE is to £B, so is CF to FD, [v. 12, v. 16]
therefore also, as the square on AE is to the square on £5,
so is the square on CF to the square on FD. [v1. 22)
Therefore, componendo, as the squares on AE, EB are to
the square on E25, so are the squares on CF, FD to the
square on FD. [v. 18]
But the square on B is commensurable with the square
on DF;
therefore the sum of the squares on A£, £B is also commen-
surable with the sum of the squares on CF, FD. [v. 16, x. 11]
But the sum of the squares on 4 £, EB is rational; [x. 76)

therefore the sum of the squares on CF, FD is also rational.
[x. Def. 4]
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Again, since, as the square on A £ is to the rectangle AZ,
EB, so is the square on CF to the rectangle CF, FD,

while the square on 4 is commensurable with the square
on CF,
therefore the rectangle 4 £, £B is also commensurable with
the rectangle CF, FD.

But the rectangle 4 £, EB is medial ; [x. 76)
therefore the rectangle CF, FD is also medial ; [x. 23, Por.)
therefore CF, /D are straight lines incommensurable in square

which make the sum of the squares on them rational, but the
rectangle contained by them medial.

Therefore CD is minor. [x. 76]
Q E. D.

Prorosition 106.

A straight line commensurable with that whick produces
with a rational area a medial whole is a straight line which
produces with a rational area a medial whole.

Let AB be a straight line which produces with a rational
area a medial whole,
and CD commensurable with 45 ; A B _E

I say that CD is also a straight line

which produces with a rational area a
medial whole.

For let BE be the annex to A5 ;

therefore AZ, EB are straight lines incommensurable in

square which make the sum of the squares on AE, ER

medial, but the rectangle contained by them rational.  [x. 77]
Let the same construction be made.

Then we can prove, in manner similar to the foregoing,
that CF, FD are in the same ratio as AX, EB,
the sum of the squares on AZ, £B is commensurable with
the sum of the squares on CF, FD,

and the rectangle 4 £, £B with the rectangle CF, FD;
so that CF, D are also straight lines incommensurable in

square which make the sum of the squares on CF, 7D medial,
but the rectangle contained by them rational.
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Therefore CD is a straight line which produces with a
rational area a medial whole. [x. 77]
Q. E. D.

ProrosITION 107.

A straight line commensurable with that whick produces
with a medial avea a medial whole is itself also a straight line
which produces with a medial area a medial whole.

Let AB be a straight line which produces with a medial
area a medial whole,
and let CD be commensurable with 47;
I say that CD is also a straight line

which produces with a medial area a
medial whole.

For let BE be the annex to A5,
and let the same construction be made ;

A B E
c D F

therefore AE, EB are straight lines incommensurable in
square which make the sum of the squares on them medial,
the rectangle contained by them medial, and further the sum
of the squares on them incommensurable with the rectangle
contained by them. [x. 78]

Now, as was proved, AE, EB are commensurable with
CF, FD,

the sum of the squares on AZ, EB with the sum of the
squares on CF, FD,

and the rectangle AZ, EB with the rectangle CF, FD;

therefore CF, FD are also straight lines incommensurable in
square which make the sum of the squares on them medial,
the rectangle contained by them medial, and further the sum
of the squares on them incommensurable with the rectangle
contained by them.

Therefore CD is a straight line which produces with a
medial area a medial whole. [x. 78]
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ProrosiTiON 108.

If from a rational arvea a medial avea be subtracted, the
“side” of the remaining area becomes ome of two irrational
straight lines, either an apolome or a minor straight line.

For from the rational area BC let the medial area 50 be
subtracted ;
I say that the “side” of the A E B
remainder £C becomes one
of two irrational straight lines,
either an apotome or a minor

straight line.
For let a rational straight c D
line /G be set out, L S
to /G let there be applied the
rectangular parallelogram GA g K 3

equal to £C,
and let GK equal to DB be subtracted ;
therefore the remainder ZC is equal to LA.
Since then BZC is rational, and £2 medial,
while BC is equal to G/, and BD to GK,
therefore G/ is rational, and GK medial.
And they are applied to the rational straight line 7G ;
therefore /7 is rational and commensurable in length with

FG, [x. 20]
while 7K is rational and incommensurable in length with 7G;
[x. 22]

therefore // is incommensurable in length with XK. [x. 13]
Therefore #A, FK are rational straight lines commen-
surable in square only ;
therefore K/7 is an apotome [x. 73], and K the annex to it.
Now the square on /7F is greater than the square on FX
by the square on a straight line either commensurable with
HF or not commensurable,
First, let the square on it be greater by the square on a
straight line commensurable with it.
ow the whole /Z# is commensurable in length with the
rational straight line G set out ;
therefore K77 is a first apotome. [x. Deff. m. 1]
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But the “side” of the rectangle contained by a rational
straight line and a first apotome is an apotome. [x. 91]
Therefore the ““side” of LA, that is, of £C, is an apotome.
But, if the square on /AF is greater than the square on
FK by the square on a straight line incommensurable
with HF,
while the whole /A is commensurable in length with the
rational straight line 7G set out,

KH is a fourth apotome. [x. Deff. 111. 4]

But the “side” of the rectangle contained by a rational

straight line and a fourth apotome is minor. [x. 94]
Q. E. D.

A rational area being of the form £p% and a medial area of the form
A/A. p% the problem is to classify

LN
according to the different possible relations between 4, A,
Suppose that ou = kp',
av= /A, pt

Since o is rational and ov medial,
u is rational and ~ o,
while # is rational and v o.
Therefore uwv;
thus #, v are rational and ~,
whence (4 — 2) is an apotome.
The possibilities are now as follows.
(1) ViP—2 Ay,
(z2) Ni-v*vu
In both cases ¥ ~ o,
so that (¥ — o) is either (1) a first apotome,
or (2) a fourth apotome.
In case (1) Jﬂs_:?) is an apotome [X. 91],

but in case (2) ~/o (¥ — 2) is a minor irrational straight line [x. 04].

ProrosiTION 109.

If from a medial area a rational area be subtracted, there
arise two other irrational straight lines, either a first apotome
of a medial straight line or a straight line whick produces with
a rational area a medial whole.

For from the medial area BC let the rational area BD be
subtracted.
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I say that the “side” of the remainder £C becomes one
of two irrational straight lines, either a first apotome of a
medial straight line or a straight line which produces with a
rational area a medial whole,

F K H

For let a rational straight line /G be set out,
and let the areas be similarly applied.

It follows then that ~/ is rational and incommensurable
in length with 7G,
while X7 is rational and commensurable in length with 7G ;
therefore /A, FK are rational straight lines commensurable
in square only ; [x. 3]
therefore K/ is an apotome, and /K the annex toit. [x. 73]

Now the square on /7F is greater than the square on X
either by the square on a straight line commensurable with
HF or by the square on a straight line incommensurable
with it.

If then the square on AF is greater than the square on
FK by the square on a straight line commensurable with A7,
while the annex #K is commensurable in length with the
rational straight line 7G set out,

K H is a second apotome. [x. Deff. i1 2)

But #G is raticnal ;
so that the “side” of LA, that is, of £C, is a first apotome of
a medial straight line. [x. 92]

But, if the square on A F is greater than the square on
FK by the square on a straight line incommensurable with 77,
while the annex FX is commensurable in length with the
rational straight line FG set out,

KH is a fifth apotome ; [x. Deff. 11 5]
so that the *“side” of £C is a straight line which produces
with a rational area a medial whole. [x. 95]
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In this case we have to classify
JJk g =2
Suppose that ou=lk.p
ov = Aph,
Thus, o being medial and ov rational,
% is rational and v o,
while o is rational and ~ o.
Thus, as before, », v are rational and ~,
so that (# — 7) is an apotome.
Now either
(1) N =2 A u,
or (2) Jw@r—dtuu,
while in both cases # is commensurable with o.
Therefore (% — #) is either (1) a second apotome,
or (2) a fifth apotome,

and hence in case (1) ~/o (¥ — v) is the first apotome of a medial straight line,

[x. 92]
and in case (2) /o' (¥ — v) is the “side” of a medial, minis a rational, area.
[x. 95]

ProrosiTiON 110.

If from a medial arvea there be subtvacted a medial area
incommensurable with the whole, the two remaining irrational
straight lines arise, either a second apotome of a medial straight
line or a straight line which produces with a medial area a
medial whole.

For, as in the foregoing figures, let there be subtracted
from the medial area BC the medial area 20 incommensur-
able with the whole ;

F_KH

G L

I say that the “side” of £C is one of two irrational straight
lines, either a second apotome of a medial straight line or a
straight line which produces with a medial area a medial whole.
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For, since each of the rectangles BC, BD is medial,
and BC is incommensurable with 2D,

it follows that each of the straight lines F/A, FK will be
rational and incommensurable in length with FG. [x. 22]

And, since BC is incommensurable with 8D,
that is, GH with GX,
HF is also incommensurable with 7K ; [vi. 1, x. 11]
therefore /7/, FK are rational straight lines commensurable
in square only ;
therefore A/ is an apotome. 1x. 73]

If then the square on #/ is greater than the square on
FK by the square on a straight line commensurable with 7/,

while neither of the straight lines 74, K is commensurable
in length with the rational straight line 7#G set out,

KH is a third apotome. [x. Deff. 1. 3]
But XL is rational,
and the rectangle contained by a rational straight line and a
third apotome is irrational,
and the “side” of it is irrational, and is called a second
apotome of a medial straight line ; [x. 93]
so that the “side ” of L/, that is, of £C, is a second apotome
of a medial straight line.
But, if the square on 7/ is greater than the square on
£K by the square on a straight line incommensurable with 7/,

while neither of the straight lines A, FK is commensurable

in length with /G,

KH is a sixth apotome. [x. Deff. 111. 6]
But the “side” of the rectangle contained by a rational

straight line and a sixth apotome is a straight line which

produces with a medial area a medial whole. [x. 96]
Therefore the “side” of LA, that is, of £C, is a straight

line which produces with a medial area a medial whole.

Q. E. D.
We have to classify NN NI
where /4. p? is incommensurable with /X . p.
Put ou= k.o,

o= fA.p%
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Then # is rational and « o,
o is rational and v o,
and "o
Therefore #, » are rational and ~.
so that (% — o) is an apotome.
Now either
(1) Vul-etnu,
or  (2) Nu-vtou,
while in both cases both  and » are v o.
In case (1) (v —2) is a third apotome,
and in case (2) (v - v) is a sixth apolome,

sc that Vo (4 — v) is either (1) a second apotome of a medial straight line [X. 93],
or (2) a “side” of the difference between two medial areas [X. gﬁf

ProrosiTION 11T1.
The apotome is not the same with the binomial straight line.

Let A28 be an apotome ;

I say that 42 is not the same with the
binomial straight line.

For, if possible, let it be so; D G
let a rational straight line 2D C be set out,
and tc CD let there be applied the
rectangle CE equal to the square on
ARB and producing DZE as breadth.

Then, since A28 is an apotome,
DE is a first apotome. [x. 97]

Let £F be the annex to it; ———
therefore DF, FE are rational straight

lines commensurable in square only,

the square on DF is greater than the square on £ by the
square on a straight line commensurable with DF,

and DF is commensurable in length with the rational straight

m
-

line DC set out. [x. Deff. m1. 1]
Again, since 42 is binomial,
therefore D is a first binomial straight line. [x. 60)

Let it be divided into its terms at G,
and let DG be the greater term ;
therefore DG, GE are rational straight lmes commensurable
in square only,
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the square on DG is greater than the square on G£ by the
square on a straight line commensurable with DG, and the
greater term DG is commensurable in length with the rational
straight line DC set out. ' [x. Deff. 1. 1]

Therefore DF is also commensurable in length 'with DG ;

[x. 12]

therefore the remainder GF is also commensurable in length
with DF. [x. 15]
But DF is incommensurable in length with £77;
therefore 7G is also incommensurable in length with ££. [x. 13]
Therefore GF, FE are rational straight lines commensur-
able in square only ;
therefore £G is an apotome. [x. 73]
But it is also rational :
which is impossible.
Therefore the apotome is not the same with the binomial
straight line.
Q. E. D.

This proposition proves the equivalent of the fact that
A% + ,/y cannot be equal to ,/x"— /), and
x + ,/y cannot be equal to ' - /¥
We should prove these results by squaring the respective expressions; and

Euclid’s procedure corresponds to this exactly.
He has to prove that

p+.Jk.p cannot be equal to p'— ,/A.p.
For, if possible, let this be so.
(p+Jh.0F (6= JA-BY.
o L] P 1]

Take the straight lines

these must be equal, and therefore

ﬁ(t+k+z¢k}=£(t+:\—zﬁ) (1)
= ~ (14 A=2 R) ;
(3 p*
Now ;(l + £), - (1 + A) are rational and ~;
2
therefore {§@+xy-§@+kﬂn%4:+n
Pe
v;.zJA.

And, since both sides are rational, it follows that
(o -2 } A i AL
{o_ (r+A) o +£) S8 /A is an apotome.
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But, by (1), this expression is equal to© . 2 /&, which is rationa.

Hence an apofome, which is irrational, is also rational :
which is impossible.

This proposition is the connecting link which enables Euclid to prove that
all the compound irrationals with positive signs above discussed are different
from a// the corresponding compound irrationals with negative signs, while the
two sets are all different from one another and from the medial straight line.
The recapitulation following makes this clear.

The apotome and the irvational straight lines following it
are neither the same with the medial straight line nor with one
another.

For the square on a medial straiEht line, if applied to a
rational straight line, produces as breadth a straight line
rational and incommensurable in length with that to which it

is applied, [x. 22]
while the square on an apotome, if applied to a rational
straight line, produces as breadth a first apotome, [x. 97]

the square on a first apotome of a medial straight line, if
applied to a rational straight line, produces as breadth a
second apotome, [x. 98]
the square on a second apotome of a medial straight line, if
applied to a rational straight line, produces as breadth a third
apotome, [x. 99]
the square on a minor straight line, if applied to a rational
straight line, produces as breadth a fourth apotome,  [x. r00]
the square on the straight line which produces with a rational
area a medial whole, if applied to a rational straight line,
produces as breadth a fifth apotome, [x. 101]
and the square on the straight line which produces with a
medial area a medial whole, if applied to a rational straight
line, produces as breadth a sixth apotome. [x. 102]

Since then the said breadths differ fromn the first and from
one another, from the first because it is rational, and from one
another since they are not the same in order,

it is clear that the irrational straight lines themselves also
differ from one another.

And, since the apotome has been proved not to be the
same as the binomial straight line, R [x. 111)

but, if applied to a rational straight line, the straight lines
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following the apotome produce, as breadths, each according
to its own order, apotomes, and those following the binomial
straight line themselves also, according to their order, produce
the binomials as breadths,
therefore those following the apotome are different, and those
following the binomial straight line are different, so that there
are, in order, thirteen irrational straight lines in all,

Medial,

Binomial,

First bimedial,

Second bimedial,

Major,

“Side” of a rational plus a medial area,

“Side” of the sum of two medial areas,

Apotome,

First apotome of a medial straight line,

Second apotome of a medial straight line,

Minor,

Producing with a rational area a medial whole,

Producing with a medial area a medial whole.

ProPOSITION 112.

The square om a rational straight line applied to the
binomial stvaight line produces as breadth an apotome the
terms of which are commensurable with the terms of the bi-
nomial and moreover in the same rvatio; and further the
apotome so arising will have the same ovder as the binomial
straight line.

Let A be a rational straight line,
let BC be a binomial, and let DC be its greater term ;
let the rectangle BC, £F be equal to the square on A ;

A

B D C G

T F H
I say that £/ is an apotome the terms of which are commen-

surable with CD, DB, and in the same ratio, and further £F
will have the same order as BC.
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For again let the rectangle B0, G be equal to the square
on A.

Since then the rectangle BC, EF is equal to the rectangle
BD, G,

therefore, as CB is to BD, so is G to EF. [v1. 16]
But CB is greater than 5D ;
therefore G is also greater than £F. [v. 16, v. 14]

Let £H be equal to G;
therefore, as (B is to BD, sois HE to EF;
therefore, separando, as CD is to BD, so is HF to FE. [v. 1]

Let it be contrived that, as ZF is to FE, so is FK
to KE;

therefore also the whole AKX is to the whole K7 as FK
is to KE;

for, as one of the antecedents is to one of the consequents, so

are all the antecedents to all the consequents. [v. 12)

But, as FK is to KE, so is CD to DB ; [v. 1]
therefore also, as AKX is to KF, sois CD to DB. [#d.]

But the square on CD is commensurable with the square
on DB; [x. 36]
therefore the square on /X is also commensurable with the
square on XKF, [v1. 22, x. 11]

And, as the square on /X is to the square on KF, so is
HK to KE, since the three straight lines ZK, KF, KE are
proportional. [v. Def. 9]

herefore /K is commensurable in length with XZ,

so that /£ is also commensurable in length with £X. [x. 15]

Now, since the square on A is equal to the rectangle
EH, BD,

while the square on A is rational,
therefore the rectangle £/, BD is also rational.
And it is applied to the rational straight line BD;

therefore Z/ is rational and commensurable in length
with BD; [x. 20]

so that £K, being commensurable with it, is also rational and
commensurable in length with BD.
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Since, then, as CD is to DB, so is FK to KE,

while CD, DB are straight lines commensurable in square
only,
therefore FK, KE are also commensurable in square only.

[x. 11]
But K£ is rational ;

therefore 7K is also rational.

Therefore FK, KE are rational straight lines commen-
surable in square only ;

therefore £/ is an apotome. [x. 73]

Now the square on CD is greater than the square on DB
either by the square on a straight line commensurable with
CD or by the square on a straight line incommensurable
with it.

If then the square on CD is greater than the square on
DB by the square on a straight line commensurable with CD,
the square on FK is also greater than the square on K£ by
the square on a straight line commensurable with K. [x. 14]

And, if CD is commensurable in length with the rational
straight line set out,

so also is FK; [x. 11, 12]
if BD is so commensurable,
so also is KE ; [x. 12]

but, if neither of the straight lines CD, DB is so commensur-
able,
neither of the straight lines /X, K'E is so.

But, if the square on CD is greater than the square on

DB by the square on a straight line incommensurable
with CD,

the square on K is also greater than the square on K'Z by

the square on a straight line incommensurable with X" [x. 14)
And, if CD is commensurable with the rational straight

line set out,

so also is FK';

if BD is so commensurable,

so also is A K ;
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but, if neither of the straight lines CD, D27 is so commensur-
able,

neither of the straight lines FX, KE is so;

so that #£ is an apotome, the terms of which FK, KE are
commensurable with the terms CD, DB of the binomial
straight line and in the same ratio, and it has the same order
as BC.

Q. E. D.

Heiberg considers that this proposition and the succeeding ones are inter-
polated, though the interpolation must have taken place before Theon’s time.
His argument is that X. 112—115 are nowhere used, but that x. 111 rounds
off the complete discussion of the 13 irrationals (as :ndmated in the recapitu-
lation), thereby tgmng what was necessary for use in connexion with the
investigation of the five regular solids. For besides %. 73 (used in x111. 6, 11)
X. 94 and g7 are used in X111 11, 6 respectively; and Euclid could not have
stopped at X. 97 without leaving the discussion of irrationals imperfect, for
X. 9g8—102 are closely connected with x. 97,.and X. 103—111 add, as it were,
the coping-stone to the whole doctrine. On the other hand, x. 112—115 are
not connected with the rest of the treatise on the 13 irrationals and are not
used in the stereometric books. They are rather the germ of a new study and
a more abstruse investigation of irrationals iz themselves. Prop. 115
particular extends the number of the different kinds of irrationals. As
however x. 112—r15 are old and serviceable theorems, Heiberg thinks that,
though Euclid did not give them, they may have been taken from Apollonius.

I will only point out what seems to me open to doubt in the above, namely
that x. 112—114 (excluding 115) are not connected with the rest of the
exposition of the 13 irrationals. It seems tc me that they are so connected.
X. 111 has shown us that a binomial straight line cannot also be an apofome.
But x. 112—114 show us Aow either of them tan be used to rationalise the other,
thus giving what is surely an important relation between them.

X. 112 is the equivalent of rationalising the denominators of the fractions
e
JA+ JB' a+ B’
by multiplying numerator and denominator by ./4 — /B and a - ./B
respectively.
Euclid proves that p_+{7’k—p =Ap—.J&.Ap (% <1),and his method enables

us to see that A = */(p* — %p*).

The proof is a remarkable instance of the dexterity of the Greeks in using
geometry as the equivalent of our algebra. Like so many proofs in Archimedes

and Apollonius, it leaves us completely in the dark as to how it was evolved.

That the Greeks must have had some analytical method which suggested the
steps of such proofs seems certain; but what it was must remain apparently
an insoluble mystery.

I will reproduce by means of algebraical symbols the exact course of
Euclid’s proof.

2

He has to prove that ] is an apotome related in a certain way to
P P_TF E.p po y




X. 112] PROPOSITION 112 247

the binomial straight line p + ./2.p. If # be the straight line required,
(# + w) - w is shown to be an apotome of the kind described, where w is
determined in the following manner.

We have (p+ JE.p)u=0= Jk.p. x, say,
whence x> u } (1)
Let X=u+0
Then (p+JE.p): JEh.p=(u+7): 4,
and hence PinNR PV U i (2).
* Let w be taken such that
ERTESN VR ) BE O (3)-
Thus Viu=u+0+wW) 1 (B+W) oiireiininn (4),
and therefore piJl.p=(u+v+w): (u+w).

From the last proportion,
(#+v+w) ~ (v+w)

and, from the two preceding, (¥ + ) is a mean proportional between
(#+v+w), w, so that

(u+v+w):(u+w)=(u+v+w):w

Therefore (#+v+w)~w,
whence (e +2) ~ .
Now A#%.p(u+v) =0 which is rational;
therefore (# + v) is rational and ~ J%.p;
hence w is also rational and ~ \J&.p ....... i (s).

Next, by (z), (3), since p, J/£.p are ~—,

(u+w) ~ w,
and w is rational ;

therefore (% + ) is rational,
and (# + w),  are rational and ~.
Hence (¥ + w)—w is an apotome.
Now either (I) ~Ne=-&'np,
or (I1)  Np =ke* v p.
In case (I) Nu+wi—o ~ (u+w), [(2), (3) and x. 14]
and in case (II) N+ wp—1f o (u+w). [id]
Then, since [(5)] w~ Jk.p,
by x. 11 and (2), (3)» (TR ) Rl OO pROsPRer R R (6).

[This step is omitted in Euclid, but the result is assumed.]

If therefore p n o, (+w) ~ o;
if Je.pro, wno; [(s)]
and, if neither p nor /4. p is ~ o, neither (¥ + w) nor w will be ~a.

Thus the order of the apotome (#+ )~ is the same as that of the
binomial straight line p + ./£.p; while [(2), (3)] the terms are proportional
and [(5), (6)] commensurable respectively.
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We find (% + w), 1 algebraically thus.

a?

By (1), 8= %
ot . P
and’ bjf (3): ‘3}’ 0 - Jlé. l-'l‘
whence 0= :'_:;';;
_ ol Jk .p
TPk
I ot.p
Thus “+m:w'ﬁ;;’_—_kﬁ”
- J&.
Therefore (e+w)-w=0*. ’l"’, if_ﬁp’p |

ProrosiTION 113.

The square on a rational straight line, if applied lo an
apotome, produces as: breadth the binomial straight line the
terms of which are commensurable with the terms of the
apotome and in the same ratio,; and further the binomial
50 arising has the same order as the apotome.

Let A be a rational straight line and Z2D an apotome,
and let the rectangle B0, K/ be equal to
the square on A4, so that the square on the ¢ K
rational straight line 4 when applied to the
apotome B0 produces K/ as breadth; A
I say that A/ is a binomial straight line the
terms of which are commensurable with the op IF
terms of B0 and in the same ratio; and
further X'/ has the same order as BD. H

For let DC be the annex to BD ; B

therefore BC, CD are rational straight lines commensurable
in square only. [x. 73]

Let the rectangle BC, G be also equal to the square on 4.
But the square on A is rational ;

therefore the rectangle BC, G is also rational.
And it has been applied to the rational straight line BC;

therefore G is rational and commensurable in length with BC.
[x. 20]

E
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Since now the rectangle BC, G is equal to the rectangle
BD, KH,

therefore, proportionally, as CB is to BD, so is KH to G.
[v1. 16]
But BC is greater than 8D ;

therefore K/ is also greater than G. [v. 16, v. 14]
Let KE be made equal to G;

therefore K'£ is commensurable in length with BC.
And since, as CB is to BD, so is HK to KE,

therefore, convertendo, as BC is to CD, so is KH to HE.
[v. 19, Por.]

Let it be contrived that, as AH is to HE, so is HF
to FE;
therefore also the remainder KF is to FH as KH is to HE,
that is, as BC is to CD. [v. 19]
But BC, CD are commensurable in square only ;
therefore K7, FH are also commensurable in square only.

X. II

And since, as K H is to HE, so is KF to FH, o
while, as KA is to HE, sois HF to FE,

therefore also, as K F is to FH, so is HF to FE, [v. 11]

so that also, as the first is to the third, so is the square on the

first to the square on the second; [v. Def. g]

therefore also, as A/ is to /£, so is the square on K F to the
square on £/,

But the square on A7 is commensurable with the square
on FH,

for KF, FH are commensurable in square ;

therefore X/ is also commensurable in length with 7Z, [x. 11]

so that A7 is also commensurable in length with KZ. [x. 15]
But XE is rational and commensurable in length with BC;

therefore A/ is also rational and commensurable in length

with BC. [x. 12]
And, since, as BC is to CD, so is KF to FH,
alternately, as BC is to KF, so is DC to FH. [v. 16]

But AC is commensurable with A F;
therefore /77 is also commensurable in length with CD. [x. 11]
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But BC, CD are rational straight lines commensurable in
square only ;

therefore KF, FH are also rational straight lines [x. Def. 3]
commensurable in square only ;
therefore K/ is binomial. [x. 36]

If now the square on ZC is greater than the square on CD
by the square on a straight line commensurable with BC,

the square on K/ will also be greater than the square on F//
by the square on a straight line commensurable with A7 [x 14]

And, if BC is commensurable in length with the rational
straight line set out,

so also is A F;

if CD is commensurable in length with the rational straight
line set out,

so also is FH,

but, if neither of the straight lines BC, CD,

then neither of the straight lines A7, FH.

But, if the square on BC is greater than the square on CD
by the square on a straight line incommensurable with Z2C,

the square on A/ is also greater than the square on 7/ by
the square on a straight line incommensurable with A7 [x. 14]

And, if BC is commensurable with the rational straight
line set out,

so also is KF';

if CD is so commensurable,

50 also is FH ;

but, if neither of the straight lines BC, CD,
then neither of the straight lines K7, FH.

Therefore K/ is a binomial straight line, .he terms of
which K/, FH are commensurable with the terms BC, CD of
the apotome and in the same ratio,
and further XA has the same order as 5D,

Q. E. D.
This proposition, which is companion to the preceding, gives us the equiva-
lent of the rationalisation of the denominator of
2 &

JA=JB * &~ JB’
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Euclid (or the writer) proves that

0’
— == +AJk. y k<1
p—Jk.p Ap JE.p, (£<1)
and his method enables us to see that A = ¢?/(p* - £p?).
a?
Let —_— =
P

and it is proved that » is the binomial straight line (¥ — ) + w, where w is
determined as shown below.

#(p—-Jk.p)=0’=px, say,

whence P lp =R PY B M E reneessrinnsnenionananes (1),
so that X <u
Let then X=u-—10
Since (¥ —v)p=0o?® a rational area,
(x—1v) is rational and ~ p...cerneriinnnnennnann(2).
And [(1)] pilp—wk.p)=u:(u-2),
so that, convertendo, pik.p=u:o.
Suppose that u:v=w:(v-w),
so that [v. 19] (u—w):iw=u:v=w:(v—w)

Thus, = being a mean proportional between (x - w), (v - ),
(v—w): w*=(u—w):(v-w)

But (v—wpf:w*=u":0"
=p*i kp* ..... sSiste besenae R abEs (3),
so that (u— w)* ~ u?.
Therefore (u—w) ~ (v—w)
~ (- )= (r-w)}
A~ (u—v).
Therefore [(2)] (#—1) is rational and A p .veoeveneiiennnnnneni(4):
And, since piJhk.p=(u—w):w,
w is rational and ~ . p .cociiiiiiiiiinnn(5):
Hence [(4), (5)] (¥ -w), w are rational and ~,
so that (¥ —w)+w is a binomial straight line.
Now either (I) Np —kp' ~ p,
or (In) Nt = kpt v p.
In case (I) N = w)f —w? ~ (u - w),
and in case (II) N(u—-w)p -ut o (v—w). [(3) and x. 14]
And, if p ~ o, (—w) ~o; [(4)]
if Jk.p~o, wno; (5]

while, if neither p nor /4. p is ~ @, neither (¥ —) nor w is ~ o.
Hence (¥ —-1)+ 2 is a binomial straight line of the same order as the

apotome p — ,/£.p, its terms are proportional to those of the »notome [(3)],
and commensurable with them respectively [(4), (5)].
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To find (% — w), w algebraically we have
o.!

“=P"v'é-P.

From the latter

1 dp
S/ i %
p+aJk.p

Therefore (v—w) +w=0c". e

Thus u—w= 1w

ProrosiTION 114.

If an area be contained by an apotome and the binomial
straight line the lerms of which are commensurable with the
terms of the apotome and in the same ratio, the  side” of the
area is rational.

For let an area, the rectangle 458, CD, be contained by
the apotome 43 and the binomial
straight line CD,
and let CE£ be the greater term of
the latter; c E D
let the terms CE, ED of the
binomial straight line be commen-

surable with the terms A%, 7B of

the apotome and in the same ratio; K L M
and let the “side” of the rectangle
AB, CD be G;

I say that G is rational.

For let a rational straight line /7 be set out,
and to CD let there be applied a rectangle equal to the square
on /A and producing AL as breadth,

Therefore KL is an apotome.
Let its terms be XM, ML commensurable with the terms
CE, ED of the binomial straight line and in the same ratio.
[x. 112]
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But CE, ED are also commensurable with 47, 7B and in

the same ratio ;

therefore, as AF is to FB, so is XM to ML.

Therefore, alternately, as AF is to KM, so is BF to LM ;
therefore also the remainder 428 is to the remainder XL as

AFis o KM. [v. 19]

But AF is commensurable with XA/ ; [x. 12]
therefore 43 is also commensurable with XZ. [x. 11]

And, as AB is to KL, so is the rectangle CD, AB to the
rectangle CD, KL ; [vi. 1]
therefore the rectangle CD, AB is also commensurable with
the rectangle CD, KL. [x. 11]

But the rectangle CD, KL is equal to the square on /;

therefore the rectangle CD, AZB is commensurable with the
square on /.

But the square on G is equal to the rectangle CD, AB;

therefore the square on G is commensurable with the square
on /.

But the square on /7 is rational ;
therefore the square on G is also rational ;
therefore & is rational.

And it is the “side” of the rectangle CD, A5.
Therefore etc.

Porism. And it is made manifest to us by this also that
it is possible for a rational area to be contained by irrational
straight lines.

Q. E. D.
This theorem is equivalent to the proof of the fact that
JWA-JB)AJA+LJB)=\(4-B),
and J(@~ . JB) (Aa+ X JB) =X (a*~ B).
The result of the theorem X. 112 is used for the purpose thus,
We have to prove that

Np=JE.p) (Ap + A JE. p)

is rational.
By x. 112 we have, if o is a rational straight line,

J«p—+§# NP NS e (1),
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Now  p:XNp=.Jk.p: X Jh.p=(p=Jh.p) : (Np—N J&.p),
so that (o= Jk.p) ~ (Np=X J&.p).
Multiplying each by (Ap + A ,/£. p), we have
(b= /. p) Ao+ X J&.p) ~ (\p+A k. p) (Np =X . p)

oks) by (x).
That is, (p— J%.p)(Ap+ X JR.p) is a rational area,
and therefore Nip—uJk.p) (Ap+A JE . p) is rational.

ProrosiTiON 1135.

From a medial straight line there arise ivvational straight
lines infinile in number, and none of them is the same as any
of the preceding.

Let A4 be a medial straight line ;

I say that from A4 there arise
irrational straight lines infinite in
number, and none of them is the
same as any of the preceding.

Let a rational straight line 2
be set out,
and let the square on C be equal
to the rectangle B, 4 ;
therefore C is irrational ; [x. Def. 4]
for that which is contained by an irrational and a rational
straight line is irrational. [deduction from x. 20]

And it is not the same with any of the preceding ;
for the square on none of the preceding, if applied to a rational
straight line produces as breadth a medial straight line.

Again, let the square on D be equal to the rectangle B, C;
therefore the square on [ is irrational. [deduction from x. 20]

Therefore D is irrational ; [x. Def. 4]
and it is not the same with any of the preceding, for the
square on none of the preceding, if applied to a rational
straight line, produces C as breadth.

Similarly, if this arrangement proceeds ad infinitum, it
is manifest that from the medial straight line there arise
irrational straight lines infinite in number, and none is the
same with any of the preceding.

o 0 w >»

Q. E. D.
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Heiberg is clearly right in holding that this proposition, at all events, is
alien to the general scope of Book X, and is therefore probably an interpola-
tion, made however before Theon’s tlme. It is of the same character as a
scholium at the end of the Book, which is (along with the interpolated proposi-
tion proving, in two ways, the incommensurability of the diagonal of a square
with its side) relegated by August as well as Heiberg to an Appendix.

The proposition amounts to this.

The straight line k*p being medial, if ¢ be a rational straight line, ¥ k*pcr
is a new irrational straight line. So is the mean proportional between this
and another rational straight line ¢’, and so on indefinitely.

ANCIENT EXTENSIONS OF THE THEORY OF Book X.

From the hints given by the author of the commentary found in Arabic
by Woepcke (cf. pp. 3—4 above) it would seem probable that Apollonius’
extensions of the theory of irrationals took two directions : (1) generalising
the medial straight line of Euclid, and (2) forming compound irrationals by the
addition and subtraction of more than two terms of the sort composing the
b'momials, apotomes, etc. The commentator writes (Woepcke's article, pp. 694

K Xt is also necessary that we should know that, not only when we join
together two straight lines rational and commensurable in square do we obtain
the binomial straight line, but three or four lines produce in an analogous
manner the same thing. In the first case, we obtain the trinomial straight
line, since the whole line is irrational ; and in the second case we obtain the
quadrinomial, and so on ad mﬁmlym The proof of the (irrationality of the)
line composed of three lines rational and commensurable in square is exactly
the same as the proof relating to the combination of two lines.

“ But we must start afresh and remark that not only can we take one sole
medial line between two lines commensurable in square, but we can take three
or four of them and so on ad infinitum, since we can take, between any two
given straight lines, as many lines as we wish in continued proportion.

“ Likewise, in the lines formed by addition not only can we construct the
binomial straight line, but we can also construct the trinomial, as well as the
first and second trimedial ; and, further, the line composed of three straight
lines incommensurable in square and such that the one of them gives with
each of the two others a sum of squares (which is) rational, while the rectangle
contained by the two lines is medial, so that there results a major (irrational)
composed of three lines.

“And, in an analogous manner, we obtain the straight line which is the

‘side’ of a rational plus a medial area, composed of three stra:ghl lines, and,
likewise, that which is the ‘side’ of {the sum of) two medials.”

The generalisation of the medial is apparently after the following manner.
Let x, y be two straight lines rational and commensurable in square only and
suppose that m means are interposed, so that

XX =X Ry Xy = Xy (X=X 1Y

We easily derive herefrom 2 = (—’—c )r,

x1

x,
x "+
)
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and hence X =, 2",
x1“+l=}’-x”,

so that (@ 241 = (5. 2",

and therefore A AL = pmor y,.

or = (2™ '“.y")'ﬂ,

which is the generalised medial.

"We now pass to the trinomial etc., with the commentator’s further remarks
about them.

(1) The trinomial. * Suppose three rational straight lines commensurable in
square only. The line composed of two of these lines, that is, the binomial
straight line, is irrational, and, in consequence, the area contained by this line
and the remaining line is irrational, and, likewise, the double of the area
contained by these two lines will be irrational. Thus the square on the
whole line composed of three lines is irrational and consequently the line is
irrational, and it is called a trinomial straight line.”

It is easy to see that this “proof” is not conclusive as stated. Nor does
Woepcke seem to show how the proposition can be proved on Euclidean
lines. But I think it would be somewhat as follows.

Suppose x, ¥, z to be rational and ~.

Then a* y* 2* are rational, and 2yz, 2zx, 2xy are all medial.

First, (2yz + 2z + 2xy) cannot be rational.

For suppose this sum equal to a rational area, say o*

Since 2y + 28% + 2%y = 0%,

28% + 2xy = 0® — 2y,
or the sum of two medial areas incommensurable with one another is equal to
the difference between a rational area and a medial area.

But the “side ” of the sum of the two medial areas mustﬁ[x. 72] be one of
two irrationals with a positive sign; and the “side” of the difference between a
rational area and a medial area must [X. 108] be one of two irrationals with a
negative sign.

And the first “side” cannot be the same as the second [X. 111 and ex-
planation following].

Therefore 25x + 2xy £ 0° — 2y3,
and 2y + 28% + 2xy is consequently frrational.
Therefore (2 +) +2°) © (292 + 252 + 239),
whence (x +y+2)' v (®+3°+ 2%,

so that (x + y + 2)% and therefore also (x + y + 3), is irrational.

The commentator goes on:

‘“ And, if we have four lines commensurable in square, as we have said, the
procedure will be exactly the same ; and we shall treat the succeeding lines in
an analogous manner.”

Without speculating further as to how the extension was made to the
guadrinomial etc., we may suppose with Woepcke that Apollonius probably
investigated the multmomml

prafe.ptAptJu.p+...
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(2) The first trimedial straight line.

The commentator here says: “Suppose we have three medial lines com-
mensurable in square [only], one of which contains with each of the two others
a rational rectangle; then the straight line composed of the two lines is
irrational and is called the first bimedial ; the remaining line is medial, and
the area contained by these two lines is irrational. Consequently the square
on the whole line is irrational.”

To begin with, the conditions here given are incompatible. If x, y, z be
medial straight lines such that xy, xz are both rational,

yis=xyixs=m:n,

and y, z are commensurable in /ength and not in square only.

Hence it seems that we must, with Woepcke, understand ‘“three medial
straight lines such that one is commensurable with each of the other two in
square only and makes with it a rational rectangle.”

If x, y, # be the three medial straight lines,

(2 + 3% + 2%) ~ 2P,

so that (x* + y* + 2°) is medial.

Also we have 2xy, 2xz both rational and 2yz medial.

Now (x? + »* + 2°) + 2y2 + 2y + 2x2 cannot be rational, for, if it were, the
sum of two medial areas, (x*+)*+2%), 2y2, would be rational: which is im-
possible. [Cf. x. 72.]

Hence (x+y+2) is irrational.

(3) The second trimedial straight line,

Suppose x, ¥, z to be medial straight lines commensurable in square only
and containing with each other medial rectangles.

Then (x*+* +2°) ~ % and is medial.
Also 2y3, 25%, 2xy are all medial areas.
To prove the irrationality in this case I presume that the metnod would
be like that of x. 38 about the second bimedial.
Suppose o to be a rational straight line and let
(x’ +y’ +* B’) =of
2yz = ou
28x = o
2%y = ow
Here, since, e.g., xZ:xy=7:W,
or s:y=v:w,
and similarly XiZ=w:u
u, v, w are commensurable in square only.
Also, since (49 +2%) ~a?
“ XY,
¢ is incommensurable with 2.
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Similarly ¢ is incommensurable with #, .
But ¢, u, v, w are all rational and ~ o
Therefore (¢ + % + 2+ w) is a quadrinomial and therefore irrational.
Therefore o (£ + # + v+ ), or (x+y+2)?, is irrational,
whence (x +y + %) is irrational.

(4) The major made up of three straight lines.

The commentator describes this as “the line composed of three straight
lines incommensurable in square and such that one of them gives with each
of the other two a sum of squares (which is) rational, while the rectangle
contained by the two lines is medial.”

If x, y, # are the three straight lines, this would indicate

(=* + »*) rational,
(2* + 5*) rational,
2yz medial.

Woepcke points out (pp. 696—8, note) the difficulties connected with this
supposition or the supposition of

(x* + %) rational,
(#* + 5%) rational,
2xy (or 2xz) medial,
and concludes that what is meant is the supposition
(=* +»") rational
xy medial
xz medial
(though the text is against this).

The assumption of (2*+»%) and (2”+ s%) being concurrently rational is
certainly further removed from Euclid, for x. 33 only enables us to find one
pair of lines having the property, as =, y.

But we will not pursue these speculations further.

As regards further irrationals formed by subfraction the commentator
writes as follows.

“ Again, it is not necessary that, in the irrational straight lines formed by
means of subtraction, we should confine ourselves to making one subtraction
only, so as to obtain the apotome, or the first apotome of the medial, or the
second apotome of the medial, or the minor, or the straight line which
produces with a rational area a medial whole, or that which produces with a
medial area a medial whole ; but we shall be able here to make two or three
or four subtractions.

“When we do that, we show in manner analogous to the foregoing that
the lines which remain are irrational and that each of them is one of the lines
formed by subtraction. That is to say that, if from a ranonal line we cut off
another rational line commensurable with the whole line in square, we obtain,
for remainder, an apotome; and, if we subtract from this line (which is)
cut off and rational—that which Euclid calls the annex (wpooappdfovaa)—
another rational line which is commensurable with it in square, we obtain, as
the remainder, an apotome ; likewise, if we cut off from the rational line cut
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off from this line (i.e. the annex of the apotome last arrived at) another line
which is commensurable with it in square, the remainder is an apotome. The
same thing occurs in the subtraction of the other lines.”

As Woepcke remarks, the idea is the formation of the successive apotomes
{ =8, Jb—Je yJe—.Jd, etc. We should naturally have expected to see
the writer form and discuss the following expressions

(Wa=8) - s
{(Ja — Jb) = Jet = Ja, etc.



BOOK XI.

DEFINITIONS.
1. A solid is that which has length, breadth, and depth.
2. An extremity of a solid is a surface,

3. A straight line is at right angles to a plane,
when it makes right angles with all the straight lines which
meet it and are in the plane.

4. A plane is at right angles to a plane when the
straight lines drawn, in one of the planes, at right angles to
the common section of the planes are at right angles to the
remaining plane.

5. The inclination of a straight line to a plane
is, assuming a perpendicular drawn from the extremity of
the straight line which is elevated above the plane to the
plane, and a straight line joined from the point thus arising
to the extremity of the straight line which is in the plane,
the angle contained by the straight line so drawn and the
straight line standing up.

6. The inclination of a plane to a plane is the acute
angle contained by the straight lines drawn at right angles
to the common section at the same point, one in each of the
planes.

7. A plane is said to be similarly inclined to a plane
as another is to another when the said angles of the inclina-
tions are equal to one another.

8. Parallel planes are those which do not meet.
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9. Similar solid figures are those contained by similar
planes equal in multitude.

10. Equal and similar solid figures are those con-
tained by similar planes equal in multitude and in magnitude.

11. A solid angle is the inclination constituted by more
than two lines which meet one another and are not in the
same surface, towards all the lines.

Otherwise : A solid angle is that which is contained by
more than two plane angles which are not in the same plane
and are constructed to one point.

12. A pyramid is a solid figure, contained by planes,
which is constructed from one plane to one point.

13. A prism is a solid figure contained by planes two
of which, namely those which are opposite, are equal, similar
and parallel, while the rest are parallelograms.

14. When, the diameter of a semicircle remaining fixed,
the semicircle is carried round and restored again to the same
position from which it began to be moved, the figure so
comprehended is a sphere.

15. The axis of the sphere is the straight line which
remains fixed and about which the semicircle is turned.

16. The centre of the sphere is the same as that
of the semicircle.

17. A diameter of the sphere is any straight line
drawn through the centre and terminated in both directions
by the surface of the sphere.

18. When, one side of those about the right angle in a
right-angled triangle remaining fixed, the triangle is carried
round and restored again to the same position from which it
began to be moved, the figure so comprehended is a cone.

And, if the straight line which remains fixed be equal to
the remaining side about the right angle which is carried
round, the cone will be right-angled; if less, obtuse-angled;
and if greater, acute-angled.

19. The axis of the cone is the straight line which
remains fixed and about which the triangle is turned.
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20. And the base is the circle described by the straight
line which is carried round.

21.  When, one side of those about the right angle in a
rectangular parallelogram remaining fixed, the parallelogram
is carried round and restored again to the same position from
which it began to be moved, the figure so comprehended is a
cylinder.

22. The axis of the cylinder is the straight line which
remains fixed and about which the parallelogram is turned.

23. And the bases are the circles described by the two
sides opposite to one another which are carried round.

24. Similar cones and cylinders are those in which
the axes and the diameters of the bases are proportional.

25. A cube is a solid figure contained by six equal
squares.

26. An octahedron is a solid figure contained by eight
equal and equilateral triangles.

27. An icosahedron is a solid figure contained by
twenty equal and equilateral triangles.

28. A dodecahedron is a solid figure contained by
twelve equal, equilateral, and equiangular pentagons.

DEFINITION 1.

Srepedv doTL TO pijkos xai wAdros xai Bdfos Eyov.

This definition was evidently traditional, as may be inferred from a number
of passages in Plato and Aristotle. Thus Plato speaks (Sophist, 235 D) of
makinﬁ an imitation of a model (rapdSerypa) “in length and breadth and
depth ” and (ZLaws, 817 E) of “the art of measuring length, surface and depth”
as one of three pafyuara. Depth, the third dimension, is used alone as a
description of “body ” by Aristotle, the term being regarded as connoting the
other two dimensions ; thus (Mefapk. 10204 13, 11) “length is a fine, breadth a
surface, and depth body” ; *that which is continuous in one direction is length,
in two directions breadth, and in three depth.” Similarly Plato (Xep. 528 B, D),
when reconsidering his classification of astronomy as next to (plane) geometry:
“although the science dealing with the additional dimension of depth is next in
order, yet, owing to the fact that it is studied absurdly, I passed it over and
put next to geometry astronomy, the mofion of (bodies having) depth.” In
Aristotle (Zupics V1. 5, 142 b 24) we find “the definition of body, that which
has three dimensions (Swaoracess)”; elsewhere he speaks of it as ‘that which
has all the dimensions” (De caelo 1. 1, 268 b 6), *“that which has dimension
every way ” (v6 wdvry dudoraow éxov, Metaph. 1066 b 32)etc. In the Physics
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(1v. 1, 208 b 135qq.) he speaks of the “ dimensions” as six, dividing each of
the three into two opposites, *“ up and down, before and behind, nght and left,”
though of course, as he explains, these terms are relative.

Heron, as might be expected, combines the two forms of the definition.
“A solid body is that which has length, breadth, and depth: or that which
possesses the three dimensions.” (Def. 11.)

Similarly Theon of Smyrna (p. 111, 19, ed. Hiller): “that which is extended
(8taorarcv) and divisible in three directions is solid, having length, breadth
and dep

DEFINITION 2.

Srepect R wipas rpdvesa.

In like manner Aristotle says (Mefaph. 1066 b 23) that the notion (Adyos)
of body is “that which is bounded by surfaces” (émwédois in this case) and
(Metaph. 1060 b 15) “surfaces (émupdvear) are divisions of bodies.”

So Heron (Def. rr): “Every solid is bounded (weparotras) by surfaces, and
is produced when a surface is moved from a forward position in a backward
direction.”

DEFINITION 3.

J

Evfleia wpds drimedov dpfy dorw, drav wpos wdoas Tas drropévas almys elfelas
kai odoas &v 1§ émwédy dpfas woufj yuvias.

This definition and the next are given almost word for word by Heron
(Def. 115).

That a straight line can be so related to a plane as described in Def. 3 is
established in x1. 4. The fact has been made the basis of a definition of a
plane which is attributed by Crelle to Fourier, and is as follows. ‘A plane is
formed by the totality of all the straight lines which, passing through one and
the same point of a straight line in space, stand perpendicular to it.” Stated
in this form, the definition is open to the objection that the conception of a
right angle, involving the measurement of angles, presupposes a plane, inasmuch
as the measurement of angles depends ultimately upon the superposition of two
planes and their coincidence throughout when two lines in one coincide with
two lines in the other respectively. Cf. my note on 1. Def. 7, Vol. 1. pp. 173—s5.

DEFINITION 4.

"Enimwedov mpds émimedov Spfdv doTw, brav al 1) xowfj Touf) Tév dmuréduv mpos
dpbas dydpevar ebfeiar &v vi riv Emmdwv 1§ Aowrg dmumédy mpds Spfas dow.

Both this definition and Def. 6 use the common section of two planes,
though it is not till x1. 3 that this common section is proved to be a straight
line. The definition however, just like Def. 3, is legitimate, because the object
is to explain the meaning of terms, not to prove anything

The definition of perpendicular planes is made by Legendre a particular
case of Def. 6, the limiting case, namely, where the angle representing the
“inclination of a plane to a plane” is a right angle.

DEFINITION 5.

Eifelas fpé: émimedov rAiois lo'ﬂv, orav dwé Tob ,umwpov r(paro:,- m
edBelas émi 70 éwimedov xdferos axby, xai |l.m3 Tod yevouévov m;,u.uou éri 10 &y 1¢
lﬂﬂ&p wépas 1‘\']8 edfelas ebfeia imfeuxBi, 1 mepiexopévn yuvia Iwd mis dxbelons
xal Tijs épearions.
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In other words, the inclination of a straight line to a plane is the angle
between the straight line and its projection on the plane. This angle is of
course less than the angle between the straight line and any other straight line
in the plane through the intersection of the straight line and plane ; and the
fact is sometimes made the subject of a proposition in modern text- books. It
is easily proved by means of the propositions XI. 4, 1. 19 and 18,

DEFINITION 6.

"EmuréSov - wpds frwd&w kAlois doriv 7 mepeyopdry bfeia 7uwm o TV Tpos
opbis Tjj xowrj Topf ayopdvwy wpds ¢ abr onpuely dv ixarépy Ty dmurédwy.

When two planes meet in a straight line, they form what is called in
modern text-books a dikedral angle, which is defined as the ggening or angular
opening between the two planes. This dikedral angle is an “angle” altogether
different in kind from a plane angle, as again it is different from a sol/id angle
as defined by Euclid (i.e. a trihedral, tetrahedral, etc. angle). Adopting for
the moment Apollonius’ conception of an angle as the “bringing together of a
surface or solid towards one point under a broken line or surface” (Proclus,
E. 123, 16), we may regard a dihedral angle as the bringing together of the

roken surface formed by two intersecting planes not to a pesns but to a straight
Zline, namely the intersection of the planes. Legendre, in a proposition on the
subject, applied provisionally the term corner to describe the dihedral angle
between two planes; and this would be a better word, I think, than opening
to use in the definition.

The distinct species of “angle” which we call dihedral is, however,
measured by a certain plane angle, namely that which Euclid describes in the
present definition and calls the inclination of a plane to a plane, and which in
some modern text-books is called the plane angle of the dikedral angle.

It is necessary to show that this plane angle is a proper measure of the
dihedral angle, and accordingly Legendre has a proposition to this effect. In
order to prove it, it is necessary to show that, given two planes meeting in a
straight line,

(r) the plane angle in question. is the same at all points of the straight line
formmg the common section ;
(2) if the dihedral angle between two planes increases or diminishes in a
certain ratio, the plane angle in question will increase or diminish in the same
ratio.

(1) If MAN, MAP be two planes intersecting in M4, and if AN, AP
be drawn in the planes respectively and at right angles to
MA, the angle NAP is the inclination of the plane lo the
plane or the plane angle of the dikedral angle. M c
Let MC, MB be also drawn in the respective planes
at right angles to MA.
Then since, in the plane MAN, MC and AN are B
drawn at right angles to the same straight line M4,
MC, AN are parallel.
For the same reason, M5B, AP are parallel.
Therefore [x1. 10] the angle BMC is equal to the o
angle PAN. b
And M may be any point on MA. Therefore the
plane angle described in the definition is the same at all
points of 4M.

>
=
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(2) In the plane VAP draw the arc N.D'P of any circle with centre A4,
and draw the radius 4.0,
Now the planes VAP, CMB, being both at right angles to the straight

line MA, are parallel ; [x1 14]
therefore the intersections 4.0, ME of these planes with the plane MA.D are
parallel, [x1. 16]
and consequently the angles BME, PAD are equal. [x1. 10]

If now the plane angle VAD were equal to the plane angle DAP, the
dihedral angle NAMD would be equal to the dihedral angle DAMP;
for, if the angle 4D were applied to the angle DAN, AM remaining the
same, the corresponding dihedral angles would coincide.

Successive applications of this result show that, if the angles NAD, DAP
each contain a certain angle a certain number of times, the dihedral angles
NAMD, DAMP will contain the corresponding dihedral angle the same
number of times respectively.

Hence, where the angles NAD, DAP are commmumbk, the dihedral
angles corresponding to them are in the same ratio.

Legendre then extends the proof to the case where the plane angles are
incommensurable by reference to an exactly similar extension in his proposmon
corresponding to Euclid v1. 1, for which see the note on that proposition.

Modern text-books make the extension by an appeal to Jimits.

DEFINITION 7.

"Enimedoy mpds émimedov éjmm kexAirfat Aéyeras xai Erepov mpos érepov, orav
al elpypévar Tév kMoewy yoviar ivar dAjAas dow.

DEFINITION 8.
MapddAygha érimedd dore ra dovpmrera.
Heron has the same definition of parallel planes (Def. 115). The Greek

word which is translated “which do not meet” is dodpwrrwrae, the term which
has been adopted for the asymplotes of a curve.

DEFINITION 0.

"Opowa orepedr oxfpard éore T& Uwd Opolwy émurédwy mwepiexpeva lowv TO
wAnbos.

DEFINITION 10.

"Ioa 8¢ xai Gpoia oTeped oxipard ot Ta Ywo dpolwy émuréduv TepLexdpeva
lvwv 1¢ TAfe xai ¢ peyéie

These definitions, the second of which practically only substitutes the
words “equal and similar” for the word “similar” in the first, have been the
mark of much criticism.

Simson holds that the equality of solid figures is a thing which ought to be
proved, by the method of superposition, or otherwise, and hence that Def. 10
is not a definition but a tkeorem which ought not to have been placed among
the definitions. Secondly, he gives an example to show that the definition or
theorem is not universally true. He takes a pyramid and then erects on the
base, on opposite sides of it, two equal pyramids smaller than the first. The
addition and subtraction of these pyramids respectively from the first give two
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solid figures which satisfy the definition but are clearly not equal (the smaller
having a re-entrant angle); whence it also appears that two unequal solid
angles may be contained by the same number of equal plane angles.

Maintaining then that Def. 10 is an interpolation by “an unskilful hand,”
Simson transfers to a place before Def. g the definition of a solid angle, and
then defines similar solid figures as follows :

Similar solid figures are such as have all their solid angles equal, each to each,
and whick are contained by the same number of similar planes.

endre has an invaluable discussion of the whole subject of these
definitions (Note XIr., pp. 323—336, of the 14th edition of his Eléments de
Géométrie). He remarks in the first place that, as Simson said, Def. 10 is not
properly a definition, but a theorem which it is necessary to prove; for it is
not evident that two solids are equal for the sole reason that they have an
equal number of equal faces, and, if true, the fact should be proved by super-
position or otherwise. The fault of Def. 10 is also common to Def, g. For,
if Def. 10 is not proved, one might suppose that there exist two unequal and
dissimilar solids with equal faces; but, in that case, according to Definition g,
a solid having faces similar to those of the two first would be similar to both
of them, i.e. to two solids of different form: a conclusion implying a con-
tradicii;n or at least not according with the natural meaning of the word
““similar.”

What then is to be said in defence of the two definitions as given by
Euclid? It is to be observed that the figures which Euclid actually proves
equal or similar by reference to Deff. g, 10 are such that their solid angles do
not consist of more than #4ree plane angles ; and he proves sufficiently clearly
that, if three plane angles forming one solid angle be respectively equal to
three plane angles forming another solid angle, the two solid angles are equal.
If now two polyhedra have their faces equal respectively, the corresponding
solid angles will be made up of the same number of plane angles, and the
plane angles forming each solid angle in one polyhedron will be respectively
equal to the plane angles forming the corresponding solid angle in the other.
Therefore, if the plane angles in each solid angle are not more than three in
number, the corresponding solid angles will be equal. But if the correspond-
ing faces are equal, and the corresponding solid angles equal, the solids must
be equal; for they can be superposed, or at least they will be symmetrical
with one another. Hence the statement of Deff. 9, 10 is true and admissible
at all events in the case of figures with trihedral angles, which is the only case
taken by Euclid.

Again, the example given by Simson to prove the incorrectness of Def. 10
introduces a solid with a re-entrant angle. But it is more than probable that
Euclid deliberately intended to exclude such solids and to take cognizance of
convex polyhedra only ; hence Simson’s example is not conclusive against the
definition.

Legendre observes that Simson's own definition, though true, has the
disadvantage that it contains a number of suierﬁuws conditions. To get
over the difficulties, Legendre himself divides the definition of similar solids
into two, the first of which defines similar friangular pyramids only, and the
second (which defines similar polyhedra in general) is based on the first.

Tawo triangular pyramids are similar when they have pairs of faces respectively
similar, similarly placed and equally inclined to one another.

Then, having formed a triangle with the vertices of three angles taken on
the same face or base of a polyhedron, we may imagine the vertices of the
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different solid angles of the polyhedron situated outside of the plane of this
base to be the vertices of as many triangular pyramids which have the triangle
for common base, and each of these pyramids will determine the position of
one solid angle of the polyhedron. This being so,

Two polyhedra are similar when they have similar bases, and the vertices of
their corresponding solid angles outside the bases are determined by triangular
2yramids similar eack to each.

As a matter of fact, Cauchy proved that two convex solid figures are equal
if they are contained by equal plane figures similarly arranged. Legendre
gives a proof which, he says, is nearly the same as Cauchy'’s, dependmg on two
lemmas which lead to the theorem that, Given a convex polyhedron in which all
the solid angles are made up of more than three plane angles, it is impossible to
vary the inclinations of the planes of this solid so as to produce a second polyke-
dron formed by the same planes arranged in the same manner as in the given
polyhedron. The convex polyhedron in which all the solid angles are made up
of more than three plane angles is obtained by cutting off from eny given
polyhedron all the triangular pyramids forming trihedral angles (if one and the
same edge is common to fwo trihedral angles, only one of these angles is
suppressed in the first operation). This is legitimate because trihedral angles
are invariable from their nature.

Hence it would appear that Heron’s definition of equal solid figures, which
adds “similarly situated ” to Euclid’s “ similar * is correct, if it be understood to
apply to wnvex polyhedra only: ZEgual solid ﬁguws are those whick are
contained by equal and similarly situated planes, equal in numéber and magnitude :
where, however, the words “equal and ” before * similarly situated ” might be
dispensed with.

Heron (Def. 118) defines similar solid figures as those whick are contained
by planes similar and similarly situated. 1f understood of convex polyhedra,
there would not appear to be any objection to this, in view of the truth of
Cauchy’s proposition about equal solid figures.

DEFINITION 11.

zﬂpm ywvia doriv 1 k) Yo wk:wm 7 o 7pap.pmv mr‘ro,u(mv dAAjAwy kai ;.n;r
&y 11; avry Jm.{w.nup obody wpos wdoats Tals ypappais xAigis. "AlAws wf(ptu
yovia éoriv 7 Tmwo wAcWvwy ﬁ &vo 7mwwv émurédwv mweplexopéry py obodv év Tg
albr@ émurédy. mpos & omuely ovnorapévav.

Heiberg conjectures that the first of these two definitions, which is not in
Euclid’s manner, was perhaps taken by him from some earlier Elements.

The phraseology of the second definition is exactly that of Plato when he
is speaking of solid angles in the Zimaeus (p. 55). Thus he speaks (1) of four
equilateral triangles so put together ({wwiorapeva) that each set of three plane
angles makes one solid angle, (z) of eight equilateral triangles put together so
that each set of four plane angles makes one solid angle, and (3) of six squares
making eight solid angles, each composed of three plane right angles.

As we know, Apollonius defined an angle as the “bringing together of a
surface or solid to one point under a broken line or surface.” Heron (Def. 22)
even omits the word “broken ” and says that A4 solid angle is in general (xowws)
the bringing together of a surface which has its concavily in one and the same
direction to one point. It is clear from an allusion in Proclus (p. 123, 1—6) to
the half of a cone cut off by a triangle through the axis, and from a scholium to
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this definition, that there was controversy as to the correctness of describing asa
solid angle the “angle ” enclosed by fewer than three surfaces (including curved
surfaces). Thus the scholiast says that Euclid’s definition of a solid angle as
made up of three or more plane angles is deficient because it does not e.g. cover
the case of the angle of a * fourth part of a sphere,” which is contained by more
than two surfaces, though not all plane. But he declines to admit that the
half-cone forms a solid angle at the vertex, for in that case the vertex of the
cone would itself be an angle, and a solid angle would then be formed both
by two surfaces and by one surface: “which is not true.” Heron on the
other hand (Def. 22) distinctly speaks of solid angles which are not contained
by plane rectilineal angles, “e.g. the angles of cones.” The conception of the
latter “angles ” as the Zmit of solid angles with an infinite number of infinitely
small constituent plane angles does not appear in the Greek geometers so far
as I know.

In modern text-books a polyhedral angle is usually spoken of as formed
(or bounded) by three or more planes meeting at a point, or it is the angular
opening between such planes at the point where they meet.

DEFINITION 12.

Mvpapis éore oxipa arepedy émmédos mepLexopevoy dmd évds émurédov mpos i
onpely ovveards.

This definition is by no means too clear, nor is the slightly amplified
definition added to it by Heron (Def. 99). A pyramid is the figure brought
logether to one point, by pulting together triangles, from a triangular, quadri-
lateral or polygonal, that is, any rectilineal, base.

As we might expect, there is great variety in the definitions given in
modern text-books. Legendre says a pyramid is the solid formed when several
triangular planes start from one point and are terminated at the different sides
of one polygonal plane.

Mr H. M. Taylor and Smith and Bryant call it a golykedron all but one of
whose faces meet in a point.

Mehler reverses Legendre’s form and gives the content of Euclid’s in
clearer language. “An n-sided pyramid is bounded by an n-sided polygon as base
and n triangles whick connect its sides with one and the same point outside it.”

Rausenberger points out that a pyramid is the figure cut off from a solid
angle formed of any number of plane angles by a plane which intersects the
solid angle.

DEFINITION 13.

Hpiocpa dori oxiipa orepedv dmumébois weprexdpevor, dv 8o T& drevavriov ioa
7e xal Spowd doTe kai mapdAAyha, 7d 88 Aord wapaAlyAdypappa.

Mr H. M. Taylor, followed by Smith and Bryant, defines a prism as a
polykedron all but two of the faces of whick are parallel to one straight line.

Mebhler calls an n-sided prism a dody contained between two parallel planes
and enclosed by n other planes with parallel lines of intersection.

Heron’s definition of a prism is much wider (Def. 105). Prisms are those
Jigures which are connected (ovvdmwrovre) from a rectilineal base to a rectilineal
area by rectilineal collocation (xar' eb@iypappov ovvleow). By this Heron must
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apparently mean any convex solid formed by connecting the sides and angles
of two polygons in different planes, and
each having any number of sides, by
straight lines forming triangular faces
(where of course two adjacent triangles
may be in one plane and so form one
quadrilateral face) in the manner shown
in the annexed figure, where A5CD,
EFG represent the base and its
opposite.

Heron goes on to explain that, if
the face opposite to the base reduces to
a straight line, and a solid is formed by
connecting the base to its extremities by
straight lines, as in the other case, the
resulting figure is neither a pyramid nor
a prism.

Further, he defines parallelogrammic (in the body of the definition parallel-
sided) prisms as being those prisms which have six faces and have their

opposite planes parallel.

DEFINITION 14.

Zaipd éorw, drav fuuukhiov pevovoms s Suapérpou wepievexbiv 1o
NpucixAior els 10 atrd wdAww droxaracralyf, dev fplato pépeabar, 1o wephndlhiv
TXpHa.

The scholiast observes that this definition is not properly a definition ot a
sphere but a description of the mode of generating it. But it will be seen, in
the last propositions of Book xi11., why, Euclid put the definition in this form.
It is because it is this particular view of a sphere which he uses to prove that
the vertices of the regular solids which he wishes to * comprehend ” in certain
spheres do lie on the surfaces of those spheres. He proves in fact that the
said vertices lie on semicircles described on certain diameters of the spheres. For
the real definition the scholiast refers to Theodosius’ Sphaerica. But of course
the proper definition was given much earlier. In Aristotle the characteristic
of a sphere is that s extremily is equally distant from its centre (10 loov dméxew
ob pdoov 6 oxarov, De caelo 11 14, 297 a 24). Heron (Def. 76) uses the
same form as that in which Euclid defines the circle: A sphere is a solid
Jfigure bounded by one surface, such that all the straight lines falling on it from
one point of those which lie within the figure are equal to one another. So the
usual definition in the text-books: 4 sphere is a closed surface such that all
points of it are equidistant from a fixed point within il.

DEFINITION 15.
"Afwv 8t ijs oaipas dotiv v} pévovaa ebfeia, wepl fv T Gpukichiov oTpéderar.
That any diameter of a sphere may be called an axis is made clear by
Heron (Def. 78). The diameter of the sphere is called an axis, and is any
straight line drawn through the centre and bounded in both directions by the
sphere, immovable, about whick the sphere is moved and turned. Cf. Euclid’s
Def. 17.
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DEFINITION 16.
Kévrpov 8¢ mijs odaipas éori 10 alrd, & xal rof nuucuxAiov,

Heron, Def. 77. The middle ( point) of the sphere is called its centre ; and
this same point is also the centre of the hemisphere.

DEFINITION 17.

Awdperpos 8¢ Tijs odalpas doriv ebbeid Tis Sz Tod kévrpov Yypé xal wepa-
Toupévy é’ éxdrepa T& pépn Twd Tis dmupavelas Tis opaipas.

DEFINITION 18.

Kdvis o, Srav dploywviov Tpiydvoy pevodons puds whevpis Tav mepl Ty
opliy yuviay wepravexlev 1o Tplywvov ds T adrd wdAw droxaracraly, 30ev ypéato
bépeabar, 1 wepydbiv oxijpa. xdv piv 4 pévovea eifea loy § i) M'ﬁéfﬁ]
wepi v opbiy wepupepopévy, oploywvios doTar & xavos, dav 8¢ dNdrrwy, dufSAv-
yuveos, v 8¢ pellwv, dfvyuwnios.

This definition, or rather description of the genesis, of a (right) cone is
interesting on account of the second sentence distinguishing between right-
angled, obtuse-angled and acute-angled cones. This distinction is quite
unnecessary for Euclid’s purpose and is not used by him in Book x11.; it is no
doubt a relic of the method, still in use in Euclid’s time, by which the earlier
Greek geometers produced conic sections, namely, by cutting right cones only
by sections always perpendicular to an edge. With this system the parabola
was a section of a right-angled cone, the hyperbola a section of an obtuse-angled
cone, and the ellipse a section of an acute-angled cone. The conic sections were
so called by Archimedes, and generally until Apollonius, who was the first to
give the complete theory of their generation by means of sections not perpen-
dicular to an edge, and from cones which are in general obligue circular cones.
Thus Apollonius begins his Conses with the more scientific definition of a cone.
If, he says, a straight line infinite in length, and passing always through a fixed
point, be made to move round the circumference of a circle which is not in the
same plane with the point, so as to pass successively through every point of
that circumference, the moving straight line will trace out the surface of a double
cone, or two similar cones lying in opposite directions and meeting in the fixed
point, which is the apex of each cone. The circle about which the straight line
moves is called the dase of the cone lying between the said circle and the fixed
point, and the axis is defined as the straight line drawn from the fixed point,
or the apex, to the centre of the circle forming the base. Apollonius goes on
to say that the cone is a scalene or obligue cone except in the particular case
where the axis is perpendicular to the base. In this latter case it is a right
cone.

Archimedes called the right cone an isoseeles cone. This fact, coupled
with the appearance in his treatise On Conoids and Spheroids (7, 8, 9) of
sections of acute-angled cones (ellipses) as sections of conical surfaces which are
proved to be oblique circular cones by finding their circular sections, makes it
sufficiently clear that Archimedes, if he had defined a cone, would have
defined it in the same way as Apollonius does.
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DEFINITION 19.
"Afwy 8t Tol xavov doriy 1) pévovoa elfeia, wepl v T Tpiywvor oTpiderar

DEFINITION 20.
Bdas 82 & xixhos & mrd Tis mepipepopdims ebfelas ypadipevos.

DEFINITION 21.

KvhwvBpds dorwv, drav opfoywviov mapadAnloypdppov pevovons !.uﬂs‘ wAevpas
Tév wept v oply ywviay meprevexfiv 16 mapaAdnhiypappor els 70 alrd wdAw
dmoxaracraly, dlev tpéaro pépeabar, 10 wephndlbiv oxfua.

DEFINITION 22.

"Afwv 8t Tob xuAivdpov doTiv 9 pévovoa edfeia, wepl v Td wapalAyldypappov
arpéderas.

DEFINITION 23.

Bdoas 8¢ ol xixdot oi dwd 1év dwevavriov weplayopdvwr 8o -whevpiv
ypadouevor,

DEFINITION 24.

"Opotor xGvor xal xiAwdpol elow, dv ol Te dfoves xal al Sidperpot T@v PBdoewy
dvdhoydy daw.

DEFINITION 25.
KvBos dori axfipa orepedv vmd 8 rerpayuvuwy lowy mepeydpevor.

DEFINITION 26.
Oxraedpdy lori axijpa orepedy Imd Oktd Tprydvev lowv kal loowhedpwy
TepLExOpeEvoY.
DEFINITION 27.
Eixocdedpdv dore oxipd orepedv Imd ekoot rprysver lowv xal loomAclpuy
TwepLexopevor.
DEFINITION 28.

Awdexdedpov doTi oxipa orepedy Tmd Sudexa wevraywvay lowy al loowAejpuy
xal looywvivy Tepieydpevor,



BOOK XI. PROPOSITIONS.

ProrosiTiON 1.

A part of a straight line cannot be in the plane of reference
and a part in a plane more elevated.

For, if possible, let a part 48 of the straight line 48C
be in the plane of reference, and a part
BC in a pEme more elevated. c

There will then be in the plane of
reference some straight line continuous
with 428 in a straight line.

Let it be BD ;
therefore 4.5 is a common segment of the
two straight lines 48C, ABD:

which is impossible, inasmuch as, if we
describe a circle with centre 5 and distance
AB, the diameters will cut off unequal circumferences of the
circle.
Therefore a part of a straight line cannot be in the plane
of reference, and a part in a plane more elevated.
Q. E. D

1. the plane of reference, 7o lwoxeiuevor émlwedor, the plane laid down or assumed.
2. more elevated, uerewporépy.

There is no doubt that the proofs of the first three propositions are
unsatisfactory owing to the fact that Euclid is not able to make any use of his
definition of a plane for the purpose of these proofs, and they really depend
upon truths which can only be assumed as axiomatic. The definition of a plane
as that surface which lies evenly with the straight lines on ifself, whatever its
exact meaning mav be, is nowhere appealed to as a criterion to show whether
a particular surface is or is not a plane. If the meaning of it is what I conjec-
ture in the note on Book 1., Def. 7 (Vol. 1. p. 171), if, namely, it only tries to
express without an appeal to sight what Plato meant by the *“ middle covering
the extremities ” (i.e. apparently, in the case of a plane, the fact that a plane
looked at edgewise takes the form of a straight line), then it is perhaps
possible to connect the definition with a method of generating a plane which
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has commended itself to many writers as giving a better definition. Thus, if
we conceive a straight line in space and a point outside it placed so that, in
Plato’s words, the line “covers” the point as we look at them, the line will
also “cover” every straight line which passes through the given point and
some one point on the given straight line. Hence, if a straight line passing
always through a fixed point moves in such a way as to pass successively
through every point of a given straight line which does not contain the given
point, the moving straight line describes a surface which satisfies the Euclidean
definition of a plane as I have interpreted it. But if we adopt the definition
of a plane as the surface described by a straight line which, passing through a
given point, turns aboul it in suck a way as always fo intersect a given siraight
line not passing through the given point, this definition, though it would help us
to prove Eucl.-x1. 2, does not give us the fundamental properties of a plane;
some postulate is necessary in addition. The same is true even if we take a
definition which gives more than is required to determine a plane, the defini-
tion known as Simson’s, though it is at least as early as the time of Theon of
Smyrna, who says (p. 112, 5) that a plane is a surface suck that, if a straight line
meet 1t in fwo points, the straight line lies wholly in it (6Ay airg épappolerar).
This is also called the axiom of the plane. (For some attempts to prove this on
the basis of other definitions of a plane see my note on the definition of a plane
surface, 1. Def, 7.) If this definition or axiom be assumed, Prop. 1 becomes
evident, for, as Legendre says, “In accordance with the definition of the plane,
wlI;;zIn a straight line has two points common with a plane, it lies wholly in the
plane.”

Euclid practically assumes the axiom when he says in this proposition
“there will be in the plane of reference some straight line continuous with
AB.” Clavius tries, unsuccessfully, to deduce this from Euclid’s own
definition of a plane; and he seems to admit his

failure, because he proceeds to try another tack. p

Draw, he says, in the plane DE, the straight line
CG at right angles to AC, and, again in the plane
DE, CF at right angles to CG [1. 11]. Then AC,
CF make right angles with CG in the same plane ;
therefore (1. 14) ACF is a straight line. But this
does not really help, because Euclid assumes tacitly,
in Book 1 as well as Book x1., that a straight line joining two points in a
plane lies wholly in that plane.

A curious point in Euclid’s proof is the reason given why two straight lines
cannot have a common segment. The argument is precisely that of the
“proof” of the same thing given by Proclus on 1. 1 (see note on Book 1.
Post. 2, Vol. 1. p. 197) and is of course inconclusive. The fact that two
straight lines cannot have a common segment must be taken to be involved
in the definition of, and the postulates relating to, the straight line; and the
““proof” given here can hardly, I should say, be Euclid’s, though the interpo-
lation, if it be such, must have been made very early.

The proof assumes too that a circle can be described so as to cut B4, BC
and B.D, or, in other words, it assumes that 4D, BC are in one plane ;-that
is, Prop. 1 as we have it really assumes the result of Prop. 2. There is there-
fore ground for Simson’s alteration of the proof (after the point where B.D has
been taken in the given plane in a straight line with 4.5) to the following:

“Let any plane pass through the straight line 4.0 and be turned about it
until it pass through the point C.
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And, because the points B, C are in this plane, the straight line BC is
in it. Simson’s def.]
Therefore there are two straight lines ABC, ABD in the same plane that
have a common segment 45 :
which is impossible.”

Simson, of course, justifies the last inference by reference to his Corollary
to 1. 11, which, however, as we have seen, is not a valid proof of the assump-
tion, which is really implied in 1. Post. 2.

An alternative reading, perhaps due to Theon, says, after the words
“ which is impossible ” in the Greek text, “for a straight line does not meet a
straight line in more points than one; otherwise the straight lines will
coincide.” Simson (who however does not seem to have had the second
clause beginning ““otherwise ” in the text which he used) attacks this alterna-
tive reading in a rather confused note chiefly directed against a criticism by
Thomas Simpson, without (as it seems to me) sufficient reason. It contains
surely a legitimate argument. The supposed straight lines ABC, ABD meet
in more than two points, namely in all the points between 4 and B. But two
straight lines cannot have two points common without coinciding altogether ;
therefore 4.58C must coincide with 48D,

ProrosiTION 2.

If two straight lines cut one another, they are in one plane,
and every triangle is in one plane.
For let the two straight lines 45, CD cut one another at
the point £ ;
I say that A8, CD are in one plane,
and every triangle is in one plane.
For let points 7, G be taken at
random on £C, EB,
let CB, FG be joined,
and let /A, GK be drawn across ;
I say first that the triangle £CAB is
in one plane. © H K-8
For, if part of the-triangle £CA,
either F/HC or GBK, is in the plane of reference, and the rest
in another,
a part also of one of the straight lines £C, £5 will be in the
plane of reference, and a part in another.
But, if the part FCBG of the triangle £CB be in the
plane of reference, and the rest in another,
a part also of both the straight lines £C, £B will be in the
plane of reference and a part in another :
which was proved absurd. [xe. 1]
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Therefore the triangle £C2 is in one plane.
But, in whatever plane the triangle £C2B is, in that plane
also is each of the straight lines £C, EB,

and, in whatever plane each of the straight lines £C, £B is,
in that plane are A5, CD also. [x1 1]

Therefore the straight lines 48, CD are in one plane,

and every triangle is in one plane.
Q. E. D.

It must be admitted that the “proof” of this proposition is not of any
value. For one thing, Euclid only takes certain triangles and a certain
quadrilateral respectively forming part of the original triangle, and argues
about these. But, for anything we are supposed to know, there may be some
part of ‘he triangle bounded (let us say) by some curve which is not in the
same plane with the triangle.

We may agree with Simson that it would be preferable to enunciate the
proposition as follows.

Two straight lines which inlersect are in one plane, and three straight lines
whick intersect two and two are in one plane.

Adopting Smith and Bryant’s figure in preference to Simson’s, we suppose
three straight lines PQ, £S, XY to intersect
two and two in 4, B, C. R

Then Simson’s proof (adopted by Legen-
dre also) proceeds thus.

Let any plane pass through the straight
line PQ, and let this plane be turned about
PQ (produced indefinitely) as axis until it
passes through the point C. X

Then, since the points 4, C are in this 8 c ¥
plane, the straight line 4C (and therefore
the straight line RS produced indefinitely) 5
lies wholly in the plane. [Simson’s def.

For the same reason, since the points B, C are in the plane, the straight
line X ¥ lies wholly in the plane.

Hence all three straight lines 2Q, RS, X¥ (and of course any pair of
them) lie in one plane.

But it has still to be proved that there is on/y one plane passing through
the three straight lines.

This. may Ee done, as in Mr Taylor’s Euclid, thus.

Suppose, if possible, that there are fwe different planes through 4, B, C.

The straight lines BC, CA, AB then lie wholly in each of the two planes.

Now any straight line in one of the two planes must intersect at least two
of the straight lines (produced if necessary) ;
let it intersect two of them in X, L.

Then, since X, Z are also in the second plane; the line XZ lies wholly in
that plane.

Hence every straight line in either of the planes lies wholly in the other
also; and therefore the planes are coincident throughout their whole surface.
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It follows from the above that
A plane is determined (i.e. uniquely defermined) by any of the following data:
(1) by three straight lines meeting one another two and two,
(2) &y three points not in a straight line,
(3) &y two straight lines meeting one another,
(4) by a straight line and a point without it.

ProrosiTION 3.

If two planes cut ome another, their common section is a
strazght line.

For let the two planes A8, BC cut one another,
and let the line DB be their common
section ;

I say that the line D2 is a straight line.

For, if not, from D to B let the straight
line DERB be joined in the plane A5, and
in the plane BC the straight line DFA5. b A

Then the two straight lines DEB, DFB
will have the same extremities, and will
clearly enclose an area:
which is absurd.

Therefore DEB, DFZB are not straight lines.

Similarly we can prove that neither will there be any
other straight line joined from D to B except D2 the common
section of the planes 48, BC.

Therefore etc.

Q. E. D.

I think Simson is right in objecting to the words after * which is absurd,”
to the effect that D.EB, DFB are not straight lines, and that neither can there
be any other straight line joined from D to B except DB, as being unneces-
sary. It is right to conclude at once from the absurdity that B.D cannot Ju?
be a straight line.

Legendre makes his proof depend on Prop. 2. *For, if, among the points
common to the two planes, three should be found which are not in a straight
line, the two planes in question, each passing through three points, would only
amount to one and the same plane.” [This of course assumes that three
points determine one and only one plane, which, strictly speaking, involves
more than Prop. 2 itself, as shown in the last note.]

A favourite proposition in modern text-books is the following. The proof
seem!;‘ to be due to von Staudt (Killing, Grundiagen der Geometrie, Vol. 11.
P- 43



XL 3, 4] PROPOSITIONS 2z—4 277

If two planes meet in a point, they meel in a straight line.
Let ABC, ADE be two given planes meeting
at 4. o

Take any points B, C lying on the plane 4 BC, 8
a?d not on the plane 4A.DE but on the same side
of it.

D
Join 4B, AC, and produce B4 to . M
Join CZ. S il

Then, since B, # are on opposite sides of the

plane ADE,
C, Fare also on opposite sides of it. \/
Therefore C# must meet the plane 4DE in F

some point, say G.
Then, since 4, G are both in each of the planes 48C, ADE, the straight
line 4G is in both planes. [Simson’s def.]

This is also the place to insert the proposition that, Jf three planes intersect
two and two, their lines of inlersection either meet in a point or are parallel fwo
and two.

Let there be three planes intersecting in the straight lines 48, CD, EF.

B A
iy S i B A

"“-.. i \

S, D C

E

Now AB, EF are in a plane ; therefore they either meet in a point or are
parallel.
(1) Let them meet in O.

Then O, being a point in 425, lies in the plane 4.0, and, being also a
point in EF, lies also in the plane £D.

Therefore O, being common to the planes 4D, DE, must lie on CD, the
line of their intersection ;
i.e. CD, if produced, passes through O.
(2) Let AB, EF not meet, but let them be parallel.

Then CD cannot meet A8 ; for, if it did, it must necessarily meet £7,
by the first case.

Therefore CD, A5, being in one plane, are parallel.

Similarly CD, EF are parallel.

PROPOSITION 4.

If a straight line be set up at right angles to two straight
lines which cut one another, at their common point of section,
it will also be at right angles to the plane through them.



278 BOOK XI [x 4

For let a straight line £F be set up at right angles to the
two straight lines 48, CD, which

cut one another at the point Z, r

from E; & m

I say that EF is also at right

angles to the plane through A5, 3%@0

CD. H
For let AE, EB, CE, ED be D g

cut off equal to one another,

and let any straight line GEA be drawn across through Z,
at random ;

let AD, CZ be joined,

and further let FA4, FG, FD, FC, FH, FB be joined from
the point # taken at random <on EF>.

Now, since the two straight lines 4£, £D are equal to
the two straight lines CZ, £5, and contain equal angles, [1. 15]

therefore the base 4D is equal to the base C5,
and the triangle 4 £D will be equal to the triangle CZB; [1.4)
so that the angle DA E is also equal to the angle £5C.

But the angle A£G is also equal to the angle BEH ;[1. 15)

therefore AGE, BEH are two triangles which have two
angles equal to two angles respectively, and one side equal
to one side, namely that adjacent to the equal angles, that
is to say, AE to EB;

therefore they will also have the remaining sides equal to the
remaining sides. [1. 26]
Therefore GE is equal to £/, and AG to BH.
And, since AE is equal to £B,
while £ is common and at right angles,
therefore the base #A4 is equal to the base /5. [ 4]
For the same reason
FC is also equal to FD.
And, since 4D is equal to CB,
and FA4 is also equal to 72,
the two sides #4, AD are equal to the two sides 7B, BC
respectively ;
and the base 7D was proved equal to the base 7C;
therefore the angle £ 4D is also equal to the angle 7BC. [1. 8]
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And since, again, 4G was proved equal to BH,
and further 74 also equal to 75,
the two sides 74, AG are equal to the two sides 7B BH.
And the angle /4G was proved equal to the angle FBH;
therefore the base 7G is equal to the base F/. [r 4]

Now since, again, G£ was proved equal to £/,
and £F is common,
the two sides GE, £F are equal to the two sides /£, EF;
and the base #G is equal to the base </ ;
therefore the angle GEF is equal to the angle ZEF.  [1. 8]
Therefore each of the angles GEF, HEF is right.

Therefore FE is at right angles to G/ drawn at random
through £.

Similarly we can prove that #Z will also make right
angles with all the straight lines which meet it and are in the
plane of reference.

But a straight line is at right angles to a plane when it
makes right angles with all the straight lines which meet it
and are in that same plane ; fx1. Def. 3]
therefore /£ is at right angles to the plane of reference.

But the plane of reference is the plane through the straight
lines AB, CD.

Therefore FE is at right angles to the plane through
AB, CD.

Therefore etc.

Q. E. D.

The steps to be successively proved in order to establish this proposition
by Euclid’s method are

(1) triangles AED, BEC equal in all respects, [by 1. 4]
(2) triangles A£G, BEH equal in all respects, [by 1. 26]
so that 4G is equal to BH, and GE to EH,

(3) triangles A£F, BEF equal in all respects, [r 4]

so that 4F is equal to B,
(4) likewise triangles CEF, DEF,
so that CFis equal to DF,

(5) triangles FA.D, FBC equal in all respects, [1 8]
so that the angles FA4 G, FBH are equal,
(6) triangles FA G, FBH equal in all respects, [by (2), (3) (5) and 1. 4]

so that G is equal to #A,
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(7) triangles FEG, FEH equal in all respects, [by (2), (6) and 1. 8]
so that the angles FEG, FEH are equal,
and therefore FE is at right angles to GH.

In consequence of the length of the above proof others have been
suggested, and the proof which now finds most general acceptance is that of
Cauchy, which is as follows,

Let AB be dicular to two straight lines #C, BD in the plane MN
at their point of intersection 5.
In the plane MV draw BE, any straight line A
through B.
Join CD, and let CD meet BE in E.
Produce 458 to F so that BFis equal to 4 5.
B

5% )
€

Similarly 4.D is equal to DF. 1 N
Since in the triangles ACD, FCD the two V

sides AC, CD are respectively equal to the two 4

sides #C, CD, and the third sides 4.0, FD are

also equal,
the angles 4 C.D, #FCD are equal. [r. 8]
The triangles ACE, FCE thus have two sides and the included angle
equal, whence

Join AC, AE, AD, CF, EF, DF.
Since BC is perpendicular to AF at its
middle point B,
AC is equal to CF.
c Y

EA is equal to EF. [r. 4]
The triangles 4 BE, FBE have now all their sides equal respectively ;
therefore the angles 4BE, FBE are equal, [1 8]
and 42 is perpendicular to BE.

And BE is in any straight line through B in the plane MN.

Legendre's proof is not so easy, but it is interesting. We are first required
to draw through any point £ within the angle
CBD a straight line CD bisected at E. B D

To do this we draw EX parallel to DB
meeting BC in X and then mark off XC equal K
to BK,

CE is then joined and produced to D; and
CD is the straight line required.

Now, joining 4C, AE, AD in the figure
above, we have, since CD is bisected at E,
(1) in the triangle 4CD,

ACP+ ADR = 2 AE* + 2 ED?,
and also (2) in the triangle BCD,
BC*+ BD?=2BE* + 2 ED?,

Subtracting, and remembering that the triangles 4BC, 48D are right-

angled, so that
AC*— BC' = 4B,

and ADP— BDP= AR,
we have 248'=24F - :BE,
or AE'= 4B+ BE?,



XL 4, 5] PROPOSITIONS 4, 5 281

whence [1. 48] the angle ABE is a right angle, and 48 is perpendicular
to BE.

It follows of course from this proposition that the perpendicular 4.5 is the
shortest distance from A to the plane MN.

And it can readily be proved that,

If from a point without a plane oblique straight lines be drawn to the plane,
(1) those meeting the plane at equal distances from the foot of the perpendicular
are equal, and
(2) of two straight lines meeting the plane at unequal distances from the foot of
the perpendicular, the more remote is the grealer.

Lastly, it is easily seen that

From a point outside a plane only one perpendicular can be drawn to that
plane.

For, if possible, let there be two perpendiculars. Then a plane can be
drawn through them, and this will cut the original plane in a straight line.

This straight line and the two perpendiculars will form a plane triangle
which has two right angles: which is impossible.

PROPOSITION 5.

If a straight line be sel up at right angles to three straight
lines which meet one another, at their common point of section,
the three straight lines ave in one plane.

For let a straight line 453 be set up at right angles to the
three straight lines BC, BD, BE, at
their point of meeting at B ; 2
I say that BC, BD, BE are in one plane. 3

For suppose they are not, but, if F
possible, let 2D, BE be in the plane of
reference and ZBC in one more elevated ;
let the plane through 4253, BC be 2
produced ;
it will thus make, as common section in the plane of reference,
a straight line, [x1. 3]

Let it make BF.

Therefore the three straight lines 45, BC, BF are in one
plane, namely that drawn through 4.8, BC.

Now, since A2 is at right angles to each of the straight
lines BD, BE,

therefore 42 is also at right angles to the plane through
BD, BE. [xr. 4]
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But the plane through 8D, BE is the plane of reference ;
therefore 425 is at right angles to the plane of reference.
Thus AB will also make right angles with all the straight

lines which meet it and are in the plane of reference.
oy [xt. Def. 3]
But BF which is in the plane of reference meets it ;

therefore the angle 4BF is right.
But, by hypothesis, the angle 4ZC is also right ;
therefore the angle ABF is equal to the angle ABC.
And they are in one plane:
which is impossible.

Therefore the straight line ZC is not in a more elevated
plane ;

therefore the three straight lines BC, BD, BE are in one
plane.

Therefore, if a straight line be set up at right angles to
three straight lines, at their point of meeting, the three straight
lines are in one plane. Q. E. D

1t follows that, if a right angle be turned about one of the straight lines
containing it the other will describe a plane.

At any point in a straight line it is possible to draw only one plane which
is at right angles to the straight line.

One such plane can be found by taking any two planes through the given
straight line, drawing perpendiculars to the straight
line in the respective planes, e.g. B0, CO in the
planes 40B, A0C, each perpendicular to 40,
and then drawing a plane (B0C) through the
perpendiculars.

If there were another plane through O per-
pendicular to 40, it must meet the plane through
AO and some perpendicular to it as OC in a
straight line OC' different from OC.

Then, by x1. 4, AOC' is a right angle, and in
the same plane with the right angle 40C : which is impossible.

Next, one plane and only one can be drawn through a point oulside a straight
line at right angles to that line.

Let P be the given point, A58 the given straight
line.

In the plane through P and 4.5, draw PO per-
pendicular to A8, and through O draw another straight
line OQ at right angles to 4.5.

Then the plane through OF, OQ is perpendicular
to AB.

If there were another plane through 2 perpendicular
to 4B, either
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(1) it would intersect 4.8 at O but not pass through 0Q, or
(2) it would intersect 4.5 at a point different from 0.
In either case, an absurdity would result.

ProrosiTiON 6.
If two straight lines be at vight angles to the same plane,
the straight lines will be parallel.

For let the two straight lines 48, CD be at right angles
to the plane of reference ;
I say that 4B is parallel to CD.

For let them meet the plane of
reference at the points 5, D,

A
let the straight line 20 be joined, 4 5
let DE be drawn, in the plane of o
reference, at right angles to 50, [ e

let DE be made equal to 425,
and let BE, AE, AD be joined.

A

Now, since 45 is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference. [x1. Def. 3]

But each of the straight lines 8D, BE is in the plane of
reference and meets 45 ;

therefore each of the angles 48D, ABE is right.
For the same reason
each of the angles CDB, CDE is also right.

And, since 428 is equal to DE,
and B0 is common,
the two sides 45, BD are equal to the two sides £D, D5 ;
and they include right angles ;
therefore the base 4D is equal to the base BE. [r. 4]

And, since 4B is equal to DE,
while 4D is also equal to BE,
the two sides A58, BE are equal to the two sides £D, DA ;
and A is their common base ;
therefore the angle 4B is equal to the angle £DA. [ 8)
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But the angle 4 BE is right;
therefore the argle £D4 is also right ;
therefore £D is at right angles to DA.
But it is also at right angles to each of the straight lines
BD, DC;
therefore £D is set up at right anFIes to the three straight
lines BD, DA, DC at their point of meeting ;
therefore the three straight lines 8D, DA, DC are in one
plane. [xr. 5]
l But, in whatever plane DB, DA are, in that plane is A8
also,
for every triangle is in one plane ; [x1. 2)
therefore the straight lines 48, BD, DC are in one plane.
And each of the angles 48D, BDC is right ;
therefore A2 is parallel to CD. [ 28]
Therefore etc. Q. E. D.

If anyone wishes to convince himself of the real necessity for some
general agreement as to the order in which propositions in elementary
geometry should be taken, let him contemplate the hopeless result of too
much independence on the part of editors in the matter of this proposition
and its converse, X1. 8.

Legendre adopts a different, and elegant, method of proof ; but he applies
it to X1 8, which he gives first, and then deduces x1. 6 from it by reductio ad
absurdum. Dr Mehler uses Legendre’s method of proof but applies it to
x1. 6, and then gives x1. 8 as a deduction from it. Lardner follows Legendre.
Holgate, the editor of a recent American book, gives Euclid’s proof of x1 6
and deduces X1. 8 by reductio ad absurdum. His countrymen, Schultze and
Sevenoak, give x1. 8 first, but put it after, and deduce it from, Eucl. x1. 10;
they then give X1 6, practically as a deduction from X1 8 by reductio ad
absurdum, after a proposition corresponding to Eucl. x1. 11 and 12, and a
corollary to the effect that through a given point one and only one perpen-
dicular can be drawn to a given plane.

We will now give the proof of x1. 6 by Legendre’s method (adopted by
Smith and Bryant as well as by Mehler).

Let AB, CD be both perpendicular to the A
same plane MNV, !

Join BD. i

Now, since BD meets 45, CD, both of !
which are perpendicular to the plane MV in \\ N
which BD is, B 4

O /_ l—0

the angles A B.D, CDB are right angles. 4
AB, CD will therefore be parallel provided %
that they are in the same plane.
Through D draw EDF, in the plane MN,
at right angles to 8D, and make £D equal to DF.
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Join BE, BF, AE, AD, AF.
Then the triangles BDE, BDF are equal in all respects (by 1. 4), so that
BE is equal to BF.
It follows, since the angles 4 BE, ABF are right, that the triangles 4 BE,
ABF are equal in all respects, and
AE is equal to AF

[Mehler now argues elegantly thus. If CE, CF be also joined, it is clear
that
CE is equal to CF.

Hence each of the four points 4, B, C, D is equidistant from the two
points £, F,

Therefore the points A, B, C, D are in one plane, so that AB, CD are

llel.
pamlf. however, we do not use the locus of points equidistant from two fixed
points, we proceed as follows.

The triangles 4£D, AFD have their sides equal respectively ;

hence [1. 8] the angles ADE, ADF are equal,
so that Z.D is at right angles to 4.D.
Thus £.D is at right angles to BD, AD, CD;
therefore C.D is in the plane through 4.0, B.D. [xe 5]
But 425 is in that same plane; [x1. 2]
therefore 4B, CD are in the same plane.
And the angles ABD, CDB are right ;
therefore A8, CD are parallel.

ProrosiTION 7.

If two straight lines be parvallel and points be taken at
random on eack of them, the straight line joining the points is
in the same plane with the parallel straight lines.

Let A5, CD be two parallel straight lines,
and let points £, / be taken at random
on them respectively ; E
I say that the straiﬁht line joining the * 2
points £, /7 is in the same plane with a
the parallel straight lines.
For suppose it is not, but, if possible, © F D
let it be in a more elevated plane as
EGF,
and let a plane be drawn through £GF;
it will then make, as section in the plane of reference, a
straight line. [x1 3]
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Let it make it, as £EF;
therefore the two straight lines £GF, EF will enclose an
area:
which is impossible.

Therefore the straight line joined from £ to # is not in a
plane more elevated ;

therefore the straight line joined from £ to F is in the plane
through the parallel straight lines 45, CD.

Therefore etc.
Q. E. D.

It is true that this proposition, in the form in which Euclid enunciates it,
is hardly necessary if the plane is defined as a surface such that, if any two
points be taken in it, the straight line joining them lies wholly in the surface.
But Euclid did not give this definition; and, moreover, Prop. 2 would be
usefully supplemented by a proposition which should prove that #wo paraliel
straight lines determine a plane (i.e. one plane and one only) which also
contains all the straight lines which join a point on one of the parallels to a point
on the other. That there cannot be fwo planes through a pair of parallels
would be proved in the same way as we prove that two or three intersecting
straight lines cannot be in two different planes, inasmuch as each transversal
lying in one of the two supposed planes through the parallels would lie wholly
in the other also, so that the two supposed planes must coincide throughout
(cf. note on Prop. z above).

But, whatever be'the value of the proposition as it is, Simson seems to
have spoilt it completely. He leaves out the construction of a plane through
EGF, which, as Euclid says, must cut the plane containing the parallels in
a straight line; and, instead, he says, “In the plane ABCD in which the
parallels are draw the straight line £AF from £ to £” Now, although we
can easily draw a straight line from £ to A to claim that we can draw it in
the plane in whick the parallels are is surely to assume the very result which is
to be proved. All that we could properly say is that the straight line joining
E to Fis in some plane which contains the parallels; we do not know that
there is no more than one such plane, or that the parallels determine a plane
uniguely, without some such argument as that which Euclid gives.

Nor can I subscribe to the remarks in Simson’s noté on the proposition.
He says (1) “This proposition has been put into this book by some unskilful
editor, as is evident from this, that straight lines which are drawn from one
point to another in a plane are, in the preceding books, supposed to be in that
plane ; and if they were not, some demonstrations in which one straight line
is supposed to meet another would not be conclusive. For instance, in
Prop. 30, Book 1, the straight line GX would not meet £, if GX were not in
the plane in which are the parallels 4.8, CD, and in which, by hypothesis, the
straight line £Fis.” But the subject-matter of Book 1. and Book x1. is quite
different ; in Book 1. everything is in one plane, and when Euclid, in defining
parallels, says they are straight lines in the same plane etc., he only does so
because he must, in order to exclude non-intersecting straight lines which are
not parallel. Thus in 1. 30 there is nothing wrong in assuming that there may
be three parallels in one plane, and that the straight line GHX cuts all three.
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But in Book X1 it becomes a question whether there can be more than one
plane through parallel straight lines.

Simson goes on to say (2) * Besides, this 7th Proposition is demonstrated
by the preceding 3rd; in which the very same thing which is proposed to be
demonstrated in the 7th is twice assumed, viz., that the straight line drawn
from one point to another in a plane is in that plane.” But there is nothing
in Prop. 3 about a plane in which two parallel straight lines are; therefore
there is no assumption of the result of Prop. 7. What is assumed is that,
given two points in @ plane, they can be joined by a straight line in the plane:
a legitimate assumption.

Lastly, says Simson, ““And the same thing is assumed in the preceding
6th Prop. in which the straight line which joins the points B, /2 that are in
the plane to which 48 and CD are at right angles is supposed to be in that
plane.” Here again there is no question of a plane in whick two parallels are ;
so that the criticism here, as with reference to Prop. 3, appears to rest on a
misapprehension,

ProrosiTion 8.

If two straight lines be parallel, and one of them be at
vight angles to any plane, the remaining one will also be at
right angles to the same plane.

Let A2, CD be two parallel straight lines,
and let one of them, 425, be at right

angles to the plane of reference ; 4 ki
I say that the remaining one, CD, will
also be at right angles to the same
plane. \
For let AB, CD meet the plane of B o
reference at the points B, D,
and let BD be joined;
therefore A58, CD, BD are in one plane. [x1. 7]

Let DE be drawn, in the plane of reference, at right angles
to BD,
let DE be made equal to A5,
and let BE, AE, AD be joined.

Now, since 4B is at right angles to the plane of reference,
therefore A2 is also at right angles to all the straight lines
which meet it and are in the plane of reference ; [x1. Def. 3]
therefore each of the angles ABD, ABE is right.

And, since the straight line £ has fallen on the parallels
AB, CD,



288 BOOK XI [x1 8

therefore the angles ABD, CDB are equal to two right

angles. 1. 29]
But the angle ABD is right;

therefore the angle CDZB is also right ;

therefore CD is at right angles to BD.

And, since A8 is equal to DE,
and BD is common,
the two sides 4B, BD are equal to the two sides £D, DB;
and the angle ABD is equal to the angle £D5,
for each is right ;

therefore the base 4.0 is equal to the base BE.

And, since A8 is equal to DE,
and BE to AD,

the two sides A5, BE are equal to the two sides ED, DA

respectively,

and A is their common base ;

therefore the angle ABE is equal to the angle £DA.
But the angle ABE is right ;

therefore the angle £DA is also right;

therefore £ is at right angles to 4D.

But it is also at right angles to D23 ;
therefore £D is also at right angles to the plane through
BD, DA. [x1. 4]
Therefore £D will also make right angles with all the

straight lines which meet it and are in the plane through
BD, DA.

But DC is in the plane through BD, DA, inasmuch as
AB, BD are in the plane through 8D, DA, [xr. 2]

and DC is also in the plane in which 458, BD are.
Therefore £D is at right angles to DC,
so that CD is also at right angles to DE.

But CD is also at right angles to BD.
Therefore CD is set up at right angles to the two straight

lines DE, DB which cut one another, from the point of section
at D ;
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so that CD is also at right angles to the plane through
DE, DB. [x1. 4]

But the plane through DE, D2 is the plane of reference;
therefore CD is at right angles to the plane of reference.

Therefore etc.
Q. E. D.

Simson objects to the words which explain why DC is in the plane through
BD, DA, viz. “inasmuch as 4B, BD are in the plane through BD, DA, and
DC is also in the plane in which 4B, BD are,” as being too roundabout.
He concludes that they are corrupt or interpolated, and that we ought only to
have the words “ because all three are in the plane in which are the parallels
AB, CD” (by Prop. 7 preceding). But I think Euclid’s words can be
defended. Prop. 7 says nothing of a plane determined by #zwo transversals as
BD, DA are. Hence it is natural to say that DC is in the same plane in
which 4B, BD are [Prop. 7], and 4B, BD are in the same plane as B.D,
DA [Prop. 2}, so that DC is in the plane through 8D, DA.

Legendre’s alternative proof is split by him into two propositions.

(1) LZet AB be a perpendicular to the plane MN and EF a line situated in that
Blane ; if from B, the foot of the perpendicular, BD be drawn perpendicular to
EF, and AD be joined, I say that AD will be perpendicular to EF.

(2) If AB is perpendicular to the plane MN, every straight line CD parallel to
AB will be perpendicular to the same plane.

To prove both propositions together we suppose C.D given, join BD,
and draw EF perpendicular to BD in the

plane MN. C
(1) As before, we make DE equal to DF and N
join BE, BF, AE, AF. <

Then, since the angles BDE, BDF are M ?_

right, and DE, DF equal,
BE is equal to BF. [1. 4]
And, since AB is perpendicular to the N
plane,

the angles 4 BE, 4B F are both right.
Therefore, in the triangles 4 BE, ABF,
AE is equal to AF. [r. 4]

Lastly, in the triangles A DE, ADF, since A£ is equal to 4% and DE
to DF, while AD is common,

the angle 4DE is equal to the angle 4.DF, [1. 8]
so that 4.0 is perpendicular to EF,
(2) ED being thus perpendicular to D4, and also (by construction)
perpendicular to DB,
ED is perpendicular to the plane 4DB, [x1 4]
But CD, being parallel to 4.3, is in the plane 48D;
therefore £.D is perpendicular to CD. [x1. Def. 3]
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Also, since AB, CD are parallel,
and ABD is a right angle,
CDB is also a right angle.

Thus CD is perpendicular to both DE and DB, and therefore to the
plane M through DE, DB.

PROPOSITION 9.

Straight lines whick are parallel to the same straight line
and are not in the same plane with it are also parallel to one
another.

For let each of the straight lines 458, CD be parallel to
EF, not being in the same plane

with it; B H A
I say that 42 is parallel to CD. /

For let a point G be taken at (¢ E
random on £F, \\
and from it let there be drawn ) K ©

GH, in the plane through EZF,
AB, at right angles to £F, and GKX in the plane through
FE, CD again at right angles to £F.

Now, since £F is at right angles to each of the straight
lines GH, GK,
therefore £F is also at right angles to the plane through
GH, GK. [x1. 4)
And EF is parallel to 45 ;

therefore 4B is also at right angles to the plane through
HG, GK. [x1 8]

For the same reason
CD is also at right angles to the plane through #G, GX ;

therefore each of the straight lines 45, CD is at right angles
to the plane through 7G, GX.

But, if two straight lines be at right angles to the same
plane, the straight lines are parallel ; [x1. 6]

therefore 4B is parallel to CD.
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ProrosiTION 10.

If two straight lines meeting one another be parvallel to
two straight lines meeling one another nol in the same plane,
they will contain equal angles.

For let the two straight lines 48, BC meeting one
another be parallel to the two straight lines DE, £F meeting
one another, not in the same plane ;

I say that the angle ABC is equal to the angle DEF.
r F /

For let B4, BC, ED, EF be cut off equal to one another,
and let AD, CF, BE, AC, DF be joined.

Now, since BA is equal and parallel to £D,

therefore 4D is also equal and parallel to BE. (v 33]
For the same reason

CF is also equal and parallel to BE.

Therefore each of the straight lines 4D, CF is equal and
parallel to BE.

But straight lines which are parallel to the same straight
line and are not in the same plane with it are parallel to one
another ; [x1. o]

therefore 4D is parallel and equal to CZ.
And AC, DF join them ;

therefore AC is also equal and,parallel to DF. [r 33
Now, since the two sides 458, BC are equal to the two

sides DE, EF,

and the base 4C is equal to the base DF,

therefore the angle 45C is equal to the angle DEF. [ 8]
Therefore etc.
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The result of this proposition does not appear to be quoted in Euclid until
xit. 3; but Euclid no doubt inserted it here advisedly, because it has the
effect of incidentally proving that the “inclination of two planes to one
another,” as defined in x1. Def. 6, is one and the same angle at whatever
point of the common section the plane angle measuring it is drawn.

ProrosiTionN 11.

From a given elevated point to draw a straight line perpen-
dicular to a given plane.

Let A be the given elevated point, and the plane of
reference the given plane;

thus it is required to draw from the
point 4 a straight line perpendicular to A
the plane of reference.

Let any straight line BC be drawn,

at random, in the plane of reference, g H
and let 4D be drawn from the point 4
perpendicular to ZC. [r 12] q

If then AD is also perpendicular to
the plane of reference, that which was
enjoined will have been done.

But, if not, let DZ£ be drawn from the point 2 at right

angles to BC and in the plane of reference, [r 11]
let AF be drawn from A perpendicular to DE, [1. x2]
and let G/ be drawn through the point / parallel to BC.

[r 31]

Now, since BC is at right angles to each of the straight
lines DA, DE,

therefore BC is also at right angles to the plane through

ED, DA. [x1 4]
And GH is parallel to it ;

but, if two straight lines be parallel, and one of them be at

right angles to any plane, the remaining one will also be at
right angles to the same plane; [x. 8]

therefore G/ is also at right angles to the plane through
ED, DA,
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Therefore GH is also at right angles to all the straight

lines which meet it and are in the plane through £D, DA,
[x1 Def. 3]

But 4F meets it and is in the plane through £D, DA ;
therefore G/ is at right angles to 74,
so that 74 is also at right angles to GA.

But 4F is also at right angles to DE ;
therefore 4F is at right angles to each of the straight lines
GH, DE.

But, if a straight line be set up at right angles to two
straight lines which cut one another, at the point of section,
it will also be at right angles to the plane through them ; [x1. 4]
therefore 74 is at right angles to the plane through £D, GH.

But the plane through £D, G/ is the plane of reference ;
therefore AF is at right angles to the plane of reference.

Therefore from the given elevated point 4 the straight
line AF has been drawn perpendicular to the plane of
reference.

Q. E. F.

The text-books differ in the form which they give to this proposition rather
than in substance. They commonly assume the construction of a plane
through the point 4 at right angles to any straight line BC in the given plane
(the construction being effected in the manner shown at the end of the note
on X1. 5 above). The advantage of this method is that it enables a
perpendicular to be drawn from a point sz the plane also, by the same
construction. (Where the letters for the two figures differ, those referring to
the second figure are put in brackets.)

- F H G
E
bt \ N y \ N
.'_IL "_-‘c / . "_, L \ # c
W (e : 5
/ é / ) {
M M

We can include the construction of the plane through 4 perpendicular to
BC, and make the whole into one proposition, thus.

BC being any straight line in the given plane M, draw 4.D perpendicu-
lar to BC.

In any plane passing through BC but not through 4 draw DE at right
angles to BC.

Through DA, DE draw a plane; this will intersect the given plane MN
in a straight line, as ZD (A4.D).

In the plane 4G draw 44 perpendicular to #G (A4D).

Then AH is the perpendicular required.
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In the plane M, through A in the first figure and A in the second, draw

KL lel to BC.
ow, since BC is perpendicular to both D4 and DE, BC is perpendicular

to the plane 4G. [x1. 4]

Therefore XZ, being parallel to BC, is also perpendicular to the plane
AG [x1..8], and therefore to A/ which meets it and is in that plane.

Therefore 4H is perpendicular to both 7D (4.D) and KL at their point
of intersection.

Therefore A4 is perpendicular to the plane MNV.

Thus we have solved the problem in X1. 12 as well as that in x1. 11; and
this direct method of drawing a perpendicular to a plane from a point 7z it is
obviously preferable to Euclid’s method by which the construction of a
perpendicular to a plane from a point witkout it is assumed, and a line is
merely drawn from a point in the plane parallel to the perpendicular obtained
in XL 11.

ProPOSITION 12.
Zo set up a straight line at right angles to a given plane
Jrom a given point in it.
Let the plane of reference be the given plane,
and A the point in it;

thus it is required to set up from the point
A a straight line at right angles to the
plane of reference.

Let any elevated point 2 be conceived,
from B let BC be drawn perpendicular to

the plane of reference, [x1. 11]
and through the point A4 let A.D be drawn
parallel to BC. [r. 31]

Then, since 4D, CB are two parallel straight lines,
while one of them, ZC, is at right angles to the plane of
reference,

therefore the remaining one, 40, is also at right angles to
the plane of reference. [x1. 8]

Therefore AD has been set up at right angles to the given
plane from the point A4 in ‘t.
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ProrosITION 13.

From the same point two straight lines cannot be sei up at
right angles to the same plane on the same side.

For, if possible, from the same point A4 let the two straight
lines A8, AC be set up at right
angles to the plane of reference and on 8
the same side, |

and let a plane be drawn through 54,
AC, ®

it will then make, as section through 4
in the plane of reference, a straight{ linej
XL 3

/0

Let it make DAE ;
therefore the straight lines 48, AC, DAE are in one plane.

And, since CA is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference. [x1. Def. 3]

But DAE meets it and is in the plane of reference;

therefore the angle CAE is right.

For the same reason

the angle BAE is also right ;

therefore the angle CA E is equal to the angle BAE.
And they are in one plane:

which is impossible.

Therefore etc.
Q. E. D,

Simson added words to this as follows :

“ Also, from a point above a plane there can be but one perpendicular to
that plane; for, if there could be two, they would be parallel to one another
[x1. 6], which is al n

Euclid does not give this result, but we have already had it in the note
above to x1. 4 (ad fin.).
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ProrosITION 14.

Planes to whick the same strvaight line is al right angles
will be parallel.

For let any straight line 42 be at right angles to each of
the planes CD, EF;

I say that the planes are
parallel.

For, if not, they will meet
when produced.
Let them meet;

they will then make, as
common section, a straight line. [xr. 3]

Let them make G/~ ;
let a point X be taken at random on G A,
and let AKX, BK be joined.
Now, since 425 is at right angles to the plane £7,

therefore 4B is also at right angles to K which is a straight
line in the plane £ produced ; [x1. Def. 3]

therefore the angle 48K is right.

For the same reason
the angle BAK is also right.

Thus, in the triangle 48X, the two angles ABK, BAK
are equal to two right angles :

which is impossible. [r 17]
Therefore the planes CD, EF will not meet when
produced ;
therefore the planes CD, EF are parallel. [x1. Def. 8]
Therefore planes to which the same straight line is at right
angles are parallel,
Q. E. D.
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ProrosiTION 15.

If two straight lines meeting one another be parallel to two
straight lines meeting one another, not being in the same plane,
the planes through them are parallel.

For let the two straight lines 48, BC meeting one another
be parallel to the two straight lines
DE, EF meeting one another, not =
being in the same plane ; /\c
I say that the planes produced A
through A58, BC and DE, EF will
not meet one another.

For let BG be drawn from the E
point B perpendicular to the plane
through DE, EF [xu. 11], and let it D&“
H (R

meet the plane at the point G ;

through G let GA be drawn

parallel to £D, and GK parallel to EF. [ 31]
Now, since BG is at right angles to the plane through

DE, EF,

therefore it will also make right angles with all the straight

lines which meet it and are in the plane through DE, EF.
[x1 Def. 3]

But each of the straight lines G/Z, GK meets it and is in
the plane through DE, EF;
therefore each of the angles BG/H, BGK is right.

And, since BA is parallel to GH, [x1. 9]

therefore the angles GBA, BGH are equal to two right angles,
[r. 29]

But the angle BGH is right ;
therefore the angle GBA is also right ;
therefore G2 is at right angles to BA.

For the same reason
GB is also at right angles to BC.

Since then the straight line G2 1s set up at right angles
to the two straight lines B4, BC which cut one another,
therefore GB is also at right angles to the plane through
BA, BC. [xr. 4]
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But planes to which the same straight line is at right
angles are parallel ; [x1 14)

therefore the plane through 423, BC is parallel to the plane
through DE, EF.

Therefore, if two straight lines meeting one another be
parallel to two straight lines meeting one another, not in the
same plane, the planes through them are parallel.

Q. E. D.

This result is arrived at in the American text-books already quoted by
starting from the relation between a plane and a straight line parallel to it.
The series of propositions is worth giving. A straight line and a plane being
parallel if they do not meet however far they may be produced, we have the
following propositions.

1. Any plane conlaining one, and only one, of two parallel straight lines is
parallel to the other.

For suppose 4.8, CD to be parallel and CD to lie in the plane MN.

Then 4B, CD determine a plane intersecting MV in the straight line CD

Thus, if 4.8 meets MN, it must meet
it at some point in CD.

But this is impossible, since 4B is
parallel to CD.

Therefore 4.8 will not meet the plane
MN, and is therefore parallel to it.

[This proposition and the proof are in
Legendreﬁ :

The following theorems follow as corollaries.

2. Through a given straight line a plane can be drawn parallel to any other
given straight line; and, if the lines are not parallel, only one such plane can be
drawn.

We have simply to draw through any point on the first line a straight line
parallel to the second line and then pass a plane through these two intersecting
lines. This plane is then, by the above proposition, parallel to the second
given straight line.

3 Through a given point a plane can be drawn parallel to any two straight
lines in space; and, if the latter are not parallel, only one suck plane can be
drawn.

Here we draw through the point straight lines parallel respectively to the
given straight lines and then draw a plane through the lines so drawn.
Next we have the partial converse of the first proposition above.

4. If a straight line is parallel 1o a plane, it is also parallel to the inter-

section of any plane through it with the given plane.

Let 48 be parallel to the plane M, and let
any plane through 425 intersect MV in CD.

Now 4B and CD cannot meet, because, if A 0 N
they did, 4.8 would meet the plane MW,

And 4B, CD are in one plane.

Therefore 4.8, C.D are parallel. C

L]

From this follows as a corollary :
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5. If eack of two intersecting straight lines is parallel to a given plane,
the plane containing them is parallel to the given

B
plaﬂl. 4
Let AB, AC be parallel to the plane A c

MN. N
Then, if the plane ABC were to meet the [

plane M/, the intersection would be parallel

both to A8 and to AC: which is impossible. /

Lastly, we have Euclid’s proposition.

6. If two straight lines forming an angle are respectively parallel to two
other straight lines forming an angle, the plane of
the first angle is parallel to the plane of the second.

Let ABC, DEF be the angles formed by
straight lines parallel to one another respectively. |

Then, since 4B is parallel to DE,

the plane of DEF is parallel to 4.5 [(1) above].
Similarly the plane of DEF is parallel to g
BC.

Hence the plane of DEF is parallel to the

plane of ABC [(5)}

Legendre arrives at the result by yet another method. He first proves
Eucl. x1. 16 to the effect that, if fwo paralle! planes are cut by a third, the lines
of intersection are parallel, and then deduces from this that, if fwo parallel
srra::gﬁ!jh}::.r are terminated by two parallel planes, the straight lines are equal
in length.

(The latter inference is obvious because the plane through the parallels
cuts the parallel planes in parallel lines; which
therefore, with the given parallel lines, form a

parallelogram.) :
Legendre is now in a position to prove '

Euclid’s proposition x1. 15. g ‘
If ABC, DEF be the angles, make 45

equal to DE, and BC equal to £7, and join

CA, FD, BE, CF, AD.

Then, as in Eucl. xI1. 10, the triangles D
ABC, DEF are equal in all respects ;
and 4D, BE, CFare all equal. Y ok

It is now proved that the planes are
parallel by reductio ad absurdum from the
last preceding result. For, if the plane 4BC
is not parallel to the plane DEF, let the plane drawn through 2 parallel to the
plane DEF meet CF, AD in H, G respectively.

Then, by the last result BE, HF, GD will all be equal.

But BE, CF, AD are all equal ;

which is impossible.
Therefore etc.
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ProrosiTiON 16.

If two parallel planes be cut by any plane, their common
seclions arve parallel.

For let the two parallel planes 48, CD be cut by the
plane £FGH,
and let £F, GH be their common sections ;
I say that £F is parallel to GA.

For, if not, £F, GH will, when produced, meet either in
the direction of 7, H or of E, G.

Let them be produced, as in the direction of #, &, and
let them, first, meet at X

Now, since £FK is in the plane 425,
therefore all the points on £FK are also in the plane 4B8.

[xL 1]
But X is one of the points on the straight line £FK ;

therefore X is in the plane A5.

For the same reason
K is also in the plane CD;
therefore the planes 48, CD will meet when produced.

But they do not meet, because they are, by hypothesis,
parallel ;
therefore the straight lines £/, GH will not meet when
produced in the direction of 7, /.

Similarly we can prove that neither will the straight lines
EF, GH meet when produced in the direction of £, G.

But straight lines which do not meet in either direction
are parallel. [1. Def. 23]

Therefore £F is parallel to GA.

Therefore etc. Q. E. D,
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Simson points out that, in here quoting 1. Def. 23, Euclid should have
said “ But straight lines in one plane which do not meet in either direction are
parallel.”

From this proposition is deduced the converse of x1. 14.

If a straight line is perpendicular lo one of two parallel planes, it is
perpendicular to the other also.

For suppose that MV, PQ are two parallel planes, and that 45 is perpen-
dicular to MV,

Through 4 B draw any plane, and let it intersect
the planes MV, PQ in AC, BD respectively.

Therefore AC, BD are parallel. [x1 16]

But 4C is perpendicular to 45 ;
therefore 4.8 is also perpendicular to B.D.

That is, A8 is perpendicular to any line in PQ
passing through B ;
therefore 4.8 is perpendicular to PQ.

It follows as a corollary that

Through a given point one plane, and only one, can be drawn parallel to a
given plane.

In the above figure let 4 be the given point and PQ the given plane.

Draw A8 perpendicular to Q.

bo'[‘l;rough A draw a plane M/ at right angles to 4.5 (see note on XI §
above).

Then M is parallel to PQ. XI. 14

If there could pass through A a second plane parallel to PQ, 4.5 woul
also be perpendicular to it. .

That is, 48 would be perpendicular to two different planes through A :
which is impossible (see the same note).

Also it is readily proved that,

If two planes are parallel lo a third plane, they are parallel to one another.

PROPOSITION 17.

If two straight lines be cut by parallel planes, they will be
cut in the same ratios.

For let the two straight
lines AB, CD be cut by the
parallel planes GH, KL, MN
at the points 4, £, B and C,
F, D;

I say that, as the straight line
AE isto £B, so is CFto FD.

For let AC, BD, AD be
joined,
let AD meet the plane KL
at the point O,
and let £0, OF be joined.
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Now, since the two parallel planes KZ, MN are cut by
the plane £8DO,

their common sections £0, BD are parallel. [x1. 16]
For the same reason, since the two parallel planes G/,

KL are cut by the plane 4 0FC,

their common sections AC, OF are parallel. [éd.]
And, since the strai%ht line £0 has been drawn parallel to

BD, one of the sides of the triangle 48D,

therefore, proportionally, as AZ is to £B, so is A0 to OD.

[vi. 2]

Again, since the straight line OF has been drawn parallel

to AC, one of the sides of the triangle ADC,

proportionally, as 40 is to 0D, so is CF to FD. [#d.]
But it was also proved that, as A0 is to 0D, so is AE

to £EB;

therefore also, as AE is to £25, so is CF to FD. [v. 11]

Therefore etc.
Q. E. D.

ProrosiTiON 18.

If a straight line be at right angles lo any plane, all the
Planes through it will also be at right angles lo the same plane.

For let any straight line 48 be at right angles to the
plane of reference;

I say that all the planes throuﬁh

AR are also at right angles to the —o 4
plane of reference.

For let the plane D £ be drawn
through 425, = E

let CE be the common section of

the plane DE and the plane of

reference,

let a point 7 'be taken at random on CE,

and from # let G be drawn in the plane DE at right
angles to CE, [1. 11]

Now, since 425 is at right angles to the plane of reference,
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AB is also at right angles to all the straight lines which meet
it and are in the plane of reference ; [x1. Def. 3]

so that it is also at right angles to CE';

therefore the angle 4BF is right.
But the angle GF2A is also right ;

therefore 428 is parallel to 7G. 1. 28]
But 423 is at right angles to the plane of reference;

therefore G is also at right angles to the plane of reference.

[x1 8]

Now a plane is at right angles to a plane, when the

straight lines drawn, in one of the planes, at right angles to

the common section of the planes are at right angles to the

remaining plane. [x1. Def. 4)

And %G, drawn in one of the planes DZ£ at right angles

to CE, the common section of the planes, was proved to be
at right angles to the plane of reference ;

therefore the plane DZE is at right angles to the plane of
reference.

Similarly also it can be proved that all the planes through
ARB are at right angles to the plane of reference.
Therefore etc.
Q. E. D.

Starting as Euclid does from the definition of perpendicular planes as
planes such that all straight lines drawn in one of the planes at right angles to
the common section are at right angles to the other plane, it is necessary for
him to show that, if # be any point in CE, and FG be drawn in the plane
DE at right angles to CE, FG will be perpendicular to the plane to which
AB is perpendicular,

It is perhaps more scientific to make the definition, as Legendre makes it,
a particular case of the definition of the inc/ination of planes. Perpendicular
planes would thus be planes such that the angle which (when it is acute)
Euclid calls the inclination of a plane to a plane is a right angle. When to this
is added the fact incidentally proved in xI. 10 that the “inclination of a plane to
a plane ” is the same at whatever point in their common section it is drawn, it
is sufficient to prove the perpendicularity of two planes if one straight line
drawn, in one of them, perpendicular to their common section is perpendicular
to the other. f

If this point of view is taken, Props. 18, 19 are much simplified (cf.
Legendre, H. M. Taylor, Smith and Bryant, Rausenberger, Schultze and
Sevenoak, Holgate). The alternative proof is as follows.

Let AB be perpendicular to the plane M, and CE any plane through
A B, meeting the plane MV in the straight line CD.

In the plane A7V draw B.F at right angles to CD.
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Then ABFis the angle which Euclid calls (in the case where it is acute)
the “inclination of the plane to the plahe.”

E
/D

7 N

—~

FBuI‘., since 48 is perpendicular to the plane MW, it is perpendicular to
BFin it
Therefore the angle ABF is a right angle ;

whence the plane CE is perpendicular to the plane M.

ProposITION 19.

If two planes whick cut one another be at right angles to
any plane, their common section will also be at right angles to
the same plane.

For let the two planes 4B, BC be at right angles to the
plane of reference,
and let BD be their common section ;
I say that BD is at right angles to the
plane of reference.

For suppose it is not, and from the
point D let DE be drawn in the plane
A B at right angles to the straight line
AD, and DF in the plane BC at right
angles to CD.

Now, since the plane 43 is at right
angles to the plane of reference,
and DE has been drawn in the plane A2 at right angles to
AD, their common section,

therefore DE is at right angles to the plane of reference.
[x1. Def. 4]
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Similarly we can prove that
DF is also at right angles to the plane of reference.

Therefore from the same point D two straight lines have
been set up at right angles to the plane of reference on the
same side :

which is impossible. [xt. 13]

Therefore no straight line except the common section D2
of the planes 42, BC can be set up from the point D at right
angles to the plane of reference.

Therefore etc.

Q. E. D

Legendre, followed by other writers already quoted, uses a preliminary
proposition equivalent to Euclid’s definition of planes at right angles to one
another.

If two planes are perpendicular to one another, a straight line drawn in one
of them perpendicular to their common section will be perpendicular to the other.

Let the perpendicular planes CE, MV (figure of last note) intersect in
CD, and let AB be drawn in CE perpendicular to CD.

In the plane MV draw BF at right angles to CD.

Then, since the planes are perpendicular, the angle 4 BF (their inclination)
is a right angle.

Therefore A8 is perpendicular to both C.D and BF and therefore to the
plane MN.

We are now in a position to prove XL 19, viz. If twe planes be terpendicular
to a third, their intersection is also perpen-
dicular to that third plane. A

Let each of the two planes 4C, AD
intersecting in A8 be perpendicular to the

plane MN. m N
Let AC, AD intersect M in BC, BD 8
respectively.
In the plane MV draw BE at right ¢
angles to AC and BF at right angles to E
M

BD.

Now, since the planes AC, MN are at
right angles, and BE is drawn in the latter perpendicular to BC, BE is
perpendicular to the plane AC.

Hence 4B is perpendicular to BE. [x1. 4]

Similarly 42 is perpendicular to BF.

Therefore 4B is perpendicular to the plane through BE, BE ie. w the
plane MN.

An useful problem is that of drawing a common perpendicular to two
straight lines not in one plane, and in connexion with this the following
proposition may be given.
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Given a plane and a siraight line not perpendicular to it, one plane, and only
one, can be drawn through the straight line perpen-
dicular fo the plane. O

Let 4B be the given straight line, MV the '\
given plane.

From any point C in 48 draw CD perpen- N
dicular to the plane M.

Through 45 and CD draw a plane AE.

Then the plane AE is perpendicular to the D
plane MN. [x1 18]

If any other plane could be drawn through M
A B perpendicular to MV, the intersection 458 of
the two planes perpendicular to MV would itself
be perpendicular to MN: [x1 10]
which contradicts the hypothesis.

To draw a common perpendicular to two straight lines not in the same plane.

Let 4B, CD be the given straight lines.

Through C7 draw the plane MV parallel to 4B (Prop. 2 in note
to X1 15).

Through 4.5 draw the plane 4 F perpendicular to the plane MV (see the
last preceding proposition).

e
|3
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Let the planes AF, MN intersect in £, and let £F meet CD in G.

From G, in the plane 4.F, draw G H at right angles to £F, meeting A8 in H.

GH is then the required perpendicular.

For AB is parallel to EF (Prop. 4 in note to XI. 15); therefore GH,
being perpendicular to £, is also perpendicular to A4.5.

But, the plane A7 bemg perpendicular to the plane M, and GA being
perpendlcular to £ £, their intersection,

GHis perpendwula.r to the plane MM, and therefore to CD.

Therefore G/ is perpendicular to both 458 and CD.

Only one common perpendicular can be drawn to two straight lines not in
one plane.

For, if possible, let XZ also be perpendicular to both 48 and CD.

Let the plane through XZ, 4.8 meet the plane MV in LQ.

Then A8 is parallel to ZQ (Prop. 4 in note to X1 15), so that XZ, being
perpendicular to 4.5, is also perpendicular to LQ.

Therefore XZ is perpendicular to both CZ'and ZQ, and consequently to
the plane MV,

But, if XP be drawn in the plane 4F perpendicular to £F, XP is also
perpendicular to the plane MN.
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Thus there are two perpendiculars from the point X to the plane MV :
which is impossible.

Rausenberger’s construction for the same problem is more elegant. Draw,
he says, through each straight line a plane parallel
to the other. Then draw through each straight line
a plane perpendicular to the plane through the \ B
other. The two planes last drawn will intersect /A&
in a straight line, and this straight line is the
common perpendicular required.

The form of the construction best suited for c
examination purposes, because the most self-
contained, is doubtless that given by Smith and D

Bryant.
Let AB, CD be the two given straight lines.
Through any point £ in CD draw £/ parallel to 4.5.
From any point G in 4B draw GH perpendicular to the plane CDF,

meeting the plane in A.

Through # in the plane CD# draw B

HK parallel to FE or AB, to cut CD

in X.

Then, since 4B, HK are parallel,

AGHK is a plane. L
Complete the parallelogram GHKL. /F
Now, since LXK, GH are parallel, and

GH is perpendicular to the plane CDF, /
LK is perpendicular to the plane € K _—E o]

CDF.

Therefore LK is perpendicular to C.D and XA, and therefore to 4.8 which
is parallel to KH.

PRroOPOSITION 20.

If a solid angle be contained by three plane angles, any two,

taken logether in any manner, arve greater than the remaining
one.

For let the solid angle at 4 be contained by the three
plane angles BAC, CAZ%, DARB;

I say that any two of the angles
BAC, CAD, DARB, taken to-
gether in any manner, are greater
than the remaining one.

If now the angles A4C, CAD,
DARB are equal to one another,
it is manifest that any two are greater than the remaining one.

But, if not, let BAC be greater,

and on the straight line 4.5, and at the point 4 on it, let the

E C
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angle BAE be constructed, in the plane through B4, AC,
equal to the angle DAZB;

let AE be made equal to AD,

and let BEC, drawn across through the point £, cut the
straight lines 48, AC at the points B, C;

let DB, DC be joined.

Now, since DA is equal to AE,
and A8 is common,
two sides are equal to two sides;
and the angle DAZB is equal to the angle BAE;

therefore the base D2 is equal to the base BE. [1. 4]
And, since the two sides B0, DC are greater than BC,
[1. 20]

and of these DB was proved equal to BE,
therefore the remainder DC is greater than the remainder £C.

Now, since DA is equal to AE,
and AC is common,
and the base DC is greater than the base £C,
therefore the angle D AC is greater than the angle £4C.
[1. 25]

But the angle DA2 was also proved equal to the angle
BAE ;

therefore the angles DA B, DAC are greater than the angle
BAC.

Similarly we can prove that the remaining angles also,
taken together two and two, are greater than the remaining
one.

Therefore etc.
Q. E. D.

After excluding the obvious case in which all three angles are equal,
Euclid goes on to say “If not, let the angle BAC be greater,” without adding
greater than w#kat. Heiberg is clearly right in saying that he means greater
than BAD, i.e. greater than one of the adjacent angles. This is proved by
the words at the end “Similarly we can prove,” etc. Euclid thus excludes
as obvious the case where one of the three angles is not greater than either of
the other two, but proves the remaining cases. This is scientific, but he might
further have excluded as obvious the case in which one angle is greater than
one of the others but equal to or less than the remaining one.



X1 20, 2i] PROPOSITIONS 2o, 21 309

Simson remarks that the angle BAC may happen to be egual to one of
the other two and writes accordingly * If they [all three angles] are not [equal],
let BAC be that angle which is not less than eithér of the other two, and is
greater than one of them DAB.” He then proves, in the same way as Euclid
does, that the angles DAB, DAC are greater than the angle BA4C, adding
finally : ““But BAC is not less than either of the angles DAB, DAC; there-
fore BAC, with either of them, is greater than the other.”

It would be better, as indicated by Legendre and Rausenberger, to begin
by saying that, “If one of the three angles 1s either equal to or less than either
of the other two, it is evident that the sum of those two is greater than the
first. It is therefore only necessary to prove, for the case in whick one angle is
grealer than each of the others, that the sum of the two latter is greater than
the former.

Accordingly let B4 C be greater than each of the other angles.” We then
proceed as in Euclid.

ProrosiTION 21.

Any solid angle is contained by plane angles less than four
right angles.

Let the angle at 4 be a solid angle contained by the plane
angles BAC, CAD, DAB;
I say that the angles BAC, CAD,
DAZB are less than four right angles.
For let points B, C, D be taken
at random on the straight lines 425,
AC, AD respectively.

and let B, CD, DB be joined. 8

(o]

Now, since the solid angle at Z is contained by the three
plane angles CBA, ABD, CBD,
any two are greater than the remaining one; [x1. 20]

therefore the angles CBA, ABD are greater than the angle
CBD.

For the same reason
the angles BCA, ACD are also greater than the angle BCD,
and the angles CDA, ADRB are greater than the angle CDZB ;
therefore the six angles CBA4, ABD, BCA, ACD, CDA,
ADB are greater than the three angles CBD, BCD, CDB.

But the three angles CBD, BDC, BCD are equal to two
right angles ; [1. 32)
therefore the six angles CBA, ABD, BCA, ACD, CDA,
ADZB are greater than two right angles.
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And, since the three angles of each of the triangles 45C,
ACD, ADB are equal to two right angles,

therefore the nine angles of the three triangles, the angles
CBA, ACB, BAC, ACD, CDA, CAD, ADB, DBA, BAD
are equal to six right angles;

and of them the six angles 48C, BCA, ACD, CDA, ADB,
DBA are greater than two right angles ;

therefore the remaining three angles BAC, CAD, DARB
containing the solid angle are less tﬁan four right angles.

Therefore etc.
Q. E. D.

It will be observed that, although Euclid enunciates this proposition for
any solid angle, he only proves it for the particular case of a frikedral angle.
This is in accordance with his manner of proving one case and leaving the
others to the reader. The omission of the convex polyhedral angle here
corresponds to the omission, after 1. 32, of the proposition about the interior
angles of a convex polygon given by Proclus and in most books. The proof
of the present proposition for any convex polyhedral angle can of course be
arranged so as not to assume the proposition that the interior angles of a
convex polygon together with four right angles are equal to twice as many
right angles as the figure has sides.

Let there be any convex polyhedral angle with F” as vertex, and let it be
cut by any plane meeting its faces in, say, the
polygon ABCDE.

Take O any point within the polygon, and
in its plane, and join 04, 0B, OC, 0D, OE.

Then all the angles of the triangles with
vertex O are equal to twice as many right angles
as the polygon has sides ; [1 32]
therefore the interior angles of the polygon to-
gether with all the angles round O are equal to
twice as many right angles as the polygon has
sides.

Also the sum of the angles of the triangles
VAB, VBC, etc., with vertex ¥ are equal to twice as many right angles as the
polygon has sides ;
and all the said angles are equal to the sum of (1) the plane angles at ¥
forming the polyhedral angle and (2) the base angles of the triangles with
vertex V.

This latter sum is therefore equal to the sum of (3) all the angles
round O and (4) all the interior angles of the polygon.

Now, by Euclid’s proposition, of the three angles forming the solid angle at
A, the angles VAE, VAB are together greater than the angle £4.5.

Similarly, at 5, the angles V.BA4, VB C are together greater than the angle
ABC.

And so on.

Therefore, by addition, the base angles of the triangles with vertex »
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4) above].
Hence, by way of compensation, the sum of the plane angles at ¥ [(1)
above] is less than the sum of the angles round O [(3) above].
But the latter sum is equal to four right angles; therefore the plane angles
forming the polyhedral angle are together less than four right angles.

Hz; abovejl are together greater than the sum of the angles of the polygon

The proposition is only true of convex polyhedral angles, i.e. those in
which the plane of any face cannot, if produced, ever cut the solid angle.

There are certain propositions relating to equal (and symmetrical) trihe-
dral angles which are necessary to the consideration of the polyhedra dealt
with by Euclid, all of which (as before remarked) have trihedral angles only.

1. Two trikedral angles are equal if two face angles and the included
dikedral angle of the one are respectively equal to two face angles and the inciuded
dikedral angle of the other, the equal parts being arranged in the same order.

2.  Two irihedral angles are equal if two dikedral angles and the included
Jface angle of the one are respectively equal to two dikedral angles and the included
Sace angle of the other, all equal parls being arranged in the same order.

These propositions are proved immediately by superposition.

3. Two trikedral angles are equal if the three face angles of the one are
respectively equal to the three face angles of the other, and all are arranged in the
same order.

Let V—ABC and V'—A'B'C’ be two trihedral angles such that the angle

AVB is equal to the angle A' V' B/, the angle B¥C to the angle 8’ V'C’, and
the angle C¥A4 to the angle C'V'4".

We first prove that corresponding puirs of face angles include equal dikedral

angies.
gié. g, the dihedral angle formed by the plane angles CVA, AVAB is equal

to that formed by the plane angles C'V'4, A'V'3.

Take points 4, B, C on VA4, VB, VC and points 4, B, C' on V'4,
V'B, V'C', such that ¥4, VB, VC. I'4', V'8, V'C are all equal.

Join BC, CA, AB, BC', C'4', A'B'.

Take any point D on AV, and measure 4'D’ along A’ V' equal to 4.D.

From D draw DE in the plane 4VB, and DF in the plane CVA,
perpendicular to 4¥. Then DE, DF will meet 45, AC respectively, the
angles VA B, VAC, the base angles of two isosceles triangles, being less than
right angles.

Join EF.

Draw the triangle ' E'F in the same way.
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Now, by means of the hypothesis and construction, it appears that the
triangles VA B, V'A'B’ are equal in all respects.

So are the triangles VAC, V'A4'C’, and the triangles VBC, V'B'C".

Thus BC, CA, AB are respectively equal to B'C’, C'A4’, A'F, and the
triangles ABC, A'B'C’ are equal in all respects.

Now, in the triangles ADE, A'DE',
the angles ADE, DAE are equal to the angles A'D'E', D' A'E’ respectively,
and 4D is equal to 4’0,

Therefore the triangles ADE, A'D'E’ are equal in all respects.

Similarly the triangles ADF, A'D'F are equal in all respects.

Thus, in the triangles 4EF, A'E'F’,
EA, AF are respectively equal to £'4’, A'F",
and the angle £A4F is equal to the angle Z'4'F (from above) ;
therefore the triangles AEX, A'E'F' are equal in all respects.

Lastly, in the triangles DEF, D'E'F, the three sides are respectively
equal to the three sides;
therefore the triangles are equal in all respects.

Therefore the angles £ZDF, E'D'F' are equal.

But these angles are the measures of the dihedral angles formed by the
planes CVA, AVE and by the planes C'V’'4', A'V' B’ respectively.
Therefore these dihedral angles are equal.

Similarly for the other two dihedral angles.
Hence the trihedral angles coincide if one is applied to the other;
that is, they are equal.

To understand what is implied by “taken in the same order” we may
suppose ourselves to be placed at the vertices, and to take the faces in clock-
wise direction, or the reverse, for dofk angles.

If the face angles and dihedral angles are faken in reverse directions, i.e.
in clockwise direction in one and in counterclockwise direction in the other,
then, if the other conditions in the above three propositions are fulfilled, the
trihedral angles are not equal but symmetrical.

If the faces of a trihedral angle be produced beyond the vertex, they form
another trihedral angle. It is easily seen that these vertical trikedral angles
are symmelrical.

FrorosiTioN 22.

If there be three plane angles of whickh two, taken together
in any manner, are grealer than the remaining one, and they
are contained by equal straight lines, it is possible to construct
a triangle out of the straight lines joining the extremities of
the equal straight lines.

Let there be three piane angles ABC, DEF, GHK, of
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which two, taken together in any manner, are greater than
the remaining one, namely

the angles A8C, DEF greater than the angle GHK,
the angles DE#, GHK greater than the angle 45C,
and, further, the angles GHK, ABC greater than the angle
DEF;
let the straight lines 48, BC, DE, EF, GH, HK be equal,
and let AC, DF, GK be joined ;
I say that it is possible to construct a triangle out of straight
lines equal to AC, DF, GK, that is, that any two of the
straight lines 4AC, DF, GK are greater than the remaining

one.
H

A c b F G K

Now, if the angles ABC, DEF, GHK are equal to one
another, it is manifest that, 4C, DF, GK being equal also,

it is possible to construct a triangle out of straight lines equal
to AC, DF, GK.

But, if not, let them be unequal,

and on the straight line 7K, and at the point /& on it, let
the angle K//L be constructed equal

to the angle 4AB8C; H

let AL be made equal to one of the

straight lines 48, BC, DE, EF, GH, L
HK,

and let KZ, GL be joined.

Now, since the two sides AB, BC ©
are equal to the two sides KA, AL,

and the angle at B is equal to the angle X/AL,
therefore the base 4C is equal to the base X'L. (1 4]

And, since the angles A8C, GHK are greater than the
angle DEF,
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while the angle 4BC is equal to the angle KA L,
therefore the angle G//L is greater than the angle DEF.

And, since the two sides GH, HL are equal to the two
sides DE, EF,

and the angle GAL is greater than the angle DEF,
therefore the base GL is greater than the base DF. [1. 24)

But GK, KL are greater than GL.
Therefore GK, KL are much greater than DF.

But KL is equal to AC;

therefore AC, GK are greater than the remaining straight
line DF.

Similarly we can prove that
AC, DF are greater than GX,
and further DF, GK are greater than AC.

Therefore it is possible to construct a triangle out of
straight lines equal to 4AC, DF, GK.
Q. E. D.

The Greek text gives an alternative proof, which is relegated by Heiberg
to the Appendix. Simson selected the alternative proof in preference to that
given above ; he objected however to words near the beginning, “If not, let
the angles at the points B, E, A be unequal and that at B greater than either
of the angles at £, A,” and altered the words so as to take account of the
possibility that the angle at B might be equal to one of the other two.

As will be seen, Euclid takes no account of the relative magnitude of the
angles except as regards the case when all three are equal. Having proved
that one base is less than the sum of the two others, he says that “similarly
we can prove ” the same thing for the other two bases.

If a distinction is to be made according to the relative magnitude of the
three angles, we may say, as in the corresponding place in X1. 21, that, if one
of the three angles is either equal to or less than either of the other two, the
bases subtending those two angles must obviously be together greater than the
base subtending the first. Thus it is only necessary to prove, for the case in
which one angle is greater than either of the others, that the sum of the bases
subtending those others is greater than that subtending the first. This is
practically the course taken in the interpolated alternative proof.

ProrosiTION 23.

To construct a solid angle out of three plane angles two of
which, taken logether in any manner, ave grealer than the
remaining one: thus the three angles must be less than four
right angles.
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Let the angles ABC, DEF, GHK be the three given
plane angles, and let two of these, taken together in any
manner, be greater than the remaining one, while, further,
the three are less than four right angles;

thus it is required to construct a solid angle out of angles
equal to the angles ABC, DEF, GHK.

B
¢ 6 F G K
Let AB, BC, DE, EF, GH, HK be cut off equal to one
another,

and let AC, DF, GK be joined ;

it is therefore possible to construct a triangle out of straight

lines equal to AC, DF, GK. [xu 22]
Let LZMAN be so constructed that

AC is equal to LM, DF to MN, and

further GKX to NL,

let the circle ZM N be described about

the triangle LMN,

let its centre be taken, and let it be O;

let LO, MO, NO be joined ;

I say that A7 is greater than LO.

For, if not, 4B is either equal to L0, or less.
First, let it be equal.
Then, since A28 is equal to LO,

while 4B is equal to BC, and OL to OM,

the two sides 4B, BC are equal to the two sides LO, OM

respectively ;

and, by hypothesis, the base 4C is equal to the base LM ;

therefore the angle 4B8C is equal to the angle LOM. [ 8)
For the same reason

the angle DEF is also equal to the angle MON,

and further the angle GAK to the angle NOL ;
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therefore the three angles ABC, DEF, GHK are equal to
the three angles ZOM, MON, NOL.

But the three angles LOM, MON, NOL are equal to
four right angles ;

therefore the angles ABC, DEF, GHK are equal to four
right angles.

But they are also, by hypothesis, less than four right angles:
which is absurd.

Therefore A8 is not equal to LO.
I say next that neither is 45 less than LO.
For, if possible, let it be so,
and let O be made equal to 425, and OQ equal to BC,
and let 2Q be joined.
Then, since 4B is equal to BC,
OP is also equal to 0Q,
so that the remainder L2 is equal to QM.

Therefore LM is parallel to PQ, [vi. 2]
and LMO is equiangular with Q0 ; (1. 29]
therefore, as OL is to LM, so is OP to PQ; [v1. 4]

and alternately, as LZO is to OF, so is LM to P(. [v. 16)
But LO is greater than OF;
therefore LM is also greater than PQ.
But LM was made equal to AC;
therefore 4C is also greater than PQ.
Since, then, the two sides A58, BC are equal to the two
sides PO, 0Q,
and the base AC is greater than the base 2Q,
therefore the angle 4BC is greater than the angle 20Q.

ity (. 25]
Similarly we can prove that

the angle DEF is also greater than the angle #/ON,
and the angle GA K greater than the angle NVOL.

Therefore the three angles ABC, DEF, GHK are greater
than the three angles LOM, MON, NOL.

But, by hypothesis, the angles 48C, DEF, GHK are
less than four right angles;
therefore the angles LZOM, MON, NOL are much less than
four right angles.
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But they are also equal to four right angles :
which is absurd.

Therefore AB is not less than LO.

And it was proved that neither is it equal ;
therefore A28 is greater than LO.

Let then OR be set up from the point O at right angles
to the plane of the circle ZMN, [x1. 12]

and let the square on OR be equal to that area by which
the square on A5 is greater than the square on L0 ; [Lemma)

let RL, RM, RN be joined.

Then, since RO is at right angles to the plane of the circle
LMN,

therefore RO is also at right angles to each of the straight
lines LO, MO, NO.

And, since LO is equal to OM,
while OR is common and at right angles,
therefore the base XL is equal to the base RM/. [1 4]

For the same reason
RN is also equal to each of the straight lines RL, RM ;

therefore the three straight lines RL, RM, RN are equal to
one another,

Next, since by hypothesis the square on OR is equal to
that area by which the square on 42 is greater than the
square on LO,

therefore the square on 43 is equal to the squares on L0, OR.

But the square on LR is equal to the squares on L0, OR,
for the angle LOR is right ; [r 47]
therefore the square on 42 is equal to the square on RL ;
therefore A B is equal to ZL.

But each of the straight lines BC, DE, EF, GH, HK is
equal to A5,

while each of the straight lines RM, RN is equal to KL ;

therefore each of the straight lines 48, BC, DE, EF, GH,
HK is equal to each of the straight lines XL, RM, RN.
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And, since the two sides LR, RM are equal to the two
sides AB, BC,
and the base LM is by hypothesis equal to the base AC,
therefore the angle ZRM is equal to the angle ABC. [ 8]

For the same reason
the angle M/ RN is also equal to the angle DEF,
and the angle LR N to the angle GHK.

Therefore, out of the three plane angles LRM, MRN,
LRN, which are equal to the three given angles 4A8C, DEF,
GHK, the solid angle at £ has been constructed, which is
contained by the angles LRM, MRN, LRN.

Q. E. F,

LEMMA.

But how it is possible to take the square on OR equal to
that area by which the square on 425 is

greater than the square on L0, we can show c
as follows.

Let the straight lines 458, LO be
set out,

and let A28 be the greater;
let the semicircle 4BC be described on 4253,
and into the semicircle ABC let AC be fitted equal to the
straight line L O, not being greater than the diameter 42; [1v. 1]
let CB be joined

Since then the angle ACB is an angle in the semicircle
ACB,

therefore the angle AC2A is right. (1. 31]
Therefore the square on A2 is equal to the squares on
AC, CB. [1. 47]

Hence the square on 427 is greater than the square on
AC by the square on CA.

But AC is equal to LO.

Therefore the square on A2 is greater than the square on
L O by the square on CB.

If then we cut off OR equal to BC, the square on 48 will
be greater than the square on ZO by the square on OR.

Q E. F.

The whole difficulty in this proposition is the proof of a fact which makes
the construction possible, viz. the fact that, if LMV be a triangle with sides
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respectively equal to the bases of the isosceles triangles which have the
given angles as vertical angles and the equal sides all of the same length, then
one of these equal sides, as A5, is greater than the radius ZO of the circle
circumscribing the triangle ZMWN.

Assuming that 4.8 is greater than ZO, we have only to draw from O a
perpendicular OR to the plane of the triangle ZMN, to make OX of such a
length that the sum of the squares on LO, OR is equal to the square on 4.5,
and to join BZ, RM, RN. (The manner of finding OR such that the square
on it is equal to the difference between the squares on 48 and L0 is shown
in the Lemma at the end of the text of the proposition. We have already
had the same construction in the Lemma after x. 13.)

Then]clearly RL, RM, RN are equal to 48 and to one another [1. 4
and 1. 47}

Therefore the triangles LRM, MRN, NRL have their three sides
respectively equal to those of the triangles A 5C, DEF, GHXK respectively.

Hence their vertical angles are equal to the three given angles respectively;
and the required solid angle is constructed.

We return now to the proposition to be proved as a preliminary to the
construction, viz. that, in the figures, 45 is greater than ZO.

It will be observed that Euclid, as his manner is, proves it for one case
only, that, namely, in which ©, the centre of the circle circumscribing the
triangle ZAfV, falls within the triangle, leaving the other cases for the reader
to prove. As usual, however, the two other cases are found in the Greek text,
after the formal conclusion of the proposition, as above, ending with the words
dmep édew woujoar,  This position for the proofs itself suggests that they are not
Euclid’s but are interpolated ; and this is rendered certain by the fact that
words distinguishing three cases at the point where the centre O of the
circumseribing circle is found, “It [the centre] will then be either within the
triangle ZMN or on one of its sides or without. First let it be within,” are
found in the Mss, B and V only and are manifestly interpolated. Nevertheless
the additional two cases must have been inserted very early, as they are found
in all the best mss.

In order to give a clear view ot the proof of all three cases as given in the
text, we will reproduce all three (Euclid’s as well as the others) with abbrevia-
tions to make them catch the eye better.

In all three cases the proof is by reductio ad cbsurdum, and it is proved
g::::]tgaot AB cannot be egual to L0, and secondly that 45 cannot be /ess

Case I.
(r) Suppose, if possible, that 4.8 = LO.

Then AB, BC are respectively equal to LO, OM;
and AC = LM (by construction).

Therefore LABC=L LOM.
Similarly L DEF=: MON,
L GHK =1 NOL,

Adding, we have
LABC+ L DEF+ L GHK=L LOM+ L MON + L NOL
= four right angles :
which contradicts the hypothesis.
Therefore 48+ LO.
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(2) Suppose that 4B < LO.

Make O, OQ (measured along OZ, OM) each equal to 45.

Thus, 0L, OM being equal also, it follows that

PQis | to LM.

Hence LM : PQ=L0O: OF;
and, since LO > OF,
LM, ie. AC, > PQ.

Thus, in As POQ, ABC, two sides are equal to two sides, and base
AC > base PQ;

therefore L ABC>.L POQ, ierLlOM.
Similarly L DEF>. MON,
Lt GHK>cL NOL,

and it follows by addition that
Lt ABC + L DEF+ L GHK > (four right angles) :
which again contradicts the hypothesis.

Case II.
(1) Suppose, if possible, that 4.8 = L0O. L
Then (AB + BC), or (DE+ EF)=MO0+ 0L
=MN
=DF: " N
which contradicts the hypothesis. o

(2) The supposition that 48 < L0 is even more
impossible ; for in this case it would result that

DE + EF< DF.

Case III.

(1) Suppose, if possible, that A8 =LO.

Then, in the triangles 4BC, LOM, two sides AB, BC are respectively
equal to two sides LO, OM, and the bases
AC, LM are equal ;
therefore Lt ABC=c LOM.

Similarly . GHK = NOL.

Therefore, by addition,

L MON=L ABC+L GHK
> DEF (by hypothesis).

But, in the triangles DEF, MON, which

are equal in all respects,
L MON= c DEF.

But it was proved that . MON > . DEF:

which is impossible.

(2) Suppose, if possible, that 48 < LO.
Along OL, OM measure OF, OQ each equal to A5.
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Then LM, PQ are parallel, and
LM: PQ=LO: OF

LM, or AC, > PQ.

Thus, in the triangles 48C, POQ,
L ABC> 1 POQ, ie. . LOM.

Similarly, by taking OR along O equal to 4B, we prove that

L GHK > LON.
Now, at O, make . POS equal to L ABC, and L POT equal to

. GHK.

Make OS, OT each equal to OP, and join ST} SP, TP.
Then, in the equal triangles 4 BC, POS,

whence, since LZO> OP,

AC = PS,
so that LM = PS.
Similarly LN = PT.

Therefore in the triangles MLN, SPT, since . MLN > . SPT [this is
assumed, but should have been explained),
MN > ST,
or DF> ST
Lastly, in As DEF, SOT, which have two sides equal to two sides, since
DF> ST,
LDEF>.LS0T
>+ ABC+ L GHK (by construction) :
which contradicts the hypothesis.

Simson gives rather different proofs for all three cases; but the essence of
them can be put, I think, a little more shortly than in his text, as well as more
clearly

Case 1. (O within AZMN.)
(1) Let AB be, if possible, equal to LO.

Then the &4s ABC, DEF, GHK must be identically equal to the As
LOM, MON, NOL respectively.

E H
A /\ /\

/\ 2

A [+ D F G K

Therefore the vertical angles at O in the
latter triangles are equal respectively to the angles
at B, E, H.

The latter are therefore together equal to four
right angles.:
which is impossible.
(2) If AB be less than LO, construct on the
bases LM, MN, NL triangles with vertices
P, Q, R and identically equal to the As 4BC,
DEF, GHK respectively.
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Then P, Q, R will fall within the respective angles at O, since PL=PM
and < L0, and similarly in the other cases.

Thus [1. 21] the angles at 7, @, R are respectively greater than the angles
at O in which they lie.

Therefore the sum of the angles at 2, Q, R, i.e. the sum of the angles at
B, E, H, is greater than four right angles :

which again contradicts the hypothesis.
Case II. (O lying on MN.)

In this case, whether (1) AB = LO, or (2) AB < L0, a triangle cannot
be formed with MV as base and each of the other sides equal to 4.8. In other
words, the triangle DEF either reduces to a straight line or is impossible.

H

VAN A

Case III. (O lying outside the A LMN)
(1) Suppose, if possible, that 48 = LO.

Then the triangles LOM, MON, NOL are identically equal to the
triangles 4BC, DEF, GHK.

Since L LOM+ L LON=L MON,
tABC+.L GHK =r DEF:
which contradicts the hypothesis.
(2) Suppose that AB < OL.

Draw, as before, on LM, MN, NL as bases triangles with vertices 7, Q, R
and identically equal to the As ABC, DEF, GHK.

Next, at /¥ on the straight line VR, make . RNS equal to the angle
PLM, cut of NS eq_ual to LM and join RS, LS.

Then A NRS is identically equal to A LZPM or A ABC.

Now (L LNR +L RNS)<(L NLO + L OLM),
that is, L LNS < L NLM.

Thus, in &s LNS, NLM, two sides are equal to two sides, and the included
angle in the former is less than the included angle in the other.

Therefore LS < MN.
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Hence, in the triangles M QN, LRS, two sides are equal to two sides, and
MN=>LS..

Therefore L MQN>LLRS
>( LRN + L SRN)
>(LLRN+L LPM).
That is, LDEF>(LGHK+L ABC):
which is impossible.
B
/\ /\
A [+] [+] F
'
o ; ai__ " N
[
(¢]
K

ProrosiTiON 24.
1f a solid be contained by parallel planes, the opposite planes
in 1t are equal and parallelogrammic.

For let the solid CDHG be contained by the parallel planes
AC, GF, AH, DF, BF, AE;

I say that the opposite planes 8 M

in it are equal and parallelo-

grammic. ke
For, since the two parallel AT\ \

planes BG, CE are cut by the 9 F

plane 4AC, /V

their common sections are o E

parallel. [xL 16]
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Therefore AB is parallel to DC.

Again, since the two parallel planes BF, AE are cut by
the plane 4C,
their common sections are parallel. [x1. 16]
Therefore BC is parallel to AD.
But A8 was also proved parallel to DC;
therefore 4C is a parallelogram.

Similarly we can prove that each of the planes DF, FG,
GB, BF, AE is a parallelogram.

Let AH, DF be joined.

Then, since A2 is parallel to DC, and BH to CF,
the two straight lines 458, BH which meet one another are
parallel to the two straight lines DC, CF which meet one
another, not in the same plane;

therefore they will contain equal angles ; [x1. 10)
therefore the angle 4B/ is equal to the angle DCF.

And, since the two sides 4B, BH are equal to the two
sides DC, CF, (1 34]
and the angle 4B/ is equal to the angle DCF,
therefore the base 4/ is equal to the base DF,
and the triangle 4B/ is equal to the triangle DCF. [ 4]

And the parallelogram BG is double of the triangle 484,
and the parallelogram CZ double of the triangle DCF; [1. 34]
therefore the parallelogram BG is equal to the parallelo-
gram CE,

Similarly we can prove that
AC is also equal to GF,
and 4 £ to BF.

Therefore etc.
Q. E. D.

As Heiberg says, this proposition is carelessly enunciated. Euclid means
a solid contained by six planes and not more, the planes are parallel #wo and
fwo, and the opposite faces are equal in the sense of identically equal, or, as
Simson puts it, equal and similar. The similarity is necessary in order to
enable the equality of the parallelepipeds in the next proposition to be inferred
from the roth definition of Book x1. Hence a better enunciation would be:

If a solid be contained by six planes parallel two and two, the opposite faces
respectively are equal and similar parallelograms.

The proof is simple and requires no elucidation.
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ProrosiTION 25.

If a parallelepipedal solid be cut by a plane whick is
parallel to the opposite planes, then, as the base is to the base, so
will the solid be to the solid. :

For let the parallcleripedal solid ABCD be cut by the
plane G which is parallel to the opposite planes R4, DH ;

I say that, as the base A £FV is to the base £HCF, so is the
solid ABFU to the solid £GCD.

oo
VRV
Y

For let AA be produced in each direction,

let any number of straight lines whatever, 4 X, KL, be made
equal to AE,

and any number whatever, ZM, MN, equal to £H ;

and let the parallelograms ZP, KV, HW, MS and the solids
LQ, KR, DM, MT be completed.

Then, since the straight lines LK, K4, AE are equal to
one another,
the parallelograms L P, KV, AF are also equal to one another,
KO, KB, AG are equal to one another,

and further LX, KQ, AR are equal to one another, for they
are opposite. [x1. 24]

X Q R
B

T

For the same reason
the parallelograms £C, /W, M are also equal to one another,
HG, HI, IN are equal to one another,
and further DA, MY, NT are equal to one another.

Therefore in the solids LQ, KR, AU three planes are
equal to three planes.
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But the three planes are equal to the three opposite ;

therefore the three solids LQ, KR, AU are equal to one
another.

For the same reason
the three solids £D, DM, MT are also equal to one another.

Therefore, whatever multiple the base LF is of the base
APF, the same multiple also is the solid L U of the solid 4 U.

For the same reason,

whatever multiple the base V7' is of the base F//, the same
multiple also is the solid N U of the solid ZU.

And, if the base L F is equal to the base N5, the solid LU
is also equal to the solid Neg;

if the base LF exceeds the base NF, the solid LU also
exceeds the solid NU;

and, if one falls short, the other falls short.

Therefore, there being four magnitudes, the two bases
AF, FH, and the two solids AU, UH,

i?uimultiples have been taken of the base 4 and the solid
U, namely the base L/ and the solid LU,

and equimultiples of the base /7 and the solid /U, namely
the base N/ and the solid N U,

and it has been proved that, if the base ZF exceeds the base
FN, the solid L U also exceeds the solid N U,

if the bases are equal, the solids are equal,
and if the base falls short, the solid falls short.

Therefore, as the base AF is to the base F/, so is the
solid 4 U to the solid UH. [v. Def. 5]

Q. E D.

It is to be observed that, as the word parallelogrammic was used in Book 1.
without any definition of its meaning, so wapaAAyAeriredos, parallelepipedal, is
here used without explanation. While it means simply “with parallel planes,”
i.e. “faces,” the term is appropriated to the particular solid which has six
plane faces el two and two. The proper translation of orepedy
wapalAnherimedov is parallelepipedal solid, not solid parallelepiped, as it is
usually translated. Still less is the solid a parallelopiped, as the word is not
uncommonly written.

The opposite faces in each set of parallelepipedal solids in this proposition
are not only equal but equal and simi/ar. Euclid infers that the solids in each
set are equal from Def. 10; but, as we have seen in the note on Deff. g, 19,
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though it is true, where no solid angle in the figures is contained by more
than three plane angles, that two solid figures are equal and similar which are
contained by the same number of equal and similar faces, similarly arranged,
the fact should have been proved. To do this, we have only to prove the
proposition, given above in Lthe note on XI. 21, that fwo frikedral angles are

equal if the three face angles of the one are respectively equal to the three face

angles in the other, and all are arranged in the same order, and then to prove

equality by applying one figure to the other as is done by Simson in his
ion C.

proposition

Application will also, of course, establish what is assumed by Euclid of
the solids formed by the multiples of the original solids, namely that, if

LFZ, NF, the solid LU Z the solid NU.

ProrosiTiON 26.

On a given stvaight line, and at a given point on it, to
construct a solid angle equal lo a given solid angle.

Let AB be the given straight line, 4 the given point on
it, and the angle at D, contained by the angles £DC, EDF,
FDC, the given solid angle ;
thusit is required to construct on the straight line 4.3, and at
the point A4 on it, a solid angle equal to the solid angle at D.

For let a point / be taken at random on DF,
let FG be drawn from F perpendicular to the plane through
ED, DC, and let it meet the plane at G, [x1. 11]
let DG be joined,
let there be constructed on the straight line 48 and at the
point 4 on it the angle 4L equal to the angle £DC, and
the angle BA K equal to the angle £DG, [n 23)

let AK be made equal to DG,
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let KXH be set up from the point A at right angles to the
plane through B4, AL, [x1 12]

let KA be made equal to GF,
and let /A be joined ;

I say that the solid an?le at 4, contained by the angles BAL,
BAH, HAL is equal to the solid angle at D contained by
the angles £DC, EDF FDC,

For let AB, DE be cut off equal to one another,
and let ZB, KB, FE, GE be joined.

Then, since FG is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference ; [x1. Def. 3]

therefore each of the angles #GD, FGE is right.
For the same reason

each of the angles ZK A, HKRB is also right.

And, since the two sides K4, AB are equal to the two
sides GD, DE respectively,

and they contain equal angles,

therefore the base X3 is equal to the base G£. [r 4]
But X/ is also equal to GF,

and they contain right angles ;

therefore A B is also equal to FE. [r 4)

Again, since the two sides AKX, KA are equal to the two
sides DG, GF,

and they contain right angles,
therefore the base 4/ is equal to the base FD. [r 4)
But 425 is also equal to DE;

therefore the two sides /A, AB are equal to the two sides
DF, DE.

And the base /5 is equal to the base FE;
therefore the angle A4/ is equal tc the angle EDF. |1 8]

For the same reason
the angle /AL is also equal to the angle FDC,

And the angle BAL is also equal to the angle £DC.



XL 26, 27] PROPOSITIONS 26, 27 329

Therefore on the straight line 4.8, and at the point 4 on
it, a solid angle has been constructed equal to the given solid
angle at D.

Q. E. F.
This proposition again assumes the equality of two trihedral angles which

have the three plane angles of the one respectively equal to the three plane
angles of the other taken in the same order.

ProrosiTiON 27.

On a given straight line to describe a parvallelepipedal solid
similar and similarly situaled to a given parallelepipedal solid.

Let AB be the given straight line and CD the given
parallelepipedal solid ;
thus it is required to describe on the given straight line 42
a parallelepipedal solid similar and similarly situated to the
given parallelepipedal solid CD.

Cc E A B

For on the straight line 42 and at the point A4 on it let
the solid angle, contained by the angles BAH, HAK, KAB,
be constructed equal to the solid angle at C, so that the angle
BAH is equal to the angle ECF, the angle BAK equal to
the angle £CG, and the angle XA/ to the angle GCF;

and let it be contrived that,
as ECisto CG, sois BA to AK,

and, as GC is to CF, so is KA to AH. [vi. 12]
Therefore also, ex aequalt,
as £Cis to CF, so is BA to AH. [v. 22]

Let the parallelogram /B and the solid 4L be completed.

Now since, as £C is to (G, so is BA to AK,
and the sides about the equal angles £CG, BAK are thus
proportional,
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therefore the parallelogram GE£ is similar to the parallelo-
gram KB,

For the same reason
the parallelogram K/ is also similar to the parallelogram G £,
and further /£ to HB;
therefore three parallelograms of the solid CD are similar to
three parallelograms of the solid 4L.

But the former three are both equal and similar to the
three opposite parallelograms,
and the latter three are both equal and similar to the three
opposite parallelograms ;
therefore the whole solid C2 is similar to the whole solid AL.

[x1. Def. o]

Therefore on the given straight line A2 there has been
described AL similar and similarly situated to the given
parallelepipedal solid CD.

Q. E. F.

ProrosiTion 28.

If a parallelepipedal solid be cut by a plane through the
a’zagonals of the opposite planes, the solid will be bisected by the
Plane.

For let the parallelepipedal solid A2 be cut by the plane
CDEF through the diagonals CF, DE of

opposite planes; 8 F
I say that the solid 48 will be bisected by
the plane CDEF. H

For, since the triangle CGF is equal G
to the triangle CF25, [r 34]
and ADE to DEH, A

while the parallelogram CA is also equal

to the parallelogram £2, for they are opposite,

and GE to CH,

therefore the prism contained by the two triangles CGZ,
ADE and the three parallelograms G£, AC, CE is also equal
to the prism contained by the two triangles CFB, DEH and
the three parallelograms CH, BE, CE;
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for they are contained by planes equal both in multitude and

in magnitude. [x1. Def. 10]
Hence the whole solid 43 is bisected by the plane CDEF.
Q. E. D.

Simson properly observes that it ought to be proved that the diagonals of
two opposite faces are in one plane, before we speak of drawing a plane
through them. Clavius supplied the proof, which is of course simple enough.

Slince EF, CD are both parallel to 4G or BH, they are parallel to one
another.

Consequently a plane can be drawn through CD, £F and the diagonals
DE, CF are in that plane [x1. 7]. Moreover CD, EF are equal as well as
parallel ; so that CF, DE are also equal and parallel.

Simson does not, however, seem to have noticed a more serious difficulty.
The two prisms are shown by Euclid to be contained by equal faces—the faces
are in fact equal and similar—and Euclid then infers at once that the prisms
are ¢gual. But they are not equal in the only sense in which we have, at
present, a right to speak of solids being equal, namely in the sense that they
can be applied, the one to the other. They cannot be so applied because the
faces, though equal respectively, are not similarly arranged ; consequently the
prisms are symmetrical, and it ought to be proved that they are, though not
equal and similar, equal in content, or eyuivalent, as Legendre has it.

Legendre addressed himself to proving that the two prisms are equivalent,
and his method has been adopted, though his
name is not mentioned, by Schultze and Seven-
oak and by Holgate. Certain preliminary pro-
positions are necessary.

1. The sections of a prism made by parallel
Pplanes cutting all the lateral edges are equal
polygons.

Suppose a prism M cut by parallel planes
which make sections ABCDE, A B CDE'.

NowAB, BC, CD,... arerespectively parallel
o LB BCICH,.... X1 16]

Therefore the angles 4BC, BCD, ... are
equal to the angles 4'B'C’, B'C'D), ... respec-

tively. XL 10]
Also 4B, BC, CD, ... are respectively equal
to A'B, BC, CD,.... [1. 34]

Thus the polygons ABCDE, A'B' C'D'E’ are equilateral and equiangular
to one another.

2. Two prisms are equal when they have a solid angle in each contained by
three faces equal each to each and similarly arranged.

Let the faces ABCDE, AG, AL be equal and similarly placed to the
faces A/ BC'DE, AG, A'L.
Since the three plane angles at 4, A4’ are equal respectively and are
similarly placed, the trihedral angle at 4 is equal to the trihedral angle at 4",
[(3) in note to xI. 21]
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Place the trihedral angle at 4 on that at 4"

Then the face A BCDE coincides with the face A'5'C' D' E', the face AG
with the face 4'G’, and the face AL with the face 4'Z".

The point C falls on C’ and 2 on 0.

Since the lateral edges of a prism are parallel, CH will fall an C"A’, and
DK on DK,

And the points F, G, L coincide respectively with #, G', L', so that

the planes GK, G'K’ coincide.

Hence H, K coincide with /', X" respectively.

Thus the prisms coincide throughout and are equal.

In the same way we can prove that two Zruncated prisms with three faces
forming a solid angle related to one another as in the above proposition are
identically equal,

In particular,

Cor. Two right prisms having equal bases and equal heights are equal.

3. An obligue prism is equivalent fo a right prism whose base is a right
section of the obligue prism and whose
height is equal to a laleral edge of the
obligue prism.

Suppose GL to be a right section of
the oblique prism 42, and let GL be
a right prism on GLZ as base and with
height equal to a lateral edge of 4.0,

Now the lateral edges of GL' are
equal to the lateral edges of 4.0'.

Therefore AG=A'G', BH=FH',
CK=CK, etc.

Thus the faces AH, BK, CL are
ﬁua] respectively to the faces 4'H’,

X, C'L

Therefore [by the proposition
above]

(truncated prism 4Z) = (truncated

prism A'L").

Subtracting each from the whole solid AL, we see that

the prisms 42, GL' are equivalent.
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Now suppose the parallelepiped of Euclid’s proposition to be cut by the
plane through 4G, DF,
Let KLMN be a right section of the parallelepiped
cutting the edges 4D, BC, GF, HE.
Then KLMN is a parallelogram; and, if the
diagonal XAf be drawn,
A KLM =AM MNK.

Now the prism of which the As ABG, DCF are
the bases is equal to the right prism on AKXZLM as
base and of height 4.D.

Similarly the prism of which the As AGH, DFE
are the bases is equal to the right prism on & MNVK

as base and with height 4.D. [(3) above]
And the right prisms on As KZM, MNK as bases and of equal height
AD are equal. [(2), Cor. above]

Consequently the two prisms into which the parallelepiped is divided are
equivalent,

PRroPOSITION 29.

Parallelepipedal solids whick are on the same base and of
the same height, and in which the extremilties of the sides whick
stand wup are on the same straight lines, ave equal to one
anothesr.

Let CM, CN be parallelepipedal solids on the same base
AZB and of the same height,
and let the extremities of their E H K
sides which stand up, namely \\ h e M\ I\
AG, AF, LM, LN, CD, CE, F P
BH,BK be on the same straight
lines FN, DK ;
I say that the solid CAH/ is equal
to the solid CN.

For, since each of the figures L
CH, CK is a parallelogram, CB
is equal to each of the straight lines DH, EK , [r. 34]

hence DH is also equal to £X.
Let £H be subtracted from each ;
therefore the remainder D is equal to the remainder 7K.

Hence the triangle DCE is also equal to the triangle
HBK, (1. 8, 4]

and the parallelogram DG to the parallelogram ZN. [ 36]
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For the same reason
the triangle 4FG is also equal to the triangle //LN.

But the parallelogram CF is equal to the parallelogram BM,
and CG to BN, for they are opposite ;
therefore the prism contained by the two triangles 4 FG, DCE
and the three parallelograms 4D, DG, CG is equal to the
prism contained by the two triangles ML N, ABK and the
three parallelograms BM, AN, BN,

Let there be added to each the solid of which the
parallelogram A2 is the base and GEHM its opposite ;
therefore the whole parallelepipedal solid C/ is equal to the
whole parallelepipedal solid C/V.

Therefore etc.
Q. E. D.

As usual, Euclid takes one case only and leaves the reader to prove for
himself the two other possible cases shown in the subjoined figures. Euclid’s
proof holds with a very slight change in each case. With the first figure, the

D HE K D H E K
A AN ZARN el )
L A
only difference is that the prism of which the As GAZ, ECB are the bases
takes the place of “the solid of which the parallelogram 45 is the base and
GEHM its opposite” ; while with the second figure we have to subtract the
prisms which are proved equal successively from the solid of which the
parallelogram 4.7 is the base and FDKWN its opposite.
Simson, as usual, suspects mutilation by *“some unskilful editor,” but gives
a curious reason why the case in which the two parallelograms opposite to
AB have a side common ought not to have been omitted, namely that this
case “is immediately deduced from the preceding 28th Prop which seems for
this purpose to have been premised to the 29th.” But, apart from the fact that
Euclid’s Prop. 28 does nof prove the theorem which it enunciates (as we have

seen), that theorem is not in the least necessary for the proof of this case of
Prop. 29, as Euclid’s proof applies to it perfectly well.

ProrosiTION 30.

Parallelepipedal solids whick are on the same base and of
the same height, and in whick the extremilties of the sides whick
stand up are not on the same straight lines, are equal to one
another.
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Let CM, CN be parallelepipedal solids on the same base
AR and of the same height,
and let the extremitiesof their . i &
sides which stand up, namely
AF, AG,LM,LN,CD,CE, |\a /%\:—A{‘e
BH, BK, not be on the same / C [/ No

straight lines;
I say that the solid CHf is
equal to the solid CV. /

For let NX, DH be pro- \
duced and meet one another
at R, A [+]
and further let M, GE be
produced to 2, Q;
let A0, LP, CQ, BR be joined.

Then the solid CM, of which the parallelogram ACBL is
the base, and FDHM its opposite, is equal to the solid C2,
of which the parallelogram 4CABL is the base, and OQRP its
opposite ;
for they are on the same base 4CBL and of the same height,
and the extremities of their sides which stand up, namely 47,
AO, LM, LP, CD, CQ, BH, BR, are on the same straight
lines 7P, DR, [xr. 29]

But the solid C2, of which the parallelogram ACBL is
the base, and OQRP its opposite, is equal to the solid CN,
of which the parallelogram 4CBL is the base and GEKN its
opposite ;
for they are again on the same base ACBL and of the same
height, and the extremities of their sides which stand up,
namely AG, A0, CE, CO, LN, LP, BK, BR, are on the
same straight lines GQ, NVA.

Hence the solid CH/ is also equal to the solid CV.
Therefore etc.

Q. E. D.
This proposition completes the proof of the theorem that
Two parallelepipeds on the same base and of the same height are equivalent.
Legendre deduced the useful theorem that
Every parallelepiped can be changed into an equivalent rectangular parallele-
piped having the same height and an equivalent base.

For suppose we have a parallelepiped on the base 48CD with £FGH for
the opposite face.
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Draw 47, BK, CL, DM perpendicular to the plane through ZFGH and
all equal to the height of the parallelépiped 4G. Then, on joining /X, KL,
LM, M1, we have a parallelepiped equivalent to the original one and hmng
its lateral faces AK, BL, CM, DI rectangles.

If ABCD is not a reclangle, draw A0, DN in the plane 4C perpendicu-
lar to BC, and /P, MQ in the plane /L perpendlcula.r to XL,

]ommg OP, NQ, we have a rectangular parallelepiped on 4OND as base
which is equivalent to the paralleleplped with 4BCD as base and JKLM as
opposite face, since we may regard these parallelepipeds as being on the same
base ADMT and of the same height (40).

That is, a rectangular parallelepiped has been constructed which is
equivalent to the given parallelepiped and has (1) the same height, (2) an
equivalent base.

The American text-books which I have quoted adopt a somewhat different
construction shown in the subjoined figure.

The edges AB, DC, EF, HG of the original parallelepiped are Produeed
and cut at right angles by two parallel planes at a distance apart 4’58’ equal
to AB.

Thus a parallelepiped is formed in which all the faces are rectangles except
AH, BG'.
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Next produce D' 4", C'B', G'F, H'E' and cut them perpendicularly by two
parallel planes at a distance apart B”C" equal to B'C".

The points of section determine a recZangular parallelepiped.

The equivalence of the three parallclepipeds is proved, not by Eucl x1.
29, 30, but by the proposition about a right section of a prism given above in
the note to x1. 28 (3 in that note).

ProrosiTION 31.
Parallelepipedal solids whick are on equal bases and of the
same height are equal to one another.

Let the parallelepipedal solids 4 £, CF; of the same height,
be on equal bases 45, CD.
I say that the solid A £ is equal to the solid CZ.

Q F |

First, let the sides which stand up, ZK, BE, AG, LM,
PQ, DF, CO, RS, be at right angles to the bases 48, CD;
let the straight line R7 be produced in a straight line
with CR;
on the straight line 27, and at the point R on it, let the
angle 7R U be constructed equal to the angle ALB, [i 23]
let R7 be made equal to AL, and RU equal to LB,
and let the base £ # and the solid X U be completed.

Now, since the two sides 7R, RU are equal to the two
sides AL, LB,

and they contain equal angles,

therefore the parallelogram R W is equal and similar to the
parallelogram AL.

Since again 4L is equal to R7, and LM to RS,
and they contain right angles,
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therefore the parallelogram RX is equal and similar to the
parallelogram A M. o

For the same reason
LE is also equal and similar to SU;

therefore three parallelograms of the solid A£ are equal and
similar to three parallelograms of the solid X U.

But the former three are equal and similar to the three
opposite, and the latter three to the three opposite;  [x1 24]

therefore the whole parallelepipedal solid 4£ is equal to the
whole parallelepipedal solid X U. [x1. Def. 10]

Let DR, WU be drawn through and meet one another
at ¥,

let 7% be drawn through 7" parallel to DY,
let 2D be produced to e,
and let the solids YX, R/ be completed.

Then the solid X ¥, of which the parallelogram RX is the
base and Y its opposite, is equal to the solid X U of which
the parallelogram KX is the base and UV its opposite,

for they are on the same base XX and of the same height, and

the extremities of their sides which stand up, namely R Y, RU,

Tb, TW, Se, Sd, X¢, XV, are on the same straight lines

YW, el. [x1. 29]
But the solid XU is equal to AE:

therefore the solid X ¥ is also equal to the solid AZ.

And, since the parallelogram RUWT is equal to the
parallelogram Y7
for they are on the same base £7 and in the same parallels
RT, YW, [r 35]
while RUWT is equal to CD, since it is also equal to A5,
therefore the parallelogram Y7 is also equal to CD.

But DT is another parallelogram ;
therefore, as the base CD is to D7, sois ¥7T to D7, [v.7]

And, since the parallele{:ipedal solid C7 has been cut by
the plane R which is parallel to opposite planes,
as the base CD is to the base D7, so is the solid CF to the
solid R/ [x1 25)



XL 31] PROPOSITION 31 339

For the same reason,

since the ﬁarallele ipedal solid Y7 has been cut by the plane
RX which is parallel to opposite planes,

as the base YT is to the base 70D, so is the solid ¥.X to the
solid R/, [xr 25]

But, as the base CD isto D7, sois V7 to DT;

therefore also, as the solid CF is to the solid &7, so is the
solid ¥X to R/. [v. 11]

Therefore each of the solids C/, ¥.X has to R/ the same
ratio ;
therefore the solid CF is equal to the solid Y.X. [v. 9]
But ¥X was proved equal to AF;
therefore AE is also equal to CF.

Next, let the sides standing up, 4G, K, BE, LM, CN,
PQ, DF, RS, not be at right angles to the bases 48, CD;

I say again that the solid A £ is equal to the solid CF.
G K Q F
E N

"N\ 1

For from the points X, E, G, M, Q, F, N, Slet KO, ET,
GU, MV, QW, FX, NY, 5/ be drawn perpendicular to the
plane of reference, and let them meet the plane at the points
OT,UV,WXY,I1,
and let 07, OU, UV, TV, WX, WY, YI, IX be joined.

Then the solid XV is equal to the solid QZ,
for they are on the equal bases XM, OS and of the same
height, and their sides which stand up are at right angles to

their bases. [First part of this Prop.]
But the solid XV is equal to the solid AE,
and Q7 to CF;

for they are on the same base and of the same height, while
the extremities of their sides which stand up are not on the
same straight lines. [x1. 30)
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Therefore the solid AZ is also equal to the solid CF.

Therefore etc.
Q. E. D.

It is interesting to observe that, in the figure of this proposition, the bases
are represented as lying “in the plane of the paper,” as it were, and the third
dimension as *“standing up” from that plane. The figure is that of the
manuscript P slightly corrected as regards the solid 4Z.

Nothing could well be more ingenious than the proof of this proposition,
which recalls the brilliant proposition 1. 44 and the proofs of vI. 14 and 23.

As the proof occupies considerable space in the text, it will no doubt be
well to give a summary.

1. First, suppose that the edges terminating at the angular points of the
bases are perpendicular to the bases.

AB, CD being the bases, Euclid constructs a solid identically equal to
AE (he might simply have moved AE itself), placing it so that &S 1s the edge
corresponding to AKX (RS = HK because the heights are equal), and the face
RX corresponding to HE is in the plane of CS.

The faces CD, R W are in one plane because both are perpendicular to
RS. Thus DR, WU meet, if produced, in ¥ say.

Complete the parallelograms ¥7, DT and the solids YX, FT.

Then (solid ¥.X) = (solid UX),
because they are on the same base .S7"and of the same height. [xr 29]
Also, C7, ¥T being parallelepipeds cut by planes £, X parallel to pairs
of opposite faces respectively,
(solid CF) : (solid R7)=7 CD:J.DT, [x1. 25]
and (solid ¥X) : (solid /)= ¥YT:o DT.
But [1. 35] OoYr=oUur
=[JAB
Therefore (solid CF)=(solid ¥X)
=(solid UX)
= (solid AE).

II. If the edges terminating at the base are 7of perpendicular to it, turn
each solid into an equivalent one on the same base with edges perpendicular
to it (by drawing four perpendiculars from the angular points of the base to
the plane of the opposite face). (X1 29, 30 prove the equivalence.)

Then the equivalent solids are equal, by Part 1.; so that the original solids
are also equal.

Simson observes that Euclid has made no mention of the case in which
the bases of the two solids are egusangular, and he prefixes this case to Part I
in the text. This is surely unnecessary, as Part 1. covers it well enough : the
only difference in the figure is that W would coincide with ¥% and 4V
with ec.

Simson further remarks that in the demonstration of Part I1. it is not
proved that the new solids constructed in the manner described are parallele-
pipeds. The proof is, however, so simple that it scarcely needed insertion
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into the text. He is correct in his remark that the words “while the

extremities of their sides which stand up are not on the same straight lines”

Lu:t before the end of the proposition would be better absent, since they may
“on the same straight lines.”

ProrosiTION 32.

Parallelepipedal solids whick are of the same height are to
one another as their bases.
Let A8, CD be parallelepipedal solids of the same height;

[ say that the parallelepipedal solids 4B, CD are to one
another as their bases, that is, that, as the base 4AZ is to the
base CF, so is the solid 427 to the solid CD.

B D K
o R A
E (L
A o a T

For let FH equal to AE be applied to FG, [x 45]

and on FH as base, and with the same height as that of CD,
let the parallelepipedal solid GKX be completed.

Then the solid A2 is equal to the solid GK;
for they are on equal bases 4 £, FA and of the same height.
[x1 31]
And, since the parallelepipedal solid CX is cut by the plane
DG which is parallel to opposite planes,

therefore, as the base CF is to the base 7/, so is the solid
CD to the solid DA. [x. 25]

But the base //4 is equal to the base AZ,
and the solid GX to the solid 45 ;

therefore also, as the base 4E is to the base CF#, so is the
solid A2 to the solid CD.

Therefore etc.

Q. E. D.

As Clavius observed, Euclid should have said, in applying the parallelo-
gram FH to FG, that it should be applied “in the angle FGH equal to the
angle LCG.” Simson is however, I think, hypercritical when he states as
regards the completion of the solid GX that it ought to be said, ““complete
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the solid of which the base is FH, and one of ils insisting straight lines is FD.”
Surely, when we have two faces DG, FH meeting in an edge, to say *“complete
the solid” is quite sufficient, though the words “on FH as base” might
perhaps as well be left out. The same “completion” of a parallelepipedal
solid occurs in XI. 31 and 33.

ProrosiTION 33.
Stmilar parallelepipedal solids are to one another in the
triplicate ratio of their corvesponding sides.
Let AB, CD be similar parallelepipedal solids,
and let 4Z be the side corresponding to CF;

I say that the solid 43 has to the solid CD the ratio triplicate
of that which AZ has to CF.

@\;ﬁ\“\

K

For let £K, EL, EM be produced in a straight line with
AE, GE, HE,

let £X be made equal to CF, EL equal to #N, and further
EM equal to FR,

and let the parallelogram X'Z and the solid A7 be completed.

Now, since the two sides KE, £L are equal to the two
sides CF, FN,
while the angle KXZL is also equal to the angle CFW,
inasmuch as tﬁe angle AEG is also equal to the angle CFNV
because of the similarity of the solids 45, CD,
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therefore the parallelogram XL is equal < and similar> to the
parallelogram CAV.

For the same reason
the parallelogram KM/ is also equal and similar to CR,
and further £P to DF;
therefore three parallelograms of the solid X7 are equal and
similar to three parallelograms of the solid C.

But the former three parallelograms are equal and similar
to their opposites, and the latter three to their opposites; [x1. 24]

therefore the whole solid X7 is equal and similar to the whole
solid CD. [x1. Def. 1o]

Let the parallelogram G X be completed,

and on the parallelograms GX, KL as bases, and with the
same he'ght as that of 425, let the solids £0, LQ be
completed.

Then since; owing to the similarity of the solids 4.8, CD,
as AE isto CF,sois EG to FN, and EH to FR,
while CF'is equal to £K, FINV to £EL, and FR to EM,
therefore, as AE is to £K, sois GE to EL, and HE to EM.

But,as 4E is to £K, so is AG to the parallelogram GX,
as GEisto EL,sois GK to KL,
and, as HE isto £M, so is QF to KM ; [ve. 1]
therefore also, as the parallelogram 4G is to GKX, so is GK
to KL, and QF to KM.

But, as AG is to GK, so is the solid A7 to the solid- £O,
as GK is to KL, so is the solid OF to the solid QZ,
and, as QF is to KM, so is the solid QL to the solid X2 ;

[xx. 32]
therefore also, as the solid A5 is to £0, so is £0 to QL, and
QL to KP.

But, if four magnitudes be continuously proportional, the
first has to the fourth the ratio triplicate of that which it has
to the second ; [v. Def. 10]
therefore the solid 428 has to K2 the ratio triplicate of that
which 428 has to £0.

But, as 48 is to £0, so is the parallelogram AG to GX,
and the straight line AZ to £K [vi. 1];
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hence the solid A5 has also to X7 the ratio triplicate of that
which 4Z has to £X.

But the solid X7 is equal to the solid CD,
and the straight line £X to CF;
therefore the solid 475 has also to the solid CD the ratio
triplicate of that which the corresponding side of it, AE, has
to the corresponding side C/.
Therefore etc.
Q. E. D.

Porism. From this it is manifest that, if four straight
lines be < continuously > proportional, as the first is to the
fourth, so will a parallelepipedal solid on the first be to the
similar and similarly described parallelepipedal solid on the
second, inasmuch as the first has to the fourth the ratio
triplicate of that which it has to the second.

The proof may be summarised as follows.
The three edges AE, GE, HE of the parallelepiped 4.8 which meet at
Z, the vertex corresponding to £ in the other parallelepiped, are produced,
and lengths £X, EL, EM are marked off equal respectively to the edges CF,
FN, FR of CD.
The parallelograms and solids are then completed as shown in the figure.
Euclid first shows that the solid C.D and the new solid PX are equal and
similar according to the criterion in x1. Def. 10, viz. that they are contained
by the same number of equal and similar planes. (They are arranged in the
same order, and it would be easy to prove equality by proving the equality of
a pair of solid angles and then applying one solid to the other.)
We have now, by hypothesis,
AE :CF=EG: FN=EH: FR;
that is, AE : EK=EG: EL=EH: EM.
But AE : EX=AG :[JGK, [vr. 1]
EG: EL=O0GK:(OKL,
EH:EM= HK :(0 KM,
Again, by x1. 25 or 32,
O AG : [0 GK = (solid 4B): (solid £0),
[ GK : [J KL =(solid £0): (solid QL),
O HK :0 KM = (solid QL) : (solid XP).
Therefore
(solid 4.8) : (solid £0)=(solid £0):(solid QL) = (solid QL) : (solid X/P),
or the solid 4.5 is to the solid X2 (that is, C.D) in the ratio triplicate of that

which the solid 48 has to the solid £0, i.e. the ratio triplicate of that which
AE has to £K (or CF).

Heiberg doubts whether the Porism appended to this proposition is
genuine.



XL 33, 34) PROPOSITIONS 33, 34 345

Simson adds, as Prop. D, a useful theorem which we should have expected
to find here, on the analogy of vi. 23 following VI. 19, 20, viz. that So/id
parallelepipeds contained by parallelograms equiangular to one another, eack to
each, that 1s, of whick the solid angles are equal, each to each, have to one another
the ratio compounded of the ratios of their sides.

The proof follows the method of the proposition x1. 33, and we can use
the same figure. In order to obtain one ratio between lines to represent the
ratio compounded of the ratios of the sides, after the manner of vi. 23, we
take any straight line @, and then determine three other straight lines 4, ¢, 4,
such that

AE : CF=a: b,
EG:FN=b:q
EH:FR=c¢:d
whence & : 4 represents the ratio compounded of the ratios of the sides.
We obtain, in the same manner as above,
(solid AB): (solid EO)=[JAG:[J GK=AE:EK=AE:CF
=a:b,
(solid £0) : (solid QL)=7 GK:(J KL=GE:EL=GE:FN
=d:¢
(solid QL) : (solid KP)=J HK:[7 KM=EH: EM=EH: FR
=c¢:d,
whence, by composition [v. 22], '
(solid 4B) : (solid KP)=a:d,
or (solid 45): (solid CD) =a:d.

ProrosiTION 34.

In equal parallelepipedal solids the bases are reciprocally
proportional to the heights; and those parallelepipedal solids in
whick the bases are veciprocally proportional to the heights are
equal.

Let AB, CD be equal parallelepipedal solids ;

I say that in the parallelepipedal solids 48, CD the bases are
reciprocally proportional to the heights,

that is, as the base £/ is to the base NV, so is the height
of the solid CD to the height of the solid 425.

First, let the sides which stand up, namely 4G, EF, LB,
HK, CM, NO, PD, QR, be at right angles to their bases ;

I say that, as the base £/ is to the base NQ, so is CM
to AG.

If now the base £/ is equal to the base NV Q,
while the solid 4.3 is also equal to the solid CD,
CM will also be equal to 4G.



346 BOOK XI [x1 34

For paralleleﬁipedal solids of the same height are to
one another as the bases; [x1. 32]

and, as the base £H is to NQ, so will CM be to AG,
and it is manifest that in the parallelepipedal solids 48, CD
the bases are reciprocally proportional to the heights.
Next, let the base £/ not be equal to the base NQ,
but let £4 be greater.

- R D
K B
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Now the solid 42 is equal to the solid CD ;
therefore CH/ is also greater than 4G.
Let then C7 be made equal to 4G,

and let the parallelepipedal solid 7C be completed on NQ as
base and with C7 as height.

Now, since the solid A7 is equal to the solid CD,
and CV is outside them,
while equals have to the same the same ratio, [v. 7]

therefore, as the solid 428 is to the solid CV, so is the solid
CD to the solid CV.

But, as the solid 425 is to the solid CV, so is the base
EH to the base NQ,

for the solids 4B, CV are of equal height ; [x1. 32]
and, as the solid CD is to the solid CV, so is the base #Q to
the base 7Q [x1. 25) and CM to C7 [vi. 1];

therefore also, as the base £/ is to the base NQ, so is MC
to CT.

But C7is equal to AG;

therefore also, as the base £/ is to the base NQ, sois MC
to AG.
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Therefore in the parallelepipedal solids 45, CD the bases
are reciprocally proportional to the heights.

Again, in the parallelepipedal solids 48 CD let the bases
be reciprocally proportional to the heights, chat is, as the base
EH is to the base NQ, so let the height of the solid CD be
to the height of the solid A58 ;

[ say that the solid A2 is equal to the solid CD.
Let the sides which stand up be again at right angles to

the bases.
Now, if the base £/ is equal to the base NV Q,

and, as the base £/ is to the base NVQ, so is the height of
the solid CD to the height of the solid 425,

therefore the height of the solid CD is also equal to the
height of the solid 45.

But parallelepipedal solids on equal bases and of the same
height are equal to one another ; [x1. 31]

therefore the solid 45 is equal to the solid CD.
Next, let the base £/ not be equal to the base NQ,
but let £/ be greater ;

therefore the height of the solid CD is also greater than the
height of the solid 4.5,

that is, CA/ is greater than AG.
Let C7 be again made equal to 4G,
and let the solid C 7 be similarly completed.
Since, as the base £/ is to the base NQ, so is MC
to AG,
while 4G is equal to C7,

therefore, as the base £/ is to the base NQ, so is CM
to C7T.

But, as the base £/ is to the base NV, so is the solid
AR to the solid C/V,

for the solids 45, CV are of equal height; [x: 32]
and, as CM isto C7, so is the base MQ to the base Q7 [vi. 1]
and the solid CD to the solid CV. [x. 25]

Therefore also, as the solid A5 is to the solid CV, so is
the solid CD to the solid CV;

the_refore each of the solids 42, CD has to C!” the same
ratio.
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Therefore the solid 45 is equal to the solid CD. [v. 9]

Now let the sides which stand up, FE, BL, GA, HK,
ON, DP, MC, RQ, not be at right angles to their bases ;
let perpendiculars be drawn from the points 7, G, B, X, O,
M, D, R to the planes through £4, NQ, and let them meet
the planesat S, 7, U, V, W, X, ¥, a,
and let the solids 7V, Oa be completed ;
I say that, in this case too, if the solids 458, CD are equal,
the bases are reciprocally proportional to the heights, that is,
as the base £/ is to the base NVQ, so is the height of the
solid CD to the height of the solid 4.25.

R D
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Since the solid 4B is equal to the solid CD,
while A28 is equal to B7,
for they are on the same base 7K and of the same height;

[x1. 29, 30]
and the solid CD is equal to DX,
for they are again on the same base RO and of the same
height ; (]
therefore the solid B7 is also equal to the solid DX.

Therefore, as the base #X is to the base OR&, so is the
height of the solid DX to the height of the solid B7.

[Part 1.]
But the base FX is equal to the base £/,
and the base OR to the base NQ;

therefore, as the base £/ is to the base NQ, so is the height
of the solid DX to the height of the solid B7.
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But the solids DX, BT and the solids DC, BA have the
same heights respectively ;

therefore, as the base £/ is to the base VQ, so is the height
of the solid DC to the height of the solid 45.

Therefore in the parallelepipedal solids 42, CD the bases
are reciprocally proportional to the heights.

Again, in the parallelepipedal solids 4.8, CD let the bases
be reciprocally proportional to the heights,

that is, as the base £/ is to the base VO, so let the height
of the solid CD be to the height of the solid A5 ;
I say that the solid 425 is equal to the solid CD.
For, with the same construction,
since, as the base £/ is to the base NQ, so is the height of
the solid CD to the height of the solid 45,
while the base £/ is equal to the base 7K,
and NQ to OR,
therefore, as the base X is to the base OR, so is the height
of the solid CD to the height of the solid A5.
But the solids A8, CD and B7, DX have the same
heights respectively ;
therefore, as the base #X is to the base OR, so is the height
of the solid DX to the height of the solid 7.
Therefore in the parallelepipedal solids 87, DX the bases
are reciprocally proportional to the heights ;
therefore the solid B7 is equal to the solid DX. [Part 1.]
But BT is equal to BA,
for they are on the same base X and of the same height ;

x Y [ [x1. 29, 30]
and the solid DX is equal to the solid DC. id.

Therefore the solid 428 is also equal to the solid CD.
Q. E. D.

In this proposition Euclid makes two assumptions which require notice,
(1) that, if two lelepipeds are equal, and have equal bases, their heights
are equal, and (2) that, if the bases of two equal parallelepipeds are unequal,
that which has the lesser buse has the greater height. In justification of the
former statement Euclid says, according to what Heiberg holds to be the
genuine reading, “for parallelepi 1 solids of the same height are to one
another as their bases” [x1. 32]. This apparently struck some very early
editor as not being sufficient, and he added the explanation appearing in
Simson’s text, “ For if, the bases ZH, NQ being equal, the heights 4G, CM
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were not equal, neither would the solid 4B be equal to CD. But it is by
hypothesis equal. Therefore the height CAf is not unequal to the height 4G;
therefore it is equal.” Then, it being perceived that there ought not to be two
explanations, the genuine one was erased from the inferior Mss. While the
interpolated explanation does not take us very far, the truth of the statement
may be deduced with perhaps greater ease from x1, 31 than from xr. 32
quoted by Euclid. For, assuming one height greater than the other, while the
bases are equal, we have only to cut from the higher solid so much as will
make its height equal to that of the other. Then this pas7 of the higher solid
is equal to the whole of the other solid which is by hypothesis equal to the
higher solid itself. That is, the whole is equal to its part: which is impossible.

The genuine text contains no explanation of the second assumption that,
if the base Z£H be greater than the base /VQ, while the solids are equal, the
height CM is greater than the height 4G ; for the added words * for, if not,
neither again will the solids 45, CD be equal; but they are equal by
hypothesis ” are no doubt interpolated. In this case the truth of the assump-
tion is easily deduced from x1. 32 by reductio ad absurdum. If the height CM
were egual to the height 4G, the solid 4.8 would be to the solid CD as the
base £H is to the base NVQ, i.e. as a greater to a less, so that the solids would
not be equal, as they are by hypothesis. Again, if the height CAf were Zess
than the height 4G, we could increase the height of CD till it was equal to
that of 4B, and it would then appear that 4.5 is greater than the heightened
solid and & fortiori greater than CD: which contradicts the hypothesis.

Clavius rather ingeniously puts the first assumption the other way, saying
that, if the heights are equal in the equal parallelepipeds, the bases must be
equal This follows dérectly from x1. 32, which proves that the parallelepipeds
are to one another as their bases; though Clavius deduces it indirectly from
xL 31. The advantage of Clavius’ alternative is that it makes the second
assumption unnecessary. He merely says, if the eghts be not equal, let CH/
be the greater, and then proceeds with Euclid’s construction.

It is also to be observed that, when Euclid comes to the corresponding
proposition for cones and cylinders [XiL 1 % he begins by supposing the
heights equal, inferring by X1 11 (corresponding to X1. 32) that, the solids
being equal, the bases are also equal, and then proceeds to the case where the
heights are unequal without making any preliminary inference about the
bases. The analogy then of xiL 15, and the fact that he quotes x1. 32 here
(which directly proves that, if the solids are equal, and also their heights, their
bases are also equal), make Clavius' form the more convenient to adopt.

The two assumptions being proved as above, the proposition can be put
shortly as follows.

1. Suppose the edges terminating at the corners of the base to be per-
pendicular to it.

Then (a), if the base ZA be equal to the base NQ, the parallelepipeds
being also equal, the heights must be equal (converse of x1. 31), so that the
bases are reciprocally proportional to the heights, the ratio of the bases and
the ratio of the heights being both ratios of equality.

(8) If the base EH be greater than the base /VQ, and consequently (by
deduction from X1 32) the height CAf greater than the height 4G, cut off
CT from CM equal to 4G, and draw the plane 7'V through 7" parallel to the
base M@, making the parallelepiped C¥, with CT (= AG) for its height.

Then, since the solids A58, CJ are equal,

(solid A4B): (solid C¥) = (solid CD): (solid C¥). [v. 7]
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But (solid 4.B) : (solid C¥V) =7 HE :[J NQ, [x1. 32]
and (solid CD): (solid CV )= MQ:0 TQ [x1. 25])
=CM:CT. [vi 1]
Therefore OHE:ONQ=CM:CT
=CM: AG.

Conversely (a), if the bases £4, NQ be equal and reciprocally proportional
to the heights, the heights must be equal.

Consequently (solid 4.8) = (solid CD). [xn 31]
(4) If the bases £, NQ be unequal, if, e.g. 7 EH > NQ,
then, since OEH:[ONQ=CM: AG,
CM> AG.
Make the same construction as before.
Then O EH:JNQ=(solid 48): (solid C¥V), [xn 32]
and CM:AG=CM:CT
=0OMQ:07Q [ve 1]
= (solid CD): (solid C¥). [x1. 25]
Therefore
(solid 4B): (solid C¥)=(solid CD): (solid C¥’),
whence (solid 4.B) =solid CD. [v. 9]

II. Suppose that the edges terminating at the corners of the bases are not
perpendicular to it.

Drop perpendiculars on the bases from the corners of the faces opposite
to the bases.

We thus have two parallelepipeds equal to 4.8, CD respectively, since
they are on the same bases #X, £0 and of the same height respectively.

_ ) [x1. 29, 30]
If then (1) the solid 4.B is equal to the solid CD,
(solid BT) = (solid .DX),
and, by the first part of this proposition,
OKF:[JOR=MX:GT,

or OHE:[ONQ=MX:GT.
(2) 1If [J HE :[ONQ=MX:GT,
then OKF:[JOR=MX:GT,

so that, by the first half of the proposition, the solids 87, DX are equal, and
consequently
(solid 4.B) = (solid CD).

The text of the second part of the proposition four times contains, after
the words “of the same height,” the words “in which the sides which stand
up are not on the same straight lines.” As Simsonobserved, they are inept,
as the extremities of the edges may or may not be “on the same straight
lines”; cf. the similar words incorrectly inserted at the end of x1 3I.

Words purporting to quote the result of the first part of the proposition
are also twice inserted; but they are rejected as unnecessary and as containing
an absurd expression—*(solids) in which #ke Aeights are at right angles to their
bases,” as if the Aeghts could be otherwise than perpendicular to the bases.
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ProrosiTiON 35.

If there be two equal plane .angles, and on their vertices
theve be set up elevated straight lines containing equal angles
with the original straight lines respectively, if on the elevated
straight lines points be laken at random and perpendiculars be
drawn from them to the planes in whick the original angles
are, and if from the poinis so arising in the planes straight
lines be joined to the vertices of the original angles, they will
contain, with the elevated straight lines, equal angles.

Let the angles B4C, EDF be two equal rectilineal angles,
and from the points 4, D let the elevated straight lines 4G,
DM be set up containing, with the original straight lines,
equal angles respectively, namely, the angle MDE to the
angle GARB and the angle MDF to the angle GAC,
let points G, M be taken at random on 4G, DM,
let GL, MN be drawn from the points G, M perpendicular to
the planes through B4, 4AC and £D, DF, and let them meet
the planes at Z, &V,
and let LA, ND be joined ;

I say that the angle GAL is equal to the angle MDN.

i M
A N
L s y
Let AH be made equal to DM,

and let ZK be drawn through the point /7 parallel to GL.
But GL is perpendicular to the plane through B84, AC;

therefore /K is also perpendicular to the plane through.

BA, AC. [x1. 8]
From the points X, NV let KXC, NF, KB, NE be drawn

perpendicular to the straight lines 4C, DF, AB, DE,

and let ZC, CB, MF, FE be joined.
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Since the square on /74 is equal to the squares on AKX,
KA,
and the squares on KC, CA are equal to the square on K4,

[r 47]
therefore the square on A4 is also equal to the squares on
HK, KC, CA.

But the square on AC is equal to the squares on
HK, KC; [r. 47]
therefore the square on /A is equal to the squares on
HC, CA.

Therefore the angle //CA is right. [r. 48]

For the same reason
the angle DFM is also right.
Therefore the angle AC/H is equal to the angle DFM.
But the angle Z/AC is also equal to the angle MDF.
Therefore MDF; HAC are two triangles which have two
angles equal to two angles respectively, and one side equal to
one side, namely, that subtending one of the equal angles,
that is, /A4 equal to MD ;
therefore they will also have the remaining sides equal to the
remaining sides respectively. [1. 26)
Therefore AC is equal to DF.

Similarly we can prove that 425 is also equal to DE.
Since then AC is equal to DF, and A8 to DE,
the two sides CA, AR are equal to the two sides FD, DE.
But the angle CAZ is also equal to the angle FDZ ;
therefore the base ZC is equal to the base £7, the triangle to
the triangle, and the remaining angles to the remaining
angles ; [1 4]
therefore the angle ACZA is equal to the angle DFE.
But the right angle ACK is also equal to the right angie
DFN ;
therefore the remaining angle BCK is also equal to the
remaining angle EZFN.

For the same reason
the angle CBXK is also equal to the angle FEN.
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Therefore BCK, EFN are two triangles which have two
angles equal to two angles respectively, and one side equal to

one side, namely, that adjacent to the equal angles, that is,
BC equal to £F;

therefore they will also have the remaining sides equal to the
remaining sides. 1. 26]

Therefore CK is equal to FV.
But AC is also equal to DF;

therefore the twoe sides AC, CK are equal to the two sides
DF, FN ;

and they contain right angles.
Therefore the base 4K is equal to the base DN, (1 4]

And, since AH is equal to DM,
the square on A/ is also equal to the square on DM.

But the squares on 4K, K/ are equal to the square
on AH,

for the angle AKH is right; [ 47)

and the squares on DN, NM are equal to the square
on DM,

for the angle DNAM is right; [1. 47)
therefore the squares on AKX, KH are equal to the squares
on DN, NM ;

and of these the square on AKX is equal to the square on DN;
therefore the remaining square on X/ is equal to the square
on NM;

therefore AKX is equal to MN.

And, since the two sides /A, AK are equal to the two
sides MD, DN respectively,
and the base /K was proved equal to the base MV,
therefore the angle ZAK is equal to the angle WDN. [1.8)

Therefore etc.

Porism. From this it is manifest that, if there be two
equal plane angles, and if there be set up on them elevated
straight lines which are equal and contain equal angles with
the original straight lines respectively, the perpendiculars
drawn from their extremities to the planes in which are
the original angles are equal to one another.

Q. E. D.



XL 35] PROPOSITION 35 355

This proposition is required for the next, where it is necessary to know
that, if in two equiangular parallelepipeds equal angles, one in each, be
contained by three plane angles respectively, one of which is an angle of the
parallelogram forming the dase in one parallelepiped, while its equal is likewise
in the dase of the other, and the edges in ngch the two remaining angles
it:‘rm};ng the solid angles meet are egual, the parallelepipeds are of the same

5

Bearing in mind the definition of the inclination of a straight line to a

plane, we might enunciate the proposition more shortly thus.

If there be two trikedral angles identically equal to one another, corresponding
edges in each are equally inclined to the planes through the other two edges
respeciively.

The proof, which is necessarily somewhat long, may be summarised thus.

It is required to prove that the angles GAZ, MDN in the figure are equal,
G, M being any points on 4G, DM, and GL, MN perpendicular to the
planes BAC, EDF respectively.

If AH is made equal to DA, and AKX is drawn in the plane GAL parallel
to GL,

HK is also perpendicular to the plane B4C. [x1 8]

Draw KB, KC perpendicular to AB, AC respectively and NE, NF
perpendicular to DE, DF respectively, and complete the figures.

Now (1) HA*= HK® + KA4*
=HK+ KC*+ CA? [r. 47]
=HC + CA*
Therefore L HCA = a right angle.
Similarly L MFD = a right angle.
(2) As HAC, MDF have therefore two angles equal and one side.
Therefore AHAC = AMDEF, and AC=DF [r. 26]

(3) Similarly AHAB=AMDE, and AB = DE.
(4) Hence as ABC, DEF are equal in all respects, so that BC = EF,

and L ABC=r DEF,
L ACB=. DFE.

(5) Therefore the complements of these angles are equal,
i.e. L KBC=r NEF,
and t KCB=r NFE.

(6) The As KBC, NEF have two angles equal and one side, and are
therefore equal in all respects, so that

KB = NE,
KC=NF.
(7) The right-angled triangles XA4C, VD.F are equal in all respects, since
AC=DF[(2) above), KC = NF.
Consequently AK=DN.
(8) In As HAK, MDN,
HK*+ KA*= HA*
= MI?, by hypothesis,
= MN*+ NIF,
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Subtracting the equals X4% NI?,
we have HK?= MN?,
or HK = MN.
(9) As HAK, MDN are now equal in all respects, by 1. 8 and 1. 4, and
therefore
LHAK =L MDN.

The Porism is merely a statement of the result arrived at in (8).

Legendre uses, practically, the construction and argument of this propo-
sition to prove the theorem given under (3) of the note on x1 21 above that
In two equal trikedral angles, corresponding pairs of face angles tnclude equal
dihedral angles. This fact is readily deduced from the above proposition.

Since [(1)] HC, KC are both perpendicular to 4C, and MF, NF both
perpendicular to D}‘; the angles HCK, MFN are the measures of the
dikedral angles between the planes HAC, BAC, and MDF, EDF respec-

tively. [x1. Def. 6]
By (6), KC=NF,
and, by (8), HK = MN,
while the angles KX C, MNF, both being right, are equal.
Consequently the As HCK, MFN are equal in all respects, [ 4]
so that L HCK =0t MFN,

Simson substituted a different proof of (1) in the above summary, as
follows.

Since AKX is perpendicular to the plane BAC, the plane HBK,
through AKX, is also perpendicular to the plane BAC. x1. 18

And 4B, being drawn in the plane BAC perpendicular to BX, the
common section of the planes H#BX, BAC, is perpendicular to the plane
HBK [x1 Def. 4], and is therefore perpendicular to every straight line
meeting it in that plane [x1. Def. 3].

Hence the angle 454 is a right angle.

I think Euclid’s proof much preferable to this with its references to
definitions which are more of the nature of theorems.

ProrositTioN 36.

If three straight lines be proportional, the parallelepipedal
solid formed out of the three is equal to the parallelepipedal
solid on the mean whick ts equilateral, but equiangular with
the aforesaid solid.

Let A4, B, C be three straight lines in proportion, so that,
as A isto B, sois Bto C;
I say that the solid formed out of A4, B, C is equal to the
solid on B which is equilateral, but equiangular with the
aforesaid solid.

Let there be set out the solid angle at £ contained by the
angles DEG, GEF, FED,
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let each of the straight lines DE, GE, EF be made equal to
B, and let the parallelepipedal solid £& be completed,

let ZM be made equal to 4,
and on the straight line Z/, and at the point Z on it, let there

be constructed a solid angle equal to the solid angle at £,
namely that contained by NLO, OLM, MLN ;

let LZO be made equal to B, and LNV equal to C.

T e

Now, since, as 4 is to B, so is B to C,
while A4 is equal to LM, B to each of the straight lines L0,
ED, and Cto LN,
therefore, as LM is to EF, sois DE to LNV.

Thus the sides about the equal angles NLM, DEF are
reciprocally proportional ;
therefore the parallelogram MV is equal to the parallelogram
DF. [vi. 14]

And, since the angles DEF, NLM are two plane recti-
lineal angles, and on them the elevated straight lines L0, £EG
are set up which are equal to one another and contain equal
angles with the original straight lines respectively,
therefore the perpendiculars drawn from the points G, O to
the planes through VL, LM and DE, EF are equal to one
another ; [x1. 35, Por.]

hence the solids L/, EK are of the same height.

But parallelepipedal solids on equal bases and of the same
height are equal to one another ; [x1. 31]
therefore the solid /7L is equal to the solid £X.

And L H is the solid formed out of 4, B, C, and £K the
solid on 2 ;
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therefore the parallelepipedal solid formed out of A4, B,-Cis
equal to the solid on Z which is equilateral, but equiangular
with the aforesaid solid.

Q. E. D.

The edges of the parallelepiped AL being respectively equal to 4, B, C,
and those of the equiangular parallelepiped XE being all equal to 5, we
regard MV (not containing the edge OL equal to B) as the base of the first
parallelepiped, and consequently 7D, equiangular to M, as the base of XE.

Then the solids have the same height. [x1. 35, Por.]
Hence (solid HL): (solid XE) = MN: 7 FD. [x1 32]
But, since 4, B, C are in continued proportion,
A:B=8:C,
or LM:EF=DE:LN.

Thus the sides of the equiangular [7s MN, FD are reciprocally pro-
portional, whence
O MN=[ FD, [vr 14]

and therefore (solid HL) = (solid KE).

ProrosiTiON 37.

If four straight lines be proportional, the parallelepipedal
solids on them which are similar and similarly described will
also be proportional ; and, if the parallelepipedal solids on them
whick are similar and similarly described be proportional, the
straight lines will themselves also be proportional.

Let AB, CD, EF, GH be four straight lines in proportion,
so that, as 4B isto CD, sois EF to GH ;
and let there be described on A8, CD, EF, GH the similar
3\1}(16 similarly situated parallelepipedal solids K4, LC, ME,
I say that, as K4 is to LC, so is ME to NG.

M

c 0 E F G
For, since the parallelepipedal solid A4 is similar to ZC,

therefore X' A4 has to LC the ratio triplicate of that which 45
has to CD. [x1. 33]

H
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For the same reason

ME also has to VG the ratio triplicate of that which £F has
to GH. (7]
And, as AR isto CD, so is EF to GH.
Therefore also, as AKX is to LC, so is ME to NG.

Next, as the solid 4K is to the solid LC, so let the selid
ME be to the solid NG ;
I say that, as the straight line 48 is to CD, so is £F to GH.
For since, again, K4 has to LC the ratio triplicate of that

which 428 has to CD, [xr. 33]
and ME also has to VG the ratio triplicate of that which £/
has to GH, [ia.]

and, as K4 is to LC, so is ME to NG,
therefore also, as 4B is to CD, so is EF to GH.

Therefore etc. Q. E. D.

In this proposition it is assumed that, if two ratios be equal, the ratio
triplicate of one is equal to the ratio triplicate of the other and, conversely,
that, if ratios which are the triplicate of two other ratios are equal, those other
ratios are themselves equal.

To avoid the necessity for these assumptions Simson adopts the alternative
proof found in the ms. which Heiberg calls b, and also adopted by Clavius,
who, however, gives Euclid’s proof as well, attributing it to Theon. The
alternative proof proceeds after the manner of vi. 22, thus,

Make 4.8, CD, O, P continuous proportionals, and also £F, GH, Q, R.

= E |

A B c

r

o
m:
-
Q
x

0 P

1. Then, since
AB:CD=EF:GH,
we have, ex aeguali,
AB:P=EF:R. [v. 22]
But (solid AK):(solid CL)=AB: P,
[x1. 33and Por.] 8

and (solid EM):(solid GN)=EF: R.

Therefore

(solid 4K : (solid CL) = (solid ZM): (solid GN)
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I1. If the solids are proportional, take S7 such that
AB:CD=EF: ST,
and on ST describe the parallelepiped S similar and similarly situated to
either of the parallelepipeds ZM, GV.

Then, by the first part,

(solid AK): (solid CZ) = (solid £M): (solid SV),
whence it follows that
(solid GNV) = (solid S¥).

But these solids are similar and similarly situated ;
therefore their faces are similar and equal ; [x1. Def. 10]
therefore the corresponding sides GH, ST are equal.

For this inference cf. note on vi. 22. The equality of GH, ST may
readily be proved by application of the two parallelepipeds to one another,
since, being similar, they are equiangular.]

Hence AB:CD=EF:GH.

The text of the mss. has here a proposition which is as badly placed as it
isunnecessary. Jf @ planc be at right angles to a plane, and from any one of the
points in one of the planes a perpendicular be drawn lo the other plane, the
perpendicular so drawn will fall on the common section of the planes. 1t is of
the nature of a lemma to x1. 17, where
alone the fact is made use of. Heiberg ¢
observes that it is omitted in b and that the 1

F

copyist of P knew other texts which did not
contain it. From these facts it is fairly con- A
cluded that the proposition was interpolated. B
The truth of it is of course immediately
obvious by reductio ad absurdum. Let the plane CAD be perpendicular to
the plane 45, and let a perpendicular be drawn to the latter from any point
£ in the former.
. }I‘f it does not fall on 4.0, the common section, let it meet the plane 4.8
in 7.

Draw FG in A8 perpendicular to 4D, and join EG.

Then #G is perpendicular to the plane CAD [x1. Def. 4], and therefore
to GE [x1 Def. 3]. Therefore . EGF is right.

Also, since EF is perpendicular to 4.8,
the angle £FG is right.

That is, the triangle £GF has two right angles :
which is impossible.

ProrosiTion 38.

If the sides of the opposite planes of a cube be bisected, and
Planes be carried through the points of section, the common
section of the planes and the diameter of the cube bisect ome
another.

For let the sides of the opposite planes CF, AH of the
cube AF be bisected at the points X, L,.M, N, O, O, P, R,
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and through the points of section let the planes KN, OR be
carried ;

let US be the common section of the planes, and DG the
diameter of the cube A F.

I say that U7 is equal to 7S, and D7 to 7G.

For let DU, UE, BS, SG be joined.
Then, since DO is parallel to PE,

the alternate angles DOU, UPE are equal to one another.

L 2
And, since DO is equal to PE£, and OU to UP, L 5]
and they contain equal angles,
therefore the base DU is equal to the base UE,
the triangle DOU is equal to the triangle PUE,
and the remaining angles are equal to the remaining angles ;

[r 4
therefore the angle OUD is equal to the angle PUE. !

D K F

c\ T E

B . \H
~ \R

A N ¢}

For this reason DUE is a straight line. (1. 14)
For the same reason, BSG is also a straight line,
and BS is equal to SG.

Now, since CA is equal and parallel to D2,
while CA4 is also equal and parallel to £G,
therefore D23 is also equal and parallel to £G. [x1. 9]



362 BOOK XI [x1 38

And the straight lines DE, BG join their extremities ;

therefore DE is parallel to BG. (1. 33]
Therefore the angle £D T is equal to the angle BGT,

for they are alternate ; [1. 29]

and the angle D7°U is equal to the angle G7S. [1 15]

Therefore D7U, GTS are two triangles which have two
angles equal to two angles, and one side equal to one side,
namely that subtending one of the equal angles, that is, DU
equal to GS,

for they are the halves of DE, BG;

therefore they will also have the remaining sides equal to the
remaining sides. [1. 26)

Therefore DT is equal to 7G, and U7 to 7TE.
Therefore etc.
Q E. D.

Euclid enunciates this proposition of a cwde only, though it is true of any
parallelepiped, no doubt because its truth for a cube is all that was wanted for
the only proposition where it is needed, viz. xi1. 17.

Simson remarks that it should be proved that the straight lines bisecting
the corresponding opposite sides of opposite planes are¢ in one plane. This is,
however, clear because e.g. since DX, CL are equal and parallel, XL is equal
and parallel to CD. And, since XZ, AB are both parallel to DC, KL is
parallel to 4B. And lastly, since XZ, MV are both parallel to 458, KL is
parallel to MV and therefore in one plane with it.

The essential thing to be proved is that the plane passing through the
opposite edges DB, EG passes through the straight line UL, since, only if
this be the case, can US, DG intersect one another.

To prove this we have only to prove that, if DU, UE and BS, SG be
joined, DUE and BSG are both straight lines.

Now, since DO is parallel to PE,

' L DOU=cr EPU.

Thus, in the as DUO, EUP, two sides DO, OU are equal to two sides
EP, PU, and the included angles are equal.

Therefore ADUO=AEUP,
DU=UE,
and LDUO=L EUP,

so that DUE is a straight line, bisected at U. Similarly BSG is a straight
line, bisected at S.

Thus the plane through DB, EG (DB, EG being equal and parallel)
contains the straight lines DUE, BSG (which are therefore equal and parallel
also) and also [x1. 7] the straight lines US, DG (which accordingly intersect).

In As DTU, GTS, the angles UDZ, SGT are equal (being alternate),
and the angles UZD, STG are also equal (being vertically opposite), while
DU (half of DE) is equal to GS (half of BG).
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Therefore [1. 26] the triangles D7V, GT'S are equal in all respects, so that
DT=7G,
UT'=TS.

ProrosiTioN 39.

If there be two prisms of equal height, and one have a
parallelogram as base and the other a triangle, and if the
parvallelogram be double of the triangle, the prisms will be

equal.
Let ABCDEF, GHKLMN be two prisms of equal
height,

let one have the parallelogram A4 F as base, and the other the
triangle GHK,

and let the parallelogram 4 be double of the triangle GHK;

I say that the prism ABCDEF is equal to the prism
GHKLMN.

B D M p

E F

G K
For let the solids 40, G2 be completed.

Since the parallelogram 4 F'is double of the triangle GHX,

while the parallelogram /K is also double of the triangle
GHK, [x 34]

therefore the parallelogram 4 F is equal to the parallelogram
HK.

But parallelepipedal solids which are on equal bases and
of the same hcight are equal to one another ; [xr 31]

therefore the solid 4O is equal to the solid G2.
And the prism ABCDEF is half of the solid 40,
and the prism GHKLMN is half of the solid GP; [x1. 28]

therefore the prism ABCDEF is equal to the prism
GHKLMN.

Therefore etc.
Q. E. D.
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This proposition is made use of in xi11. 3, 4. The phraseology is interest-
ing because we find one of the parallelogrammic faces of one of the triangular
prisms called its dase, and the perpendicular on this plane from that vertex of
either friangular face which is not in this plane the Aeight.

The proof is simple because we have only to complete parallelepipeds
which are double the prisms respectively and then use x1. 31. It has to be
borne in mind, however, that, if the parallelepipeds are not rectangular, the
proof in XI. 28 is not sufficient to establish the fact that the parallelepipeds
are double of the prisms, but has to be supplemented as shown in the note on
that proposition. X1 4 does, however, require the theorem in-its general
form.



BOOK XII.

HISTORICAL NOTE.

The predominant feature of Book xii is the use of the method of
exhaustion, which is applied in Propositions 2, 3—s5, 10, I1, 12, and (in a
slightly different form) in Propositions 16—18. We conclude therefore that
for the content of this Book Euclid was greatly indebted to Eudoxus, to whom
the discovery of the method of exhaustion is attributed. The evidence for
this attribution comes mainly from Archimedes. (1) In the preface to On
the Sphere and Cylinder 1., after stating the main results obtained by himself
regarding the surface of a sphere or a segment thereof, and the volume and
surface of a right cylinder with height equal to its diameter as compared with
those of a sphere with the same diameter, Archimedes adds: “Having now
discovered that the properties mentioned are true of these figures, I cannot
feel any hesitation in setting them side by side both with my former investiga-
tions and with those of the theorems of Eudoxus on solids which are held to be
most irrefragably established, namely that any gyramid is one third part of the
prism whickh has the same base with the pyramid and equal height [i.e. Eucl,
x11. 7], and that any cone &5 one third part of the cylinder which has the same
base with the cone and equal height [i.e. Eucl. xi. 10}. For, though these
properties also were naturally inherent in the figures all along, yet they were
in fact unknown to all the many able geometers who lived before Eudoxus
and had not been observed by any one.” (2) In the preface to the treatise
known as the Quadrature of the Parabola Archimedes states the “lemma”
assumed by him and known as the ““Axiom of Archimedes” (see note on X. 1
above) and proceeds : *Earlier geometers (ol wpdrepov yewpérpa) have also
used this lemma; for it is by the use of this same lemma that they have
shown that circles are to one another in the duplicate ratio of their diameters
[Eucl. x11. 2], and that spkeres are to one another in the triplicate ratio of their
diameters [Eucl. xi1. 18], and further that ecvery pyramid is one third part of the
prism which has the same base with the pyramid and equal height [Eucl. x11. 7];
also, that every cone is one third part of the cylinder whick has the same base
with the cone and equal height [ Eucl. x11. 10] they ll|)r0\.r¢=:d by assuming a certain
lemma similar to that aforesaid” Thus in the first passage two theorems of
Eucl. x11, are definitely attributed to Eudoxus ; and, when Archimedes says,
in the second passage, that “earlier geometers” proved these two theorems
by means of the lemma known as the “Axiom of Archimedes” and of a
lemma similar to it respectively, we can hardly suppose him to be alluding to
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any other proof than that given by Eudoxus. As a matter of fact, the lemma
used by Euclid to prove both propositions (x11. 3—5 and 7, and X11. 10) is the
theorem of Eucl. X. 1. As regards the connexion between the two “lemmas”
see note on X. I.

We are not, however, to suppose that none of the results obtained by
the method of exhaustion had been discovered before the time of Eudoxus
(fl. about 368—s B.c.). Two at least are of earlier date, those of Eucl. x11. 2
and xiIL 7.

(2) Simplicius (Comment. in Aristof. Phys. p. 61, ed. Diels) quotes
Eudemus as saying, in his History of Geometry, that Hippocrates of Chios
(fl. say 430 B.C.) first laid it down (&ero) that similar segments of circles are
in the ratio of the squares on their bases and that he proved this (éeixvver) by
proving (éx Tob Seifac) that the squares on the diameters have the same ratio
as the (whole) circles. We know nothing of the method by which Hippo-
crates proved this proposition; but, having regard to the evidence from
Archimedes quoted above, it is not permissible to suppose that the method
was the fully developed method of exhaustion as we know it.

() As regards the two theorems about the volume of a pyramid and of
a cone respectively, which Eudoxus was the first to prove, we now have
authentic evidence in the short treatise by Archimedes discovered by Heiberg
in a ms. at Constantinople in 1906 and published in Hermes the following
year (see now Archimedis opera omnia, ed. Heiberg, 2. ed., Vol. 1, 1913,
pp- 425—507; 1. L. Heath, T%e Method of Archimedes, Cambridge, 1912).
The said treatise, complete in all essentials, bears the title "Apyuusdovs wept Tav
pnxavicdy Bewpnpdrav mpos "Eparocfémy épodos. This “Method” (or “Plan of
attack ”), addressed to Eratosthenes, is none other than the é¢ddiov on which,
according to Suidas, Theodosius wrote a commentary, and which is several
times cited by Heron in his Metrica; its discovery adds a new and important
chapter to the history of the integral calculus. In the preface to this work
Archimedes alludes to the theorems which he first discovered by means of
mechanical considerations, but proved afterwards by geometry, because the
investigation by means of mechanics did not constitute a rigid proof; he
observes, however, that the mechanical method is of great use for the discovery
of theorems, and it is much easier to provide the rigid proof when the fact
to be proved has once been discovered than it would be if nothing were
known to begin with. He goes on: “Hence too, in the case of those
theorems the proof of which was first discovered by Eudoxus, namely those
relating to the cone and the pyramid, that the cone is one third part of the
cylinder, and the pyramid one third part of the prism, having the same base
and equal height, no small part of the credit will naturally be assigned to
Democritus, who was the first to make the statement (of the fact) regarding
the said figure [i.e. property], though without proving it.” Hence the discovery
of the two theorems must now be attributed to Democritus (fl. towards the
end of sth cent. B.c.). The words “ without proving it” (xwpis drodeifews) do
not mean that Democritus gave no sort of proof, but only that he did not give
a proof on the rigorous lines required later ; for the same words are used by
Archimedes of his own investigations by means of mechanics, which, however,
do constitute a reasoned argument. The character of Archimedes’ mechanical
arguments combined with a passage of Plutarch about a particular question in
infinitesimals said to have been raised by Democritus may perhaps give a clue
to the line of Democritus’ argument as regards the pyramid. The essential
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feature of Archimedes’ mechanical arguments in this tract is that he regards
an area as the sum of an infinite number of siraight lines parallel to one
another and terminated by the boundary or boundaries of the closed figure
the area of which is to be found, and a volume as the sum of an infinite
number of plane sections parallel to one another : which is of course the same
thing as taking (as we do in the integral calculus) the sum of an infinite
number of strips of breadth dx (say), when dx becomes indefinitely small, or
the sum of an infinite number of parallel laminae of depth 4% (say), when dz
becomes indefinitely small. To give only one instance, we may take the
case of the area of a segment of a parabola cut off by a chord.

Let CBA be the parabolic segment, CE the tangent at C meeting the

TG

diameter £28.D through the middle point of the chord CA4 in £, so that
EB=BD.

Draw AF parallel to £D meeting CE produced in 7 Produce C3 to
H so that CK = KH, where X is the point in which CH meets AF; and
suppose CH to be a lever.

Let any diameter MNP0 be drawn meeting the curve in Pand CF, CK,
C4 in M, N, O respectively.

Archimedes then observes that

CA.A0=MO0: 0P
(“for this is proved in a lemma”),
whence HK: KN=MO0: OPF,
so that, if a straight line 7G equal to PO be placed with its middle point at
4, the straight line MO with centre of gravity at V, and the straight line 7G
with centre of gravity at A, will balance about X.

Taking all other parts of diameters like PO intercepted between the curve
and C4, and placing equal straight lines with their centres of gravity at A,
these straight lines collected at /A will balance (about X) all the lines like
MO parallel to #4 intercepted within the triangle C#4 in the positions in
which they severally lie in the figure.

Hence Archimedes infers that an area equal to that of the parabolic
segment hung at /& will balance (about X) the triangle CFA hung at its
centre of gravity, the point X (a point on CK such that CKX'=3XX), and
therefore that

(area of triangle C#4) : (area of segment) = HK : KX
| gy
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from which it follows that
area of parabolic segment = § A 4ABC.

The same sort of argument is used for solids, plane sections taking the
place of straight lines.

Archimedes is careful to state once more that this method of argument
does not constitute a progf. Thus, at the end of the above proposition about
the parabolic segment, he adds: “ This property is of course not proved by
what has just been said; but it has furnished a sort of indication (ipdaciv Tva)
that the conclusion is true.”

Let us now turn to the passage of Plutarch (D¢ Comm. Noi. adv. Stoicos
xxx1x 3)about Democritus abuve referred to. Plutarch speaks of Democritus
as having raised the question in natural philosophy (¢uvowds): “if a cone
were cut by a plane parallel to the base [by which is clearly meant a plane
indefinitely near to the base], what must we think of the surfaces of the
sections, that they are equal or unequal? For, if they are unequal, they will
make the cone irregular, as having many indentations, like steps, and uneven-
nesses ; but, if they are equal, the sections will be equal, and the cone will
appear to have the property of the cylinder and to be made up of equal, not
unequal circles, which is very absurd.” The phrase *“made up of equal...circles”
(¢ lowv ovyxeluevos...xixAwv) shows that Democritus already had the idea of
a solid being the sum of an infinite number of parallel planes, or indefinitely
thin laminae, indefinitely near together: a most important anticipation of the
same thought which led to such fruitful results in Archimedes. If then one
may hazard a conjecture as to Democritus’ argument with regard to a pyramid,
it seems probable that he would notice that, if two pyramids of the same
height and equal triangular bases are respectively cut by planes parallel to the
base and dividing the heights in the same ratio, the corresponding sections of
the two pyramids are equal, whence he would infer that the pyramids are
equal as being the sum of the same infinite number of equal plane sections
or indefinitely thin laminae. (This would be a particular anticipation of
Cavalieri’s proposition that the areal or solid contents of two figures are equal
if two sections of them taken at the same height, whatever the height may be,
always give equal straight lines or equal surfaces respectively.) And
Democritus would of course see that the three pyramids into which a prism
on the same base and of equal height with the original pyramid is divided (as
in Eucl. x11. 7) satisfy this test of equality, so that the pyramid would be one
third part of the prism. The extension to a pyramid with a polygonal base
would be easy. And Democritus may have stated the proposition for the
cone (of course without an absolute proof) as a natural inference from the
result of increasing indefinitely the number of sides in a regular polygon
forming the base of a pyramid.
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ProrosiTION 1.
Similar polygons inscribed in civcles are to one another as
the squares on the diameters.
Let ABC, FGH be circles,

let ABCDE, FGHKL be similar polygons inscribed in them,
and let M, GN be diameters of the circles ;

I say that, as the square on B is to the square on G, so
is the polygon ABCDE to the polygon FGHKL.

F

For let BE, AM, GL, FN be joined.

Now, since the polygon ABCDE is similar to the polygon
FGHKL,

the angle BAE is equal to the angle GFL, :
and, as B4 isto AE, sois GF to FL. [vr. Def. 1]
Thus BAE, GFL are two triangles which have one angie

equal to one angle, namelK the angle BAE to the angle
GFL, and the sides about the equal angles proportional ;

therefore the triangle 4B E is equiangular with the triangle
FGL. [v1. 6]

Therefore the angle AE£ 7B is equal to the angle FLG.
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But the angle A£2B is equal to the angle AMB,
for they stand on the same circumference ; [1m1. 27]
and the angle 7L G to the angle FNG ;
therefore the angle AMB is also equal to the angle FNG.
But the right angle BAM is also equal to the right angle

GFN ; (. 31]
therefore the remaining angle is equal to the remaining angle.
[ 32]

Therefore the triangle ABM is equiangular with the
trian_lgle FGN.
herefore, proportionally, as BM is to GN, so is BA
to GF. [v. 4]
But the ratio of the square on BM to the square on GN
is duplicate of the ratio of BM to GN,

and the ratio of the polygon 4 BCDE to the polygon FGHKL
is duplicate of the ratio of B4 to GF; [v1. 20]

therefore also, as the square on B/ is to the square on G/,
so is the polygon A BCDE to the polygon FGHKL.

Therefore etc.
Q. E. D.

As, from this point onward, the text of each proposition usually occupies
considerable space, I shall Fenemlly give in the notes a summary of the
argument, to enable it to be followed more easily.

Here we have to prove that a pair of corresponding sides are in the ratio
of the corresponding diameters.

Since s BAE, GFL are equal, and the sides about those angles

proportional,
&s ABE, FGL are equiangular,
so that LtAEB=¢ FLG

Hence their equals in the same segments, L s 4MB, FNG, are equal.
And the right angles BAM, GFN are equal.
Therefore &s ABM, FGN are equiangular, so that

BM: GN=BA : GF.
The duplicates of these ratios are therefore equal,
whence (polygon ABCDE): (polygon FGHKL)
= duplicate ratio of B4 to GF
= duplicate ratio of BM to GN
=BM?*: GN*
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ProrosITION 2.

Circles are lo one another as the squares on the diamelers.
Let ABCD, EFGH be circles, and BD, FH then

diameters ;

I say that, as the circle ABCD is to the circle £FGH, so is
the square on BD to the square on FH.

A

J

For, if the square on B0 is not to the square on #/7 as
the circle ABCD is to the circle EFGH,
then, as the square on B0 is to the square on F/7, so will
the circle ABCD be either to some less area than the circle
EFGH, or to a greater.

First, let it be in that ratio to a less area S.

Let the square £FGH be inscribed in the circle £FGH ;
then the inscribed square is greater than the half of the circle
EFGH, inasmuch as, if through the points £, F, G, H we
druw tangents to the circle, the square £FGH is half the
square circumscribed about the circle, and the circle is less
than the circumscribed square ;
hence the inscribed square ZFGH is greater than the half of
the circle ZFGH.

Let the circumferences £F, FG, GH, HE be bisected at
the points X, L, M, N,
and let £K, KF, FL, LG, GM, MH, HN, NE be joined ;
therefore each of the triangles £KF, FLG, GMH, ANE is
also greater than the half of the segment of the circle about
it, inasmuch as, if through the points X, Z, M, N we draw
tangents to the circle and complete the parallelograms on the
straight lines £F, FG, GH, HE, each of the triangles £KF,
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FLG, GMH, HNE will be half of the parallelogram
about it,

while the segment about it is less than the parallelogram ;

hence each of the trian%'les EKF, FLG, GMH, HNE

is greater than the half of the segment of the circle
about it.

Thus, by bisecting the remaining circumferences and
joining straight lines, and by doing this continually, we shall
leave some segments of the circle which will be less than the
excess by which the circle £FGH exceeds the area S.

For it was proved in the first theorem of the tenth book
that, if two unequal magnitudes be set out, and if from the
greater there be subtracted a magnitude greater than the half,
and from that which is left a greater than the half, and if this
be done continually, there will be left some magnitude which
will be less than the lesser magnitude set out.

Let segments be left such as described, and let the
segments of the circle £FGH on EK, KF, FL, LG, GM,
MH, HN, NE be less than the excess by which the circle
EFGH exceeds the area S.

Therefore the remainder, the polygon EXFLGMHN, is
greater than the area S,

Let there be inscribed, also, in the circle 4 BCD the poly-
gon AOBPCQDR similar to the polygon EXFLGMHN ;
therefore, as the square on B0 is to the square on FH, so is
the polygon 40BPCQODR to the polygon EXFLGMHN.

[xm. 1]

But, as the square on BD is to the square on F/, so also
is the circle ABCD to the area S ;
therefore also, as the cirrle 4BCD is to the area S, so is the
polygon AOBPCQDR to the polygon EXFLGMHN ;

[v. 11]
therefore, alternately, as the circle 48CD is to the polygon
inscribed in it, so is the aren S to the polygon EKXFLGMHN.

[v. 16]
But the circle AB8CD is greater than the polygon inscribed
in it;
therefore the area S is also greater than the polygon
EKFLGMHAN.
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But it is also less:
which is impossible.

Therefore, as the square on 22D is to the square on F/,
so is not the circle 4BCD to any area less than the circle
EFGH.

Similarly we can prove that neither is the circle ZFGH
to any area less than the circle ABCD as the square on FH
is to the square on BD.

I say next that neither is the circle AZCD to any area
greater than the circle £ZFGH as the square on BD is to the
square on F/.

For, if possible, let it be in that ratio to a greater area S.

Therefore, inversely, as the square on 7/ is to the square
on [)B, so is the area S to the circle ABCD.

But, as the area S is to the circle A5CD, so is the circle
EFGH to some area less than the circle ABCD ;
therefore also, as the square on F~/ is to the square on 8D,
so is the circle £FGH to some area less than the circle
ABCD : [v. 1)

which was proved impossible.

Therefore, as the square on 2D is to the square on //7,
so is not the circle A8CD to any area greater than the circle
EFGH.

And it was proved that neither is it in that ratio to any
area less than the circle £EFGH ;

therefore, as the square on BD is to the square on F/, so is
the circle ABCD to the circle EFGH.
Therefore etc.
Q. E. D,

LEMMA,

[ say that, the area S being greater than the circle
EFGH, as the area S is to the circle A BCD, so is the circle
EFGH to some area less than the circle 4A5CD.

For let it be contrived that, as the area .S is to the circle
ABCD, so is the circle £FGH to the area 7.

I say that the area 7 is less than the circle ABCD.

For since, as the area S is to the circle ABCD, so is the
circle £EFGH to the area 7,
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therefore, alternately, as the area S is to the circle £FGH, so
is the circle ABCD to the area 7. [v. 16]
But the area S is greater than the circle £FGH ;
therefore the circle A BCD is also greater than the area 7.
Hence, as the area S is to the circle ABCD, so is the
circle £EFGH to some area less than the circle ABCD.
Q. E. D.

Though this theorem is said to have been proved by Hippocrates, we may
with tolerable certainty attribute the ﬁroof of it given by Euclid to Eudoxus,
to whom xi1. 7 Por. and x11. 10 (which Euclid proves in exactly the same
manner) are specifically attributed by Archimedes. As regards the lemma
used herein (Eucl. x. 1) and the somewhat different lemma by means of which
Archimedes says that the theorems of xi1. 2, X1 7 Por. and x11. 18 were
proved, see my note on X. 1 above.

The first essential in this proposition is to prove that we can exkaust a
circle, in the sense of X. 1, by successively inscribing in it regular polygons,
each of which has twice as many sides as the preceding one. We take first
an inscribed square, then bisect the arcs subtended by the sides and so form
an equilateral polygon of eight sides, then do the same with the latter, forming
a polygon of 16 sides, and so on. And we have to prove that what is left
over when any one of these polygons is taken away from the circle is more
!4;&:3 half exhausted when the next polygon is made and subtracted from the
circle.

Euclid proves that the inscribed square is greater than half the circle and
that the regular octagon when subtracted takes away more than half of what
was left by the square. He then infers that the same
thing will happen whenever the number of sides is o E
doubled. A

This can be seen generally by taking any arc of a
circle cut off by a chord 45. Bisect the arc in C.

Draw a tangent to the circle at C, and let 4D, BE
be drawn perpendicular to the tangent. Join AC, CB.

Then DE is parallel to 4.5, since

L ECB = . CAB, in alternate segment, [11. 32]
= CBA. [ 29, 1. 5]
Thus ABEDisa[7;
and it is greater than the segment 4CB.
Therefore its half, the A 4CB, is greater than half the segment.
Thus, by x. 1, Euclid’s construction of successive regular polygons in
a circle, if continued far enough, will at length leave segments which are
together less than any given area.
Now let X, X" be the areas of the circles, , ' their diameters, respectively.

Then, if X:X'+4": 4%
ad*=X:8,
where S is some area either greater or less than X',

I. Suppose .S < X"
Continue the construction of polygons in X' until we arrive at one which
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leaves over segments together less than the excess of X’ over 5, i.e. a polygon
such that
X' > (polygon in X')> &.
Inscribe in the circle X a polygon similar to that in X .
Then (polygon in X) : (polygon in X')=d*:d" [xi. 1]
= X : 5, by hypothesis ;
and, alternately,
(polygon in X) : X = (polygon in X'): S.

But (polygon in X) < X;
therefore (polygon in X') < S.

But, by construction.  (polygon in X')> S:
which is impossible.

Hence § cannot be ss than X’ as supposed.

II. Suppose S> X'

Since d:d"=X:3S5

we have, inversely, d':d*=8: X
Suppose that S: X=X":1T,

whence, since > X', X>T [v. 14]
Consequently dtidd=XT

where 7" < X.

This can be proved impossible in exactly the same way as shown in Part L.
Hence S cannot be greater than X' as supposed.
Since then S is neither greater nor less than X',

S=X',
and therefore a@:d*"=X:X.
With reference to the assumption that there /s some space S such that
a1 d¥=X 1S

i.e. that there is a fourth proportional to the areas % 4" X, Simson observes
that it is sufficient, in this and the like cases, that a thing made use of in the
reasoning can possibly exss7, though it cannot be exhibited by a geometrical
construction. As regards the assumption see note on V. 18 above.

There is grave reason for suspecting the genuineness of the Lemma at the
end of the proposition ; though, if it be rejected, it will be necessary to delete
the words *as was before proved ” in corresponding places in xi1. 5, 18.

It will be observed that Euclid proves the impossibility in the second case
by reducing it to the first. If it is desired to prove the second case indepen-
dently, we must drcumscribe successive polygons to the circles instead of
inscribing them, in the way shown by Archimedes in his first proposition on
the Measurement of a circle. Of course we require, as a preliminary, the
proposition corresponding to XI1. 1, that A
Similar polygons circumscribed about
circles are o one another as the squares c
on the diamelers. 8

Let AB, A'B' be corresponding sides
of the two similar polygons. Then s
OAB, O A'B are equal, since 40, 4’0’
bisect equal angles.
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Similarly 2 ABO=. A'B'0O.

Therefore As AOB, A'O’'B' are similar, so that their areas are in the
duplicate ratio of 458 to 4’5,

The radii OC, O'C’ drawn to the points of contact are perpendicular to
AB, A'B', and it follows that

AB: AB=C0:C0O.

Thus the polygons are to one another in the duplicate ratio of the radii,
and therefore of the diameters.

Now suppose a square 4BCD described about 5 g g D

a circle.
Make an octagon described about the circle by
drawing tangents at the points £ etc., where 04 etc.
meet the circle.
Then shall the tangent at £ cut off more than

(o]
half of the area between AKX, A/ and the arc
HEK.
For the angle AEG is right, and is therefore 8 S

> L EAG. g

-

Therefore AG> EG
> GK.
Therefore LAGE > AEGK.
Similarly AAFE > AEFH.
Hence A AFG > } (re-entrant quadrilateral A HEK),

and a fortiori, A AFG >} (area between AH, AK and the arc).

Thus the octagon takes from the square more than half the space between
the square and the circle.

Similarly, if a figure of 16 equal sides be circumscribed by cutting off
symmetrically the corners of the octagon, it will take away more than half of
the space between the octagon and circle.

Suppose now, with the original notation, that

dd"=X":35,
where S is greater than X",

Continue the construction of circumscribed polygons about X’ until the
total area between the polygon and the circle is less than the difference
between S and X', i.e. till

S > (polygon about X') > X",

Circumscribe a similar polygon about X.

Then (polygon about X) : (polygon about X') = 4*:4"

= X: S, by hypothesis,
and, alternately,

(polygon about X)) : X = (polygon about X’) : S.

But (polygon about X) > X.
Therefore (polygon about X*)> 5.
But S > (polygon about X'): [above]

which is impossible.
Hence .S cannot be greater than X'
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Legendre proves this proposition by a method equally rigorous but not, I
think, possessing any advantages over Euclid’s. It depends on a lemma
corresponding to Eucl. xi1. 16, but with another part added to it.

Two concentric circles being given, we can always inscribe in the greater a
regular polygon such that its sides do not meet the circumference of the lesser, and
we can also circumscribe about the lesser a regular
polygon such that ils sides do not meet the circum-
Jerence of the greater.

Let CA, CB be the radii of the circles.

I. At A4 on the inner circle draw the tangent
DE meeting the outer circle in D, E.

Inscribe in the outer circle any of the regular
polygons which we can inscribe, e.g. a square,

Bisect the arc subtended by a side, bisect
the half, bisect that again, and so on, until we
arrive at an arc less than the arc DBE,

Let this arc be MV, and suppose it so placed
that 2 is its middle point.

Then the chord M/ is clearly more distant from the centre C than DE
is ; and the regular polygon, of which A7V is a side, does not anywhere meet
the circumference of the inner circle.

II. Join CM, CN, meeting DE in P, Q.
Then PQ will be the side of a polygon circumscribed about the inner
circle and similar to the polygon inscribed in the outer ;

and the circumscribed polygon of which 2Q is a side will not anywhere meet
the outer circle.

Legendre now proves x11. 2 after the following manner.
For brevity, let us denote the area of the circle with radius CA4 by
(circ. CA).
Then it is required to prove that, if O.B be the radius of a second circle,
(circ. CA): (circ. 0.B) = CA*: OB

Suppose, if possible, that this relation is not true. Then CA? will be to
OB as (circ. CA) is to an area greater or less than (circ. OB).
I. Suppose, first, that
CA4*: OB = (circ. CA) : (circ. OD),
where 0D is less than OB.
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Inscribe in the circle with radius OB a regular polygon such that its sides
do not anywhere meet the circumference of the circle with centre 0D ;
[Lemma]
and inscribe a similar polygon in the other circle.

The areas of the polygons will then be in the duplicate ratio of C4 Eo OBj
or XIL 1
(polygon in circ. CA): (polygon in circ. 0B)

=CA*: 0B
= (circ. CA): (circ. O.D), by hypothesis.
But this is impossible, because the polygon in (circ. CA4) is Zess than (circ.
CA), but the polygon in (circ. OB) is greater than (circ. OD).
Therefore CA* cannot be to 0B* as (circ. CA) is to a Jess circle than
(cire. 0B).
I1. Suppose, if possible, that
CA? : OB = (circ. CA): (some circle > circ. 0B).
Then inversely
OB ; CA® = (circ. OB): (some circle < circ. CA),
and this is proved impossible exactly as in Part 1.
Therefore CA*: OB*=(circ. CA): (circ. OB).

ProrosiTioN 3.

Any pyramid which has a triangular base is divided into
two pyramids equal and similar to one another, similar to the
whole and having triangular bases, and into two equal prisms ;
and the two prisms are grealer than the half of the whole
pyramid.

Let there be a pyramid of which the triangle 4BC is the

base and the point D the vertex ;
I say that the pyramid ABCD is
divided into two pyramids equal to
one another, having triangular bases
and similar to the whole pyramid,
and into two equal prisms; and the
two prisms are greater than the half
of the whole pyramid.

For let AB, BC, CA, AD, DB, ¢
DC be bisected at the points £, 7, A & ;
G H K, L, and let HE, EG, GH, HK, KL, LH, KF, FG
be joined.

Since AE is equal to £5, and AH to DH,
therefore £/ is parallel to D2B. [v 2]
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For the same reason
HK is also parallel to 45.
Therefore HEBK is a parallelogram ;
therefore A K is equal to E£B. [1. 34]
But £5 is equal to £4 ;
therefore 4 £ is also equal to 7K.
But AH is also equal to AD ;
therefore the two sides £4, AH are equal to the two sides
KH, HD respectively ,
and the angle £A4/ is equal to the angle KXHD ;
therefore the base £/ is equal to the base KD. [1. 4]

Therefore the triangle 4EH is equal and similar to the
triangle HKD.

For the same reason

the triangle AHG is also equal and similar to the triangle
HLD.

Now, since two straight lines £/, HG meeting one
another are parallel to two straight lines KD, DL meeting
one another, and are not in the same plane, they wiil contain
equal angles. [x1. 10]

Therefore the angle £/ G is equal to the angle KDL,

And, since the two straight lines £/, /G are equal to the
two KD, DL respectively,
and the angle £/HG is equal to the angle KDL,
therefore the base £ is equal to the base KL ; [r 4)
therefore the triangle £HG is equal and similar to the
triangle KDL,

For the same reasun

the triangle 4 £G is also equal and similar to the triangle
HKL.

Therefore the pyramid of which the triangie A£G is the
base and the point / the vertex is equal and similar to the
pyramid of which the triangle ZK'L is the base and the point
D the vertex. [x1. Def. 10)

And, since /K has been drawn parallel.to 45, one of the
sides of the triangle 4025,
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the triangle 402 is equiangular to the triangle DHK, [1. 29]

and they have their sides proportional ;

therefore the triangle 402 is similar to the triangle DHK.
[vi. Def. 1]

For the same reason
the triangle DBC is also similar to the triangle DKL, and
the triangle 4.DC to the triangle DLH.

Now, since the two straight lines B4, AC meeting one
another are parallel to the two straight lines K77, //L meeting
one another, not in the same plane, they will contain equal
angles. [x1. 10]

Therefore the angle BA4C is equal to the angle XA L.

And, as BA isto AC, so is KH to HL ;
therefore the triangle 4 BC is similar to the triangle A/ KL.

Therefore also the pyramid of which the triangle AB8C is
the base and the point 0 the vertex is similar to the pyramid
of which the triangle /XL is the base and the point 2 the
vertex.

But the pyramid of which the triangle /KL is the base
and the point D the vertex was proved similar to the pyramid
of which the triangle A£G is the base and the point /7 the
vertex.

Therefore each of the pyramids AEGH, HKLD is
similar to the whole pyramid 4ABCD.

Next, since BF is equal to FC,
the parallelogram £BFG is double of the triangle GFC.

And since, if there be two prisms of equal height, and one
have a parallelogram as base, and the other a triangle, and if
the parallelogram be double of the triangle, the prisms are
equal, [x1. 39]
therefore the prism contaned by the two triangles BKF,
EHG, and the three parallelograms £BFG, EBKH, HKFG
is equal to the prism contained by the two triangles GFC,
HKL and the three parallelograms KFCL, LCGH, HKFG.

And it is manifest that each of the prisms, namely that in
which the parallelogram £BFG is the base and the straight
line 7K is its opposite, and that in which the triangle GFC is
the base and the triangle /7KL its opposite, is greater than
each of the pyramids of which the triangles 4 £G, HKL are
the bases and the points /7, D the vertices,
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inasmuch as, if we join the straight lines £/, £K, the prism
in which the parallel]ogram EBFG is the base and the straight
line /7K its opposite is greater than the pyramid of which the
triangle ZBF is the base and the point A the vertex.

But the pyramid of which the triangle £BF is the base
and the point X the vertex is equal to the pyramid of which
the triangle 4 £G is the base and the point / the vertex ;

for they are contained by equal and similar planes,

Hence also the prism in which the parallelogram EBFG
is the base and the straight line 7K its opposite is greater
than the pyramid of which the triangle A£G is the base and
the point /7 the vertex.

But the prism in which the parallelogram £BFG is the
base and the straight line /7K its opposite is equal to the
prism in which the triangle G/C is the base and the triangle
HKL its opposite,
and the pyramid of which the triangle A£G is the base and
the point /7 the vertex is equal to the pyramid of which the
triangle /7KL is the base and the point 2 the vertex.

Therefore the said two prisms are greater than the said
two pyramids of which the triangles AEG, HKL are the
bases and the points /&, D the vertices.

Therefore the whole pyramid, of which the triangle 48C
is the base and the point 2 the vertex, has been divided into
two pyramids equal to one another and into two equal prisms,
and the two prisms are greater than the half of the whole

pyramid.
Q. E. D.

We will denote a pyramid with vertex 2 and base 4ABC by D (4BC) or
D-ABC and the triangular prism with triangles GC# HLK for bases by
(GCF, HLK).

The following are the steps of the proof.

1. To prove pyramid & (A4.EG) equal and similar to pyramid D (HKL).
Since sides of A DAB are bisected at H, £, K,
HE | DB, and HK || AB.
Hence HK=EB=FEA,
HE = KB = DK,

Therefore (1) As HAE, DHK are equal and similar.

Similarly (2) As HAG, DHL are equal and similar.

Again, LH, HK are respectively || to G4, AE in a different plane ;
therefore LtGAE=r LHK.
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And LH, HK are respectively equal to G4, AE.

Therefore (3) As GAE, LHK are equal and similar.

Similarly (4) As HGE, DLK are equal and similar.

Therefore [x1. Def. :o] the pyramids & (4EG) and D(HKL) are equal
and similar.

II. To prove the pyramid D (AKL) similar to the pyramid D (4ABC).

(1) The As DHK, DAB are equiangular and therefore similar.
Similarly (2) &s DLH, DCA are similar, as also (3) the &As DLK, DCB.
Again, BA, AC are raspecnvely parallel to XA, HL in a different plane ;

therefore L BAC=rL KHL.
And BA: AC=KH : HL.

Therefore (4) As BAC, KHL are similar.
Consequently the pyramid D (ABC) is similar to the pyramid D (HKL),
and therefore also to the pyramid H(4AEG).

III. To prove prism (GCF, HLK) equal to prism (HGE, KFB).

The prisms may be regarded as having the same Aejght (the distance
between the planes #KXZ, ABC) and having for bases (1) the A CG# and
(2) the 7 EBFG, which is the double of the A CGF.

Therefore, by X1. 39, the prisms are equal.

IV. To prove the prisms greater than the small pyramids.

Prism (HGE, KFB) is clearly greater than pyramid X (EFB) and there-
fore greater than pyramid A (4EG).

Therefore each of the prisms is greater than each of the small pyramids ;

and the sum of the two prisms is greater than the sum of the two small
pyramids, which, with the two prisms, make up the whole pyramid.

ProrosiTION 4.

If there 66 two pyramids of the same height whick have
triangular bases, and cach of them be divided inlo two pyramids
equal lo one another and similar lo the whole, and inlo two
equal prisms, then, as the base of the ome pyramid is to the
base of the other pyramid, so will all the prisms in the one
pyramid be to all the prisms, being equal in multitude, in the
other pyramid.

Let there be two pyramids of the same height which
have the triangular bases ABC, DEF, and vertices the
points G, A,
and let each of them be divided into two pyramids equal to
one another and similar to the whole and into two equal
prisms ; [xu. 3]
I say that, as the base ABC is to the base DEF, so are
all the prisms in the pyramid AZCG to all the prisms, being
equal in multitude, in the pyramid DEFH,
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For, since BO is equal to OC, and AL to LC,
therefore LZO is parallel to 45,

and the triangle 4BC is similar to the triangle LOC.

H
G

o
B

For the same reason
the triangle DEF is also similar to the triangle RV F.
And, since BC is double of CO, and £F of FV,
therefore, as BC is to CO, so is EF to FV.

And on BC, CO are described the similar and similarly
situated rectilineal figures 4 8C, LOC,

and on £F, FV the similar and similarly situated figures
DEF, RVF,

therefore, as the triangle A BC is to the triangle LOC, so is
the triangle DEF to the triangle RVF; [v1. 22)

therefore, a[térnately, as the triangle 4BC is to the triangle
DEF, so is the triangle ZOC to the triangle RV F. [v. 16]

But, as the triangle LOC is to the triangle RVF, so is
the prism in which the triangle ZOC is the base and PMN its
opposite to the prism in which the triangle R VF is the base
and S7U its opposite ; [Lemma following]
therefore also, as the triangle ABC is to the triangle DEF,
so is the prism in which the triangle ZOC is the base and
PMN its opposite to the prism in which the triangle RVF
is the base and S7U its opposite.

But, as the said prisms are to one another, so is the prism
in which the parallelogram ABOL is the base and the straight
line PM its opposite to the prism in which the parallelogram
QE VR is the base and the straight line S7 its opposite.

[x1. 39; cf. xu. 3]
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Therefore also the two prisms, that in which the parallelo-
gram KBOL is the base and PM its opposite, and that in
which the triangle ZOC is the base and PMN its opposite,
are to the prisms in which QF VR is the base and the straight
line S7 its opposite and in which the triangle RVF is the
base and S7°U its opposite in the same ratio [v. 12)

Therefore also, as the base 4 BC is to the base DEF, so
are the said two prisms to the said two prisms.

And similarly, if the pyramids PMNG, STUH be divided
into two prisms and two pyramids,
as the base PMN is to the base S7°U, so will the two prisms
in the pyramid PMNG be to the two prisms in the pyramid
STUH.

But, as the base ZMN is to the base S7°U, so is the base
ARBC to the base DEF;
for the triangles PMN, STU are equal to the triangles LOC,
RVF respectively.

Therefore also, as the base A3C is to the base DEF, so
are the four prisms to the four prisms.

And similarly also, if we divide the remaining pyramids
into two pyramids and into two prisms, then, as the base
ABC is to the base DEF, so will all the prisms in the
pyramid ABCG be to all the prisms, being equal in multitude,
in the pyramid DEFH.

Q. E. D,

LEMMA.

But that, as the triangle ZOC is to the triangle RVF,
so is the prism in which the triangle LOC is the base and
PMN its opposite to the prism in which the triangle RVF is
the base and S7°U its opposite, we must prove as follows.

For in the same figure let perpendiculars be conceived
drawn from G, /A to the planes ABC, DEF; these are of
;ogr?le equal because, by hypothesis, the pyramids are of equal

eight.

Now, since the two straight lines GC and the perpendicular
from G are cut by the parallel planes 48C, PMN,

they will be cut in the same ratios, [xr. 17)
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And GC is bisected by the plane PMN at NV;

therefore the perpendicular from G to the plane ABC will
also be bisected by the plane PMN,

For the same reason

the perpendicular from /A to the plane DEF will also be
bisected by the plane S7°U.

And the perpendiculars from G, /A to the planes ABC,
DEF are equal;

therefore the perpendiculars from the triangles PMN, STU
to the planes ABC, DEF are also equal.

Therefore the prisms in which the triangles ZOC, RVF
are bases, and PMN, STU their opposites, are of equal
height.

gHem:f: also the parallelepipedal solids described from the
said prisms are of equal height and are to one another as their
bases ; [x1. 32]
therefore their halves, namely the said prisms, are to one another
as the base LZOC is to the base R VF.

Q. E. D.

We can incorporate the lemma at the end of the proposition and sum-
marise the proof thus.

Since LO is parallel to 4.5,

As ABC, LOC are similar.
In like manner As DEF, RVF are similar.
And, since BC:CO=EF: FV,
AABC:ALOC=ADEF:ARVE, [vi. 22]
and, alternately,
AABC:ADEF=ALOC:ARVF.

Now the prisms (ZOC, PMN) and (R VF, STU) are equal in height :
for the perpendiculars from G, A on the bases ABC, DEF are divided by
the planes PMN, STU (parallel to the bases) in the same proportion as GC,
HF are divided by those planes [x1. 17], i.e. they are bisected ;
hence the heights of the prisms, being half the equal heights of the pyramids,
are equal.

And the prisms are the halves respectively of parallelepipeds of the same
height on parallelogrammic bases double of the As ZOC, X VF respectively ;

[x1. 28 and note

hence they are in the same ratio as those llelepipeds, and therefore as
their haseg[xl. 32). v i

Therefore

(prism LOC, PMN) : (prism RVF, STU)=ALOC: ARVF
=AABC:ADEF,
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And since the other prisms in the pyramids are equal to these prisms

respectively,
(sum of prisms in GABC): (sum of prisms in HDEF)=AABC :A DEF.

Similarly, if the pyramids GPMN, HSTU be divided in like manner, and
also the pyramids PAKL, SDQR, we shall have e.g.
(sum of prisms in GPMN) : (sum of prisms in HSTU) =L PMN:ASTU
=AABC:ADEF,
and similarly for the second pair of pyramids.
The process may be continued indefinitely, and we shall always have
(sum of prisms in GABC) : (sum of prisms in HDEF)=AABC:ADEF.

ProrosiTION 5.
Pyramids which are of the same height and have triangular

bases are to one another as the bases.

Let there be pyramids of the same height, of which the
triangles 4 BC, DEF are the bases and the points G, / the
vertices ;

I say that, as the base AZC is to the base DEF, so is the
pyramid ABCG to the pyramid DEFH.

a H

%

For, if the pyramid ABCG is not to the pyramid DEFH
as the base ABC is to the base DEF,
then, as the base 4AAC is to the base DEF, so will the
pyramid ABCG be either to some solid less than the pyramid

EFH or to a greater.

Let it, first, be in that ratio to a less solid /#, and let the
pyramid DEFH be divided into two pyramids equal to one
another and similar to the whole and into two equal prisms ;
then the two prisms are greater than the half of the whole
pyramid. [xu. 3]
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Again, let the pyramids arising from the division be
similarly divided,
and let this be done continually until there are left over from
the pyramid DEFH some pyramids which are less than the
excess by which the pyramid DEFH exceeds the solid /.
[x. 1
Let such be left, and let them be, for the sake of argument,
DQORS, STUH;
therefore the remainders, the prisms in the pyramid DEFH,
are greater than the solid /7.

Let the pyramid 4BCG also be divided similarly, and a
similar number of times, with the pyramid DEFH ;
therefore, as the base ABC is to the base DEF, so are the
prisms in the pyramid ABCG to the prisms in the pyramid
DEFH. [xm. 4]

But, as the base ABC is to the base DEF, so also is the
pyramid ABCG to the solid #;
therefore also, as the pyramid ABCG is to the solid , so
are the prisms in the pyramid ABCG to the prisms in the
pyramid DEFH ; [v. 21]
therefore, alternately, as the pyramid 4BCG is to the prisms
in it, so is the solid /# to the prisms in the pyramid DEFH.

[v. 16]

But the pyramid 4BCG is greater than the prisms in it;
therefore the solid W is also greater than the prisms in the
pyramid DEFH.

But it is also less:
which is impossible.

Therefore the prism ABCG is not to any solid less than
the pyramid DEFH as the base ABC is to the base DEF,

imilarly it can be proved that neither is the pyramid
DEFH to any solid less than the pyramid ABCG as the base
DEF is to the base ABC.

I say next that neither is the pyramid 4BCG to any
solid greater than the pyramid DE/H as the base ABC is
to the base DEF,

For, if possible, let it be in that ratio to a greater solid W;
therefore, inversely, as the base DEF is to the base 45C,
so is the solid W to the pyramid 4ABCG.
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But, as the solid W is to the solid ABCG, so is the
pyramid DEFH to some solid less than the pyramid ABCG,
as was before proved ; [x11. 2, Lemma)

therefore also, as the base DEF is to the base ABC, so is
the pyramid DEFH to some solid less than the pyramid
ABCG: [v. 11]

which was proved absurd.

Therefore the pyramid ABCG is not to any solid greater
than the pyramid DEFH as the base ABC is to the base
DEF.

But it was proved that neither is it in that ratio to a less
solid.
Therefore, as the base ABC is to the base DEF, so is
the pyramid ABCG to the pyramid DEFH.
Q. E. D.

In the two preceding propositions it has been shown how we can divide a
pyramid with a triangular base into (1) two equal prisms which are together
greater than half the pyramid and (2) two equal pyramids similar to the
original one, and that, if this process be continued with the two pyramids,
then with the four resulting pyramids, and so on, and if, further, another
pyramid of the same height as the original one be similarly divided, the sub-
division being made the same number of times, the sum of all the prisms in
one pyramid is to the sum of all the prisms in the other as the base of the
first is to the base of the second.

We can now prove in the manner of X1 2 that the volumes of the
pyramids themselves are as the bases.

Let us call the pyramids 2, 7 and their respective bases B, 5.

If P:P+B:F,

suppose that B:B=P: W
I. Let Wbe</P.
Divide £’ into two prisms and two pyramids, subdivide the latter similarly,

and so on, until the sum of the gyramids remaining is less than the difference
between P’ and W [X. 1], so that

P’ > (prisms in P')> W.
Then divide P similarly, the same number of times.
Now (prisms in P): (prisms in P)=8: 58 [x1n. 4]
=/P: W, by hypothesis,

(prisms in P) : P=(prisms in P): W,
But (prisms in P) < P;
therefore (prisms in P') < W.
But, by construction,  (prisms in 2)> "
Hence W cannot be less than 7',

and, alternately,
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II. Suppose, if possible, that W'> 7,
Then, inversely, B:B=W:PA
=PV
where V is some solid less than P. [Cf. x11. 2, Lemma, and note.]
But this can be proved impossible exactly as in Part I.
Therefore W is neither less nor greater than /7,
so that B:B=P:P,

Legendre, followed by the American editors already mentioned, and by
others, approaches the subject by a different route, proving the following
propositions.

1. If a pyramid be cut by a plane parallel to the base, (a) the lateral edges

and the height will be cut in the same proportion, () the section by the plane
will be a polygon similar to the base.

(a) Since a lateral face V4B of the pyramid V(4 BCDE) is cut by two

parallel planes in 45, a4,
AB | ab;

Similarly BC|| ¢, and so on.

Therefore VA: Va=VB:Vb=VC: Ve=....

And, if VO the height be cut in O, o,

BO| bo; and each of the above ratios is equal to VO : Vo.
(4) Since BA||ba, and BC|| 4,
L ABC= L abe. [x1. 10]

Similarly for all the other angles of thé polygons, which are therefore
equiangular.

Also, by similar triangles,

VA :Va=AB:ab,

and so on.

Therefore, by the ratios above,

AB:ab=BC:bc=....
Therefore the polygons are similar.

2. If two pyramids of the same height be cut by planes which are at the
same perpendicular distance from the vertices, the sections are as the respective
bases.
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For, -if we place the pyramids so that the vertices coincide and the bases
are in one plane, the planes of the sections will coincide.

If, e.g., the base of the second pyramid be X¥Z and the section xys, we
shall have, by the argument of the last proposition,

VX: Ve=VY:Vy=VZ:Vs=VO:Ve=VA:Va=...,

and X ¥Z, xyz will be similar.

Now (polygon ABCDE) : (polygon abcde) = AB* : ab?

= VA V&',
and AXYZ: Axys=XV?: x)*
=VX*: Va®
=VA*: Va*
Therefore
(polygon 4 BCDE) : (polygon abede) =0 XVZ: A xys.

As a particular case, §f the bases of the two pyramids are equivalent, the
sections are also equivalent.

3. Two triangular pyramids which have equivalent bases and equal heights
are equivalent,

Let VABC, vabc be pyramids with equivalent bases 4B C, abe, which for
gopv:nience we will suppose placed in one plane, and let 74 be the common

eight.

Then, if the pyramids are not equivalent, one must be greater than the other.

Let VABC be the greater; and let AX be the height of a prism on 48C
as base which is equal in volume to the difference of the pyramids.

Divide the height 4 7 into equal parts such that each is less than 4X, and
let each part be equal to z.

Through the points of division draw planes parallel to the bases cutting
both pyramids in the sections DEF, GHI,... and def, ghi, ....

The sections DEF, def will then be equivalent ; so will the sections GHZ,
ghi, and so on. [(2) above]

On the triangles 4B8C, DEF, GHI, ... as bases draw exterior prisms
having for edges the parts 4D, DG, GK, ... of the edge 4 V;



XIL 5] PROPOSITION 5 391

and on the triangles def; gh, ... as bases draw énferior prisms having for edges
the parts ad, dg, ... of av.

All the partial prisms will then have the same height s.

Now the sum of the exterior prisms of the pyramid VA BC is greater than
that pyramid ;
and the sum of the interior prisms in the pyramid vadc is /Zss than that
pyramid.

Consequently the difference between the sum of the first set of prisms and

the sum of the second set of prisms is greater than the difference between the
two pyramids.

Again, if we start from the bases 48C, ab, the second exterior prism
DEFG is equivalent to the fiist interior prism de¢fa, since their bases are
equivalent and they have the same height 2. [x1. 28 and note ; X1 3:]

Similarly the third exterior prism is equivalent to the second. interior
prism, and so on, until we arrive at the last of each.

Therefore the prism ABCD, the first exterior prism, is the difference
between the sums of the exterior and interior prisms respectively.

Therefore the difference between the (wo pyramids is /ss than the prism
ABCD, which should therefore be greater than the prism with base 48C
and heighl AX.

But the prism ABCD is, by hypothesis, less than the latter prism :
which is impossible.

Consequently the pyramid FVA4BC cannot be greater than the pyramid

éimilarly it may be proved that vadc cannot be greater than VA BC.
Therefore the pyramids are eguivalent.

Legendre next establishes a proposition corresponding to Eucl. x11. 7, viz.

4. Any triangular pyramid is one third of the triangular prism on the same
base and of the same height,
and from this he deduces that

Cor. The volume of a triangular pyramid is equal to a third of the product
of its base by its height.

He has previously proved that the volume of a triangular prism is equal to
the product of its base and height, since (1) the prism is half of a parallele-

piped of the same height and with a parallelogram for base which is double of

the base of the prism, and (2) this parallelepiped can be transformed into an
equivalent recfangular parallelepiped with the same height and an equivalent
base.

The theorem (4) is then extended to any pyramid in the proposition

. Any pyramid has for its measure the third part of the product of its base
and its height, from which follow

Cor. 1. Any pyramid is the third part of the prism on the same base and
of the same height.

Cor. II. Two pyramids of the same height are to one another as their
bases, and two pyramids on the same base are to one another as their heights.

The first part of the second corollary corresponds to the present
proposition as extended by the next, xi1. 6,
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ProrosiTiON 6.

Pyramids whick are of the same height and have polygonal
bases are to one another as the bases.

Let there be pyramids of the same height of which the
polygons ABCDE, FGHKL are the bases and the points
M, %f the vertices ;

I say that, as the base ABCDE is to the base FGHKL,
so is the pyramid ABCDEM to the pyramid FGHKLN.

M
B
0 L
e}
A
E F

For let AC, AD, FH, FK be joined.

Since then ABCM, ACDM are two pyramids which have
triangular bases and equal height,
they are to one another as the bases ; [x. 5]

therefore, as the base A8C is to the base ACD, so is the
pyramid 4 BCM to the pyramid ACDM.
And, componendo, as the base ABCD is to the base ACD,
so is the pyramid 4 BCDM to the pyramid ACDM. [v.18]
But also, as the base ACD is to the base ADE, so is the
pyramid ACDM to the pyramid ADEM. [x11. 5]
Therefore, ex aequali, as the base ABCD is to the base
ADE, so is the pyramid ABCDM to the pyramid ADEM.
V. 22
And again componendo, as the base ABCDE is tE) thg
base ADE, so is the pyramid ABCDEM to the pyramid
ADEM. [v. 18]

Similarly also it can be proved that, as the base FGHKL
is to the base FG/H, so is the pyramid FGHKLN to the
pyramid FGHN.,
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And, since ADEM, FGHN are two pyramids which have
triangular bases and equal height,
therefore, as the base ADF is to the base FGH, so is the
pyramid A DEM to the pyramid FGHMN. [x1r. 5]

But, as the base ADE is to the base ABCDE, so was
the pyramid ADEM to the pyramid ABCDEM.

Therefore also, ex aegualz, as the base ABCDE is to the
base FGH, so is the pyramid ABCDEM to the pyramid
FGHN. [v. 22]

But further, as the base G/ is to the base FGHKL, so
also was the pyramid FGHN to the pyramid FGHKLN.
Therefore also, ex aeqguali, as the base ABCDE is to the
base FGHKL, so is the pyramid ABCDEM to the pyramid
FGHKLN. [v. 22]
Q. E. D.

It will be seen that, in order to obtain the proportion
(base ABCDE) : A ADE = (pyramid MABCDE) : (pyramid MADE),

Euclid employs v. 18 (componendo) twice over, with an ex aeguali step [v. 22]
intervening.

We might arrive at it more concisely by using v. 24 extended to any
number of antecedents.

Thus
AABC :A ADE = (pyramid MABC) : (pyramid MADE),
AACD :5 ADE = (pyramid MACD) : (pyramid MADE),

and lastly

AADE : AADE = (pyramid MADE) : (pyramid MADE).

Therefore, adding the antecedents [v. 24], we have

(polygon ABCDE) : 5 ADE = (pyramid MABCDE) : (pyramid MADE).

Again, since the pyramids MADE, NFGH are of the same height,

AADE : A FGH = (pyramid MADE) : (pyramid NFGH).

Lastly, using the same argument for the pyramid NFGHKL as for
MABCDE, and inverting, we have

AFGH : (polygon FGHKL) = (pyramid NFGH) : (pyramid NFGHKL).
Thus from the three proportions, ex aeguals,
(polygon ABCDE): (polygon FGHKL)
= (pyramid MABCDE) : (pyramid NFGH;L).
]
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ProrosiTION 7.

Amny prism whick has a triangular base is divided into three
Pyramids equal to one another which have triangular bases.

Let there be a prism in which the triangle ABC is the
base and DEF its opposite ;
I say that the prism ABCDEF is L
divided into three pyramids equal to
one another, which have triangular
bases.
For let BD, EC, CD be joined.
Since ABED is a parallelogram,
and BD is its diameter,
therefore the triangle 48D is equal 8
to the triangle £B5D ; [r. 34)
therefore also the pyramid of which the triangle 48D is the
base and the point C the vertex is equal to the pyramid of
which the triangle DEZB is the base and the point C the
vertex. [xm. 5]
But the pyramid of which the triangle DEZ is the base
and the point C the vertex is the same with the pyramid of
which the triangle £Z2C is the base and the point D the
vertex ;
for they are contained by the same planes.
Therefore the pyramid of which the triangle 48D is the
base and the point C the vertex is also equal to the pyramid

of which the triangle £8C is the base and the point D the
vertex.

Again, since FCBE is a parallelogram,
and CE is its diameter,
the triangle CEF is equal to the triangle CBE. (1. 34]
Therefore also the pyramid of which the triangle BCE is
the base and the point 2 the vertex is equal to the pyramid
of which the triangle £CF is the base and the point D the
vertex. fxs. 5]
But the pyramid of which the triangle BCE is the base
and the point D the vertex was proved equal to the pyramid
of which the triangle 48D is the base and the point C the
vertex ;
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therefore also the pyramid of which the triangle CEF is the
base and the point D the vertex is equal to the pyramid of
which the triangle ABD is the base and the point C the
vertex ;

therefore the prism ABCDEF has been divided into three
pyramids equal to one another which have triangular bases.

And, since the pyramid of which the triangle 42D is the
base and the point g the vertex is the same with the pyramid
of which the triangle CA 2B is the base and the point D the
vertex,

for they are contained by the same planes,

while the pyramid of which the triangle 48D is the base and
the point C the vertex was proved to be a third of the prism
in which the triangle 4BC is the base and DEF its opposite,

therefore also the pyramid of which the triangle 48C is the
base and the point 2 the vertex is a third of the prism which
has the same base, the triangle ABC, and DEF as its

opposite.
Porism. From this it is manifest that any pyramid is a
third part of the prism which has the same base with it and

equal height.
Q. E. D.

If we denote by C-4B.D a pyramid with vertex C and base 4.3.D, Euclid’s
argument is easily followed thus.

The 7 ABE.D being bisected by BD,

(pyramid C-4BD) = (pyramid C-DEB) [x1. 5]
= (pyramid D-EBC).

And, the /7 EBCF being bisected by EC,

(pyramid D-EBC) = (pyramid D-ECF).

Thus (pyramid C-4.BD) = (pyramid D-EBC)= (pyramid D-ECF), and
these three pyramids make up the whole prism, so that each is one-third of the
prism.

And, since  (pyramid C-4B.D) = (pyramid D-4BC),

(pyramid D-4BC) =} (prism ABC, DEF).

ProrosiTION &.

Similar pyramids which have triangular bases ave in the
triplicale vatiw of their corvesponding sides.
Let there be similar and similarly situated pyramids of
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which the triangles 4 BC, DEF, are the bases and the points
G, H the vertices ;

I say that the pyramid 4ABCG has to the pyramid DEFH
the ratio triplicate of that which ZC has to ££.

For let the parallelepipedal solids BGML, EHQP be
completed.

Now, since the pyramid 4BCG is similar to the pyramid
DEFH,

therefore the angle 4BC is equal to the angle DEF,
the angle GBC to the angle HEF,
and the angle 4BGC to the angle DEH ;
and, as 4B is to DE, sois BC to EF, and BG to EH.
And since, as AB is to DE, sois BC to EF,
and the sides are proportional about equal angles,
therefore the parallelogram BA/ is similar to the parallelo-
gram EQ.
For the same reason
BN is also similar to £R, and BK to E£O;

therefore the three parallelograms M5B, BK, BN are similar
to the three £Q, EO, ER.

But the three parallelograms M8, BK, BN are equal and
similar to their three opposites,
and the three £Q, £0, ER are equal and similar to their
three opposites. [x1. 24]
Therefore the solids BGML, EHQP are contained by
similar planes equal in multitude.
Therefore the solid BGML is similar to the solid £HQP.
But similar parallelepipedal solids are in the triplicate ratio
of their corresponding sides. [x1. 33]
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Therefore the solid BGML has to the solid £ZHQP the
ratio triplicate of that which the corresponding side BC has to
the corresponding side £7.

But, as the solid BGML is to the solid EHQP, so is the
pyramid ABCG to the pyramid DEFH,

inasmuch as the pyramid is a sixth part of the solid, because
the prism which is half of the parallelepipedal solid [x1. 28] is
also triple of the pyramid. [xm. 7]

Therefore the pyramid ABCG also has to the pyramid
DEFH the ratio triplicate of that which £C has to £,

Q. E. D.

Porism. From this it is manifest that similar pyramids
which have polygonal bases are also to one another in the
triplicate ratio of their corresponding sides.

For, if they are divided into the pyramids contained in
them which have triangular bases, by virtue of the fact that
the similar polygons forming their bases are also divided into
similar triangles equal in multitude and corresponding to the
wholes [v1. 20},
then, as the one pyramid which has a triangular base in the
one complete pyramid is to the one pyramid which has a
triangular base in the other complete pyramid, so also will all
the pyramids which have triangular bases contained in the
one pyramid be to all the pyramids which have triangular
bases contained in the other pyramid [v. 12), that is, the
pyramid itself which has a polygonal base to the pyramid
which has a polygonal base.

But the pyramid which has a triangular base is to the
pyramid which has a triangular base in &e triplicate ratio of
the corresponding sides ;

therefore also the pyramid which has a polygonal base has to
the pyramid which has a similar base the ratio triplicate of
that which the side has to the side.

It is at once proved that, the pyramids being similar, the parallelepipeds
constructed as shown in the figure are also similar.

Consequently, as these latter are in the triplicate ratio of their corre-
sponding sides [x1 33), so are the pyramids which are their sixth parts
respectively (being one third of the respective prisms on the same bases, i.e.
of the halves of the respective parallelepipeds, x1. 28).

As the Porism is not used where Euclid might have been expected io use
it (see note on X1 12, p. 416), there is some reason to doubt its genuineness.
P only has it in the margin, though in the first hand.
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ProrosiTiON 9.

In equal pyramids whick have triangular bases the bases
are reciprocally proportional to the heights,; and those pyramids
tn which the bases are reciprocally proportional lo the heights
are equal.

For let there be equal pyramids which have the triangular
bases ABC, DEF and vertices the points G, H;

I say that in the pyramids ABCG, DEFH the bases are
reciprocally proportional to the heights, that is, as the base
ABC is to the base DEF, so is the height of the pyramid
DEFH to the height of the pyramid 42CG.

N
N
7\

For let the parallelepipedal solids BGML, EHQP be

completed.

ow, since the pyramid ABCG is equal to the pyramid
DEFH,
and the solid BGML is six times the pyramid A BCG.
and the solid £ZAH QP six times the pyramid DEFH,
therefore the solid BGML is equal to the solid £HQP.

But in equal parallelepipedal solids the bases are recipro-
cally proportional to the heights ; [x1. 34]
therefore, as the base B is to the base £Q, so is the height
of the solid £HQP to the height of the solid BGML.

But, as the base BM is to £Q, so is the triangle 42C to
the triangle DEF, [r. 34)

Therefore also, as the triangle 4BC is to the triangle
DEF; so is the height of the solid ZHQP to the height of
the solid BGML. [v. 11)
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But the height of the solid £AQP is the same with the
height of the pyramid DEFH,
and the height of the solid BGML is the same with the
height of the pyramid ABCG,
therefore, as the base ABC is to the base DEF, so is the
height of the pyramid DEFH to the height of the pyramid
ABCG.

Therefore in the pyramids ABCG, DEFH the bases are
reciprocally proportional to the heights.

Next, in the pyramids ABCG, DEFH let the bases be
reciprocally proportional to the heights ;
that is, as the base A5C is to the base DEF, so let the height
of the pyramid DEFH be to the height of the pyramid
ABCG;

I say that the pyramid ABCG is equal to the pyramid
DEFH.

For, with the same construction,
since, as the base ABC is to the base DEF, so is the height
of the pyramid DEFH to the height of the pyramid 4BCG,
while, as the base ABC is to the base DEF, so is the
parallelogram BM to the parallelogram £Q,
therefore also, as the parallelogram B/ is to the parallelogram
EQ, so is the height of the pyramid DEFH to the height of
the pyramid 4BCG. [v. 11]

But the height of the pyramid DEFH is the same with
the height of the parallelepiped £/ QP,
and the height of the pyramid ABCG is the same with the
height of the parallelepiped BGML ;
therefore, as the base B/ is to the base £Q, so is the height
of the parallelepiped £/ QP to the height of the parallelepi-
ped BGML.

But those parallelepipedal solids in which the bases are
reciprocally proportional to the heights are equal ; [x1. 34]
therefore the parallelepipedal solid BGAML is equal to the
parallelepipedal solid £AQP.

And the pyramid ABCG is a sixth part of BGML, and
the pyramid DEFH a sixth part of the parallelepiped
EHQP ;
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therefore the pyramid 48CG is equal to the pyramid DEFH.
Therefore etc
Q. E. D.

The volumes of the pyramids are respectively one sixth part of the volumes
of the parallelepipeds described, as in the figure, on double the bases and with
the same heights as the pyramids.

I. Thus the parallelepipeds are equal if the pyramids are equal.
And, the parallelepipeds being equal, their bases are reciprocally propor-
tional to their heights ; XI. 34]

hence the bases of the equal pyramids (which are the halves of the bases of
the parallelepipeds) are proportional to their heights,

IL. If the bases of the pyramids are reciprocally proportional to their
heights, so are the bases of the parallelepipeds to their heights (since the bases
of the parallelepipeds are double of the bases of the pyramids respectively).

Consequently the parallelepipeds are equal. [x1. 34]
Therefore their sixth parts, the pyramids, are also equal.

ProrosiTioN 10.

Any cone is a third part of the cylinder which has the same
base with it and equal height.

For let a cone have the same base, namely the circle
ABCD, with a cylinder and equal
height ; A
I say that the cone is a third part E H
of the cylinder, that is, that the
cylinder is triple of the cone.

For if the cylinder is not triple
of the cone, the cylinder will be
either greater than triple or less
than triple of the cone.

First let it be greater than B
triple,
and let the square ABCD be
inscribed in the circle ABCD ; [tv. 6]

then the square 4BCD is greater than the half of the circle
ABCD.

From the square 4BCD let there be set up a prism of
2qual height with the cylinder.

Then the prism so set up is greater than the half of the
cylinder,
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inasmuch as, if we also circumscribe a square about the circle
ARBCD|w. 7], the square inscribed in the circle ABCD is half
of that circumscribed about it,

and the solids set up from them are parallelepipedal prisms of
equal height,
while parallelepipedal solids which are of the same height are
to one another as their bases; [x1. 32]
therefore also the prism set up on the square ABCD is half
of the prism set up from the square circumscribed about the
circle ABCD ; [cf. x1. 28, or x11. 6 and 7, Por.]
and the cylinder is less than the prism set up from the square
circumscribed about the circle 45CD;
therefore the prism set up from the square 4BCD and of
equal height with the cylinder is greater than the half of the
cylinder.

Let the circumferences A5, BC, CD, DA be bisected at
the points £, 7, G, H,
and let AE, EB, BF, FC, CG, GD, DH, HA be joined ;
then each of the triangles 4 £B, BFC, CGD, DHA is greater

than the half of that segment of the circle AB8CD which is
about it, as we proved before. [xu. 2]

On each of the triangles AE£B, BFC, CGD, DHA let
prisms be set up of equal height with the cylinder ;

then each of the prisms so set up is greater than the half part
of that segment of the cylinder which is about it,

inasmuch as, if we draw through the points £, 7, G, &
parallels to AB, BC, CD, DA, complete the parallelograms
on AB, BC, CD, DA, and set up from them parallelepipedal
solids of equal height with the cylinder, the prisms on the
triangles 4 £B, BFC, CGD, DHA are halves of the several
solids set up ;

and the segments of the cylinder are less than the parallelepi-
pedal solids set up;

hence also the prisms on the triangles 4 £B, BFC, CGD,
DHA are greater than the half of the segments of the
cylinder about them.

Thus, bisecting the circumferences that are left, joining
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straight lines, setting up on each of the triangles prisms of
equa? height with the cylinder,

and doing this continually,
we shall leave some segments of the cylinder which will be

less than the excess by which the cylinder exceeds the triple
of the cone. [x. 1]

Let such segments be left, and let them be AE, EB, BF,
FC, CG, GD, DH, HA ;

therefore the remainder, the prism of which the polygon
AEBFCGDH is the base and the height is the same as that
of the cylinder, is greater than triple of the cone.

But the prism of which the polygon 4 £BFCGDH is the
base and the height the same as that of the cylinder is triple
of the pyramid of which the polygon AEBFCGDH is the
base and the vertex is the same as that of the cone ; [x. 7, Por.]

therefore also the pyramid of which the polygon A EBFCGDH
is the base and the vertex is the same as that of the cone is
greater than the cone which has the circle 4 BCD as base.

But it is also less, for it is enclosed by it:
which is impossible,
Therefore the cylinder is not greater than triple of the cone.

I say next that neither is the cylinder less than triple of
the cone,

For, if possible, let the cylinder be less than triple of the
cone,

therefore, inversely, the cone is greater than a third part of
the cylinder.

Let the square ABCD be inscribed in the circle ABCD ;

therefore the square ABCD is greater than the half of the
circle 4 BCD.

Now let there be set up from the square 4 BCD a pyramid
having the same vertex with the cone;

therefore the pyramid so set up is greater than the half part
of the cone,

seeing that, as we proved before, if we circumscribe a square
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about the circle, the square 4B8CD will be half of the square
circumscribed about the circle,

and if we set up from the squares parallelepipedal solids of
equal height with the cone, which are also called prisms, the
solid set up from the square ABCD will be half of that set up
from the square circumscribed about the circle;

for they are to one another as their bases. [x1. 32]

Hence also the thirds of them are in that ratio;
therefore also the pyramid of which the square 4B8CD is the
base is half of the pyramid set up from the square circum-
scribed about the circle.

And the pyramid set up from the square about the circle
is greater than the cone,
for it encloses it.

Therefore the pyramid of which the square ABCD is the
base and the vertex is the same with that of the cone is
greater than the half of the cone.

Let the circumferences A B, BC, CD, DA be bisected at
the points £, ¥, G, H,
and let AE, £B, BF, FC, CG, GD, DH, HA be joined ;
therefore also each of the triangles 4 £B, BFC, CGD, DHA
is greater than the half part of that segment of the circle
ABCD which is about it.

Now, on each of the triangles 4 £B, BFC, CGD, DHA
let pyramids be set up which have the same vertex as the
cone ;
therefore also each of the pyramids so set up is, in the same
manner, greater than the half part of that segment of the cone
which is about it,

Thus, by bisecting the circumferences that are left, joining
straight lines, setting up on each of the triangles a pyramid
which has the same vertex as the cone,
and doing this continually,
we shzll leave some segments of the cone which will be less
than the excess by which the cone exceeds the third part of
the cylinder. [x. 1]

Let such be left, and let them be the segments on A Z,
EB, BF, FC, CG, GD, DH, HA ;
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therefore the remainder, the gyramid of which the polygon
AEBFCGDH is the base and the vertex the same with that
of the cone, is greater than a third part of the cylinder.

But the pyramid of which the polygon AEBFCGDH is
the base and the vertex the same with that of the cone is a
third part of the prism of which the polygon AEBFCGDH
is the base and the height is the same with that of the
cylinder ;

therefore the prism of which the polygon AEBFCGDH is
the base and the height is the same with that of the cylinder

is greater than the cylinder of which the circle ABCD is the
base.

But it is also less, for it is enclosed by it:
which is impossible.
Therefore the cylinder is not less than triple of the cone.

But it was proved that neither is it greater than triple;
therefore the cylinder is triple of the cone;
hence the cone is a third part of the cylinder.
Therefore etc.
Q. E. D.

We observe the use in this proposition of the term * ran.llel
prism,” which recalls Heron’s “ parallelogrammic ” or *parallel-sided prism.”

The course of the proof is exactl same as in XiI. 2, except that an
arithmetical fraction takes the place of a ratio which, being incommensurable,
could only be expressed as a ratio. Consequently we do not need proportions
in this proposition, as we did in Xi1. 2, and shall again in xi. 11, etc.

Euclid exAausts the cylinder and cone mpecmrely by setting up prisms
and pyramids of the same height on the successive regular polygons inscribed
in the circle which is the common base, viz. the square, the regular polygon
of 8 sides, that of 16 sides, etc.

If AB be the side of one polygon, we obtain two sides of the next by
bisecting the arc 4 C2A and joining AC, CB, Draw the
tangent DE at C and complete the parallelogram
ABED. O o

Now suppose a prism erected on the polygon of
which 45 is a side, and of the same height as that of
the cylinder.

To obtain the prism of the same height on the next
polygon we add all the triangular prisms of the same
height on the bases 4 CJ5 and the rest.

Now the prism on 4C2A is half the prism of the
same height on the [7 ABED as base.

[ef. x1. 28]
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And the prism on 7 ABED includes, and is greater than, the portion of
the cylinder standing on the segment 4 C2 of the circle.

The same thing is true in regard to the other sides of the polygon of
which 47 is one side.

Thus the process begins with a prism on the square inscribed in the circle,
which is more than half the cylinder, the next prism (with eight lateral faces)
takes away more than half the remainder, and so on;
hence [x. 1], if we proceed far enough, we shall ultimately arrive at a prism
leaving over portions of the cylinder together less than any assigned volume.

The construction of pyramids on the successive polygons exhausts the cone
in exactly the same way.

Now, if the cone is not equal to one-third of the cylinder, it must be either
greater or less.

I. Suppose, if possible, that, V; O being their volumes respectively,
O>3V.

Construct successive inscribed polygons in the bases and prisms on them
until we arrive at a prism 2 leaving over portions of the cylinder together less
than (O — 3¥), i.e. such that

0> P> 3V

But 2 is triple of the pyramid on the same base and of the same height ;
and this pyramid is included by, and is therefore less than, V;

therefore P<3V.
But, by construction, P>3V:
which is impossible.
Therefore O3V
II. Suppose, if possible, that O < 3 /.
Therefore V=1o0.

Construct successive pyramids in the cone in the manner described until
we arrive at a pyramid IT leaving over portions of the cone together less than
(¥ - 30), i.e. such that

V>I>30.

Now 11 is one-third of the prism on the same base and of the same height;
and this prism is included by, and is therefore less than, the cylinder;
therefore n<3}o.

But, by construction, n>30:
which is impossible.

Therefore O is neither greater nor less than 3 /] so that

o=3V.

It will be observed that here, as in x11. 2, Euclid always ex/austs the solid
by (as it were) building up to it from inside. Hence the solid to be exhausted
must, with him, be supposed greafer than the solid to which it is to be proved
equal ; and this is the reason why, in the second part, the initial supposition
is turned round. .

In this case too Euclid might have approximated to the cone and cylinder
by circumscribing successive pyramids and prisms in the way shown, after
Archimedes, in the note on xII. 2.
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ProrosiTION 11.

Cones and cylinders which are of the same height are to
one another as their bases.

Let there be cones and cylinders of the same height,

let the circles ABCD, EFGH be their bases, KL, MN their
axes and AC, EG the diameters of their bases ;

I say that, as the circle ABCD is to the circle £FGH, so is
the cone AL to the cone £N.
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For, if not, then, as the circle ABCD is to the circle
EFGH, so will the cone AL be either to some solid less
than the cone £V or to a greater.

First, let it be in that ratio to a less solid O, and let the
solid X be equal to that by which the solid O is less than the
cone £N;
therefore the cone £/ is equal to the solids O, X.

Let the square £FGH be inscribed in the circle £EFGH ;
therefore the square is greater than the half of the circle.

Let there be set up from the square £FGH a pyramid of
equal height with the cone;
therefore the pyramid so set up is greater than the half of the
cone,

inasmuch as, if we circumscribe a square about the circle, and
set up from it a pyramid of equal height with the cone, the
inscribed pyramid is half of the circumscribed pyramid,

for they are to one another as their bases, [xm. 6]
while the cone is less than the circumscribed pyramid.
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Let the circumferences £F, FG, GH, HE be bisected at
the points P, O, R, S,
and let 7P, PE, EQ, QF, FR, RG, GS, SH be joined.

Therefore each of the triangles #PE, EQF, FRG, GSH
is greater than the half of that segment of the circle which is
about it.

On each of the triangles A PE, EQF, FRG, GSH let
there be set up a pyramid of equal height with the cone ;
therefore, also, each of the pyramids so set up is greater than
the half of that segment of the cone which is about it.

Thus, bisecting the circumferences which are left, joining
straight lines, setting up on each of the triangles pyramids of
equal height with the cone,
and doing this continually,
we shall leave some segments of the cone which will be less
than the solid X. [x. 1]

Let such be left, and let them be the segments on A2,
PE. EQ, QF, FR, RG, GS, SH ;
therefore the remainder, the pyramid of which the polygon
HPEQFRGS is the base and the height the same with that
of the cone, is greater than the solid O.

Let there also be inscribed in the circle 4ABCD the
polygon DT AUBVCW similar and similarly situated to the
polygon ZPEQFRGS,
and on it let a pyramid be set up of equal height with the cone
AL.

Since then, as the square on 4C is to the square on £G, so
is the polygon D7 AUBVCW to the polygon HPEQFJ[?GSj

XII. 1
while, as the square on 4C is to the square on £G, so is the
circle ABCD to the circle £FGH, [xn. 2]
therefore also, as the circle ABCD is to the circle £EFGH, so
is the polygon DT AUBVCW to the polygon HPEQFRGS.

But, as the circle ABCD is to the circle £FGH, so is the
cone AL to the solid O,
and, as the polygon DT7TAUBVCW is to the polygon
HPEQFRGS, so is the pyramid of which the polygon
DTAUBVCW is the base and the point L the vertex to the
pyramid of which the polygon ZPEQFRGS is the base and
the point NV the vertex. [xu1. 6]
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Therefore also, as the cone AL is to the solid O, so is the
pyramid of which the polygon D74 UBVCW is the base and
the point L the vertex to the Eyramid of which the polygon

HPEQFRGS is the base and the point /V the vertex; [v. 11]
therefore, alternately, as the cone AL is to the pyramid in it,
so is the solid O to the pyramid in the cone ZN. [v. 16]

But the cone AL is greater than the pyramid in it ;
therefore the solid O is also greater than the pyramid in the
cone EN.

But it is also less:
which is absurd.

Therefore the cone 4L is not to any solid less than the
cone £ as the circle ABCD is to the circle £EFGH.

Similarly we can prove that neither is the cone £V to
any solid less than the cone 4L as the circle ZFGH is to the
circle ABCD.

I say next that neither is the cone 4L to any solid greater
than the cone EN as the circle ABCD is to the circle
EFGH.

For, if possible, let it be in that ratio to a greater solid O;
therefore, inversely, as the circle £FGH is to the circle
ABCD, so is the solid O to the cone 4AL.

But, as the solid O is to the cone AL, so is the cone EN
to some solid less than the cone 4L ;
therefore also, as the circle ZFGH is to the circle ABCD, so
is the cone £/ to some solid less than the cone AL :
which was proved impossible.

Therefore the cone 4L is not to any solid greater than
the cone £V as the circle ABCD is to the circle EFGH.

l But it was proved that neither is it in this ratio to a less
solid ;
therefore, as the circle 48CD is to the circle EFGH, so is
the cone AL to the cone EN.

But, as the cone is to the cone, so is the cylinder to the
cylinder,
for each is triple of each ; [x11. 10)
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Therefore also, as the circle ABCD is to the circle
EFGH, so are the cylinders on them which are of equal
height.

Therefore etc.

Q. E. D.

We need not again repeat the preliminary construction of successive
pyramids and prisms exhausting the cones and cylinders.
Let Z Z’' be the volumes of the two cones, B, B8 their respective bases.

If B:B*Z:2,
then must B:B=Z:0,
where O is either less or greater than Z'.

I. Suppose, if possible, that O is /ss than Z'.

Inscribe in Z’ a pyramid (I1') leaving over portions of it together less than
(Z' - 0), i.e. such that
Z'>'> 0.
Inscribe in Z a pyramid II on a polygon inscribed in the circular base of

Z similar to the polygon which is the base of IT".
Now, if 4, ' be the diameters of the bases,

B:B=d*:d" [x1 2]
= (polygon in B): (polygon in §) [xm. 1]
=1:1I. [xu. 6]
Therefore Z:0=11:11',
and, alternately, Z:M=0:1.
But Z> 11, since it includes it ;
therefore o=1.
But, by construction, o<m':
which is impossible.
Therefore 04 Z
II. Suppose, if possible, that
B:B=2Z:0,
where O is greater than Z'.
Therefore B:B=0:2,
where O’ is some solid less than Z
That is, B:B=2:0,
where 0 < Z.

This is proved impossible exactly in the same way as the assumption in
Part I. was proved impossible.

Therefore Z has not either to a less solid than Z’ or to a greater solid than
Z' the ratioof B to 8';

therefore B:f=2:2.
The same is true of the cylinders which are equal to 3Z, 3£’ respectively.
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PRrOPOSITION 12.

Similar cones and cylinders ave to ome another in the
triplicate ratio of the diameters in their bases.

Let there be similar cones and cylinders,

let the circles ABCD, EFGH be their bases, B, FH the
diameters of the bases, and KL, M /N the axes of the cones
and cylinders ;

[ say that the cone of which the circle 4BCD is the base and
the point L the vertex has to the cone of which the circle
EFGH is the base and the point NV the vertex the ratio
triplicate of that which B0 has to FH.

L
A
(o]
K
u
[=

For, if the cone ABCDL has not to the cone £EFGHN
the ratio triplicate of that which B has to FH,

the cone ABCDL will have that triplicate ratio either to
some solid less than the cone EFGHN or to a greater.
First, let it have that triplicate ratio to a less solid O.

Let the square £FGH be inscribed in the circle EFGH ;
[1v. 6]

therefore the square £FG/H is greater than the half of the
circle £EFGH.

Now let there be set up on the square £/GH a pyramid
having the same vertex with the cone ;
therefore the pyramid so set up is greater than the half part
of the cone.
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Let the circumferences £F, FG, GH, HE be bisected at
the points P, Q, R, S,
and let £P, PF, FQ, QG, GR, RH, HS, SE be joined.

Therefore each of the triangles £PF, F JG, GRH, HSE
is also greater than the half part of that segment of the circle
EFGH which is about it.

Now on each of the triangles £PF, FQG, GRH, HSE
let a pyramid be set up having the same vertex with the cone;
therefore each of the pyramids so set up is also greater than
the half part of that segment of the cone which is about it.

Thus, bisecting the circumferences so left, joining straight
lines, setting up on each of the triangles pyramids having the
same vertex with the cone,
and doing this continually,

we shall leave some segments of the cone which will be less
than the excess by which the cone £EFGHN exceeds the
solid O. [x. 1]
Let such be left, and let them be the segmenis on £P2,
PF, FQ, QG, GR, RH, HS, SE;
therefore the remainder, the pyramid of which the polygon
EPFQGRHS is the base and the point V the vertex, is
greater than the solid O.

Let there be also inscribed in the circle 4BCD the
polygon A Z’7BUCV.D W similar and similarly situated to the
polygon EPFQGRHS,
and let there be set up on the polygon A7BUCVDW a
pyramid having the same vertex with the cone;
of the triangles containing the pyramid of which the polygon
ATBUCVDW is the base an? he point L the vertex let
LABT be one,
and of the triangles containing the pyramid of which the
polygon £ZPFQGRHS is the base and the point V the vertex
let NFP be one;

and let X7, MP be joined.

Now, since the cone ABCDL is similar to the cone
EFGHN,

therefore, as 2D is to /#H,so is the axis XL to th: axis MN.,
[x1. Def. 24]
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But, as BD is to FH, so is BK to FM ;
therefore also, as BK is to M, so is KL to MN.

And, alternately, as BK is to KL, so is FM to MN.
[v. 16]
And the sides are proportional about equal angles, namely
the angles BKL, FMN ;

therefore the triangle BKL is similar to the triangle M N.
[vi. 6]
Again, since, as BK is to KT, so is FM to MP,
and they are about equal angles, namely the angles BK7,
FMP,

inasmuch as, whatever part the angle BK7 is of the four
right angles at the centre X, the same part also is the angle
FMP of the four right angles at the centre A/;

since then the sides are proportional about equal angles,
therefore the triangle 2K 7 is similar to the triangle FMP.
[v1. 6]
Again, since it was proved that, as BKX is to KL, so is FM
to MN, '
while BK is equal to X7, and FM to PM,
therefore, as 7K is to XL, so is PM to MN ;

and the sides are proportional about equal angles, namely
the angles 7KL, PMN, for they are right;

therefore the triangle ZX'7 is similar to the triangle N/ P.
[v1. 6]

And since, owing to the similarity of the triangles LKA,
NMF,

as LB is to BK, sois NFto FM,

and, owing to the similarity of the triangles BX7, FMP,

as KB isto BT, sois MF to FP,

therefore, ex aequali, as LB is to BT, so is NF to FP. [v. 22]

Again since, owing to the similarity of the triangles L 7K,
NPM,
as L7 isto 7K, so is NP to PM,
and, owing to the similarity of the triangles 7X'B, PMF,
as KT isto 7B, so is MP to PF;
therefore, ex aeguali, as LT is to 7B, so is NP to PF. [v. 22]
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But it was also proved that, as 75 is to BL, so is PF
to FN,

Therefore, ex aequali, as TL is to LB, so is PN to NF.

V. 22

Therefore in the triangles LZ7B, NPF the sidesE zméI
proportional ;
therefore the triangles L 78, NPF are equiangular;  [v1. 5]
hence they are also similar, [vi. Def. 1]

Therefore the pyramid of which the triangle X7 is the
base and the point Z the vertex is also similar to the pyramid
of which the triangle FMP is the base and the point AV the

vertex,

for they are contained by similar planes equal in multitude.
[x1. Def. 9]

But similar pyramids which have triangular bases are to

one another in the triplicate ratio of their corresponding sides.
[xm. 8]

Therefore the pyramid ZX 7L has to the pyramid FMPN
the ratio triplicate of that which BX has to F/M.

Similarly, by joining straight lines from A, W, D, V,C, U
to X, and from £, S, 4, R, G, Q to M, and setting up on
each of the triangles pyramids which have the same vertex
with the cones,

we can prove that each of the similarly arranged pyramids
will also have to each similarly arranged pyramid the ratio
triplicate of that which the corresponding side BX has to the
corresponding side # M/, that is, which 2D has to FH.

And, as one of the antecedents is to one of the conse-
quents, so are all the antecedents to all the consequents;

[v. 12]
therefore also, as the pyramid BKXZ7L is to the pyramid
FMPN, so is the whole pyramid of which the polygon
ATBUCVDW is the base and the point L the vertex to the
whole pyramid of which the polygon ZPFQGRHS is the
base and the point &V the vertex;

hence also the pyramid of which 4 7BUCVDW is the base
and the point L the vertex has to the pyramid of which the
polygon EPFQGRHS is the base and the point NV the
vertex the ratio triplicate of that which 8D has to FH.

But, by hypothesis, the cone of which the circle A8CD
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is the base and the point L the vertex has also to the solid
O the ratio triplicate of that which BD has to FH;

therefore, as the cone of which the circle 4BCD is the base
and the point L the vertex is to the solid O, so is the pyramid
of which the polygon 4 7BUCVD W is the base and L the
vertex to the pyramid of which the polygon ZPFQGRHS is
the base and the point V the vertex;

therefore, alternately, as the cone of which the circle ABCD
is the base and L the vertex is to the pyramid contained in
it of which the polygon A7BUCVDW is the base and L
the vertex, so is the solid O to the pyramid of which the
polygon EPFQGRHS is the base and NV the vertex. [v. 16]

But the said cone is greater than the pyramid in it;
for it encloses it.

Therefore the solid O is also greater than the pyramid of
which the polygon EPFQGRHS is the base and N the
vertex.

But it is also less :
which is impossible.

Therefore the cone of which the circle ABCD is the base
and L the vertex has not to any solid less than the cone of

which the circle £FGH is the base and the point NV the
vertex the ratio triplicate of that which B0 has to F/A:

Similarly we can prove that neither has the cone EFGHN
to any solid less than the cone ABCLDL the ratio triplicate
of that which #/A has to BD.

I say next that neither has the cone ABCDL to any
solid greater than the cone EFGHN the ratio triplicate of
that which BD has to FH.

For, if possible, let it have that ratio to a greater solid O.

Therefore, inversely, the solid O has to the cone ABCDL
the ratio triplicate of that which #/ has to BD.

But, as the solid O is to the cone ABCDL, so is the
cone EFGHN to some solid less than the cone A BCDL.

Therefore the cone EFGHN also has to some solid less
than the cone ABCDL the ratio triplicate of that which F/A
has to BD:

which was proved impossible.
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Therefore the cone A BCDL has not to any solid greater
than the cone £FGHN the ratio triplicate of that which 2D
has to FH.

But it was proved that neither has it this ratio to a less
solid than the cone EFGHN.

Therefore the cone 4BCDL has to the cone EFGHN
the ratio triplicate of that which 2D has to FH.

But, as the cone is to the cone, so is the cylinder to the
cylinder,
for the cylinder which is on the same base as the cone and
of equal height with it is triple of the cone; [xi. 10]

therefore the cylinder also has to the cylinder the ratio
triplicate of that which BD has to FA.
Therefore etc.
Q. E. D.

The method of proof is precisely that of the previous proposition. The
only addition is caused by the necessity of proving that, if similar equilateral
polygons be inscribed in the bases of two similar cones, and pyramids be
erected on them with the same vertices as those of the cones, the pyramids
(are similar and) are to one another in the triplicate ratio of corresponding

es.

Let KL, MN be the axes of the cones, Z, V the vertices, and let BT, 7P
be sides of similar polygons inscribed in the bases. Join BK, TK, BL, TLZ,
PM, FM, PN, FN.

W

Now BKL, FMN are right-angled triangles, and, since the cones are

similar,
BK :KL=FM: MN. [x1. Def. 24]
Therefore (1) ts BKL, FMN are similar. [v 6]
Similarly (2) As TKL, PMN are similar.

Next, in As BKT, FMP, the angles BXT, FMP are equal, since each is
the same fraction of four right angles ; and the sides about the equal angles are
proportional ;
therefore (3) As BKT, FMP are similar,
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Again, since from the similar As BXZ, FMN, and the similar As BXT,

FMP respectively,
SN LB:BK=NF:FM,
BK:BT=MF: FP,
ex aequali, LB:BT=NF:FP,
Similarly LT:TB=NP:PF.

Inverting the latter ratio and compounding it with the preceding one, we
have, ex aeguali,

LB:LT=NF:NP.

Thus in As LTB, NPF the sides are proportional in pairs ;
therefore (4) As LTB, NPF are similar,

Thus the partial pyramids Z-BK7, N-FMP are similar.

In exactly the same way it is proved that all the other partial pyramids are
similar,

Now

(pyramid Z-BKT) : (pyramid N-FMP) = ratio triplicate of (BK: FM).

The other partial pyramids are to one another in the same triplicate ratio.

The sum of the antecedents is therefore to the sum of the consequents in
the same triplicate ratio,

i.e. (pyramid Z-ATBU...) : (pyramid N-EPFQ...)
= ratio triplicate of ratio (8K : FM)
= ratio triplicate of ratio (8D : FH ).

[The fact that Euclid makes this transition from the partial pyramids to
the whole pyramids in the body of this proposition seems to me to suggest
grave doubts as to the genuineness of the Porism to xi1. 8, which contains a
similar but rather more general extension from the case of triangular pyramids
to pyramids with polygonal bases. Were that Porism genuine, Euclid would
have been more likely to refer to it than to repeat here the same arguments
which it contains.]

Now we are in a position to apply the method of exhaustion.

If X, X' be the volumes of the cones, 4, ' the diameters of their bases, and if

(ratio triplicate of @ : d') + X : X',
then must (ratio triplicate of :d")= X : O,
where O is either less or greater than X".

I. Suppose that O is Zess than X',

Construct in the way described a pyramid (IT') in X" leaving over portions
of X’ together less than (X' — 0), so that X'>1I'> O,
and construct in X a pyramid (Il), with the same vertex as X has, on a
polygon inscribed in its base similar to the base of Il".

Then, by what has just been proved,

II : II' = (ratio triplicate of 4:4")
= X : O, by hypothesis,

and, alternately, n:xX=m:0.

But X includes, and is therefore greater than, I ;
therefore o=1.

But, by construction, O<I':

which is impossible. .
Therefore O cannot be less than X",
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II. Suppose, if possible, that
(ratio triplicate of 4:d") = X: O,
where O is greater than X';
then (ratio triplicate of :d")=Z: X',
or, inversely, (ratio triplicate of &' : d) = X' : Z,
where Z is some solid less than X.

This is proved impossible by the exact method of Part I
Hence O cannot be either greater or less than X’,

and X : X' = (ratio triplicate of ratio 4: 4").

ProrosiTiON 13.

If a cylinder be cut by a plane whick is parallel to its
opposite planes, then, as the cylinder is to the cylinder, so will
the axis be to the axis.

For let the cylinder 40 be cut by the plane G/ which
is parallel to the opposite planes 48, CD,

and let the plane G/ meet the axis at the point X;

I say that, as the cylinder BG is to the cylinder GD, so is
the axis £K to the axis K/.

N ﬁﬂh@
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For let the axis £F be produced in both directions to the
points L, M,
and let there be set out any number whatever of axes £V, N.L
equal to the axis £K,
and any number whatever 70, OM equal to FK;

and let the cylinder P on the axis LM be conceived of
which the circles PQ, "W are the bases.

Let planes be carried through the points &, O parallel to
AB, CD and to the bases of the cylinder P,

?\l}dcl)et them produce the circles RS, 77U about the centres

Then, since the axes LN, NE, EK are equal to one
another,
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therefore the cylinders QR, RB, BG are to one another as
their bases. [x. 11]
But the bases are equal ;
therefore the cylinders QR, RB, BG are also equal to one
another.
Since then the axes LN, NE, EK are equal to one
another,
and the cylinders QR, RB, BG are also equal to one another,
and the multitude of the former is equal to the multitude of
the latter,
therefore, whatever multiple the axis XL is of the axis £X,

the same multiple also will the cylinder QG be of the
cylinder GB.

For the same reason, whatever multiple the axis /X is
of the axis AF, the same multiple also is the cylinder WG
of the cylinder GD.

And, if the axis KL is equal to the axis XM, the cylinder
QG will also be equal to the cylinder G 7,
if the axis is greater than the axis, the cylinder will also be
greater than the cylinder,
and if less, less.

Thus, there being four magnitudes, the axes £K, KF
and the cylinders BG, GD,
there have been taken equimultiples of the axis £X and of
the cylinder BG, namely the axis ZX and the cylinder QG,
and equimultiples of the axis A and of the cylinder GD,
namely the axis KM and the cylinder GW;
and it has been proved that,
if the axis AL is in excess of the axis AWM, the cylinder QG
is also in excess of the cylinder G W,
if equal, equal,
and if less, less.

Therefore, as the axis £X is to the axis XF, so is the
cylinder BG to the cylinder GD. [v. Def. 5]

Q. E. D.

It is not necessary to reproduce the proof, as it follows exactly the method
of vi. 1 and x1. 25.
The fact that cylinders described about axes of equal length and having
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equal bases are equal is inferred from XIL 11 to the effect that cylinders of
equal height are to one another as their bases.

That, of two cylinders with unequal axes but equal bases, the greater is
that which has the longer axis is of course obvious either by application or by
cutting off from the cylinder with the longer axis a cylinder with an axis of the
same length as that of the other given cylinder.

ProrosiTION 14.

Cones and cylinders whick are on equal bases are to one
another as thewr heights.
For let £B, FD be cylinders on equal bases, the circles
AB, CD;
I say that, as the cylinder £28 is
to the cylinder ~D, so is the axis
GH to the axis KL.
For let the axis KL be pro-
duced to the point /V,
let LNV be made equal to the axis
GH,
and let the cylinder C/ be conceived about Z/V as axis.
Since then the cylinders £B, CM are of the same height,
they are to one another as their bases. [xm. 1]
But the bases are equal to one another :
therefore the cylinders £8, CM are also equal.
And, since the cylinder F/ has been cut by the plane
CD which is parallel to its opposite planes,
therefore, as the cylinder CA/ is to the cylinder 7D, so is the
axis LN to the axis KL. [xm. 13]
But the cylinder CM/ is equal to the cylinder £25,
and the axis LNV to the axis GH ;
therefore, as the cylinder £ is to the cylinder 7D, so is the
axis G.H to the axis KL.
But, as the cylinder £25 is to the cylinder 7D, so is the
cone ABG to the cone COK. [xu. 10]
Therefore also, as the axis GA is to the axis KL, so is
the cone ABG to the cone CDK and the cylinder £5 to the
cylinder ~D. Q. E. D.

No separate proposition corresponding to this 1s necessary in the case of
parallelepipeds, for x1. 25 really contains the property corresponding to that in
this proposition as well as the property corresponding to that in' X1L. 13.
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ProrosITION 15.

In equal cones and cylinders the bases are weciprocally
proportional to the heights; and those cones and cylinders in
whick the bases are reciprocally proportional to the heights are
equal.

Let there be equal cones and cylinders of which the circles
ABCD, EFGH are the bases;
let AC, EG be the diameters of the bases,
and KL, MN the axes, which are also the heights of the
cones or cylinders ;
let the cylinders 40, EP be completed.

I say that in the cylinders 40, £P the bases are re-
ciprocally proportional to the heights,
that is, as the base 4BCD is to the base £FGH, so is the
height M/ to the height KL.

P 8 a
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For the height LX is either equal to the height /N or
not equal.

First, let it be equal.

Now the cylinder 40 is also equal to the cylinder Z2.

But cones and cylinders which are of the same height are
to one another as their bases ; [xm. 11]

therefore the base 4BCD is also equal to the base ZFGH.

Hence also, reciprocally, as the base 4BCD is to the base
EFGH, so is the height MN to the height X'L.

Next, let the height L& not be equal to /N,
but let MV be greater ;
from the height MV let QN be cut off equal to KZ,

through the point Q let the cylinder £2 be cut by the plane
TUS parallel to the planes of the circles £FGH, RP,
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and let the cylinder £S be conceived erected from the circle
EFGH as base and with height NV Q.

Now, since the cylinder 40 is equal to the cylinder £2,

therefore, as the cylinder 40 is to the cylinder £, so is the
cylinder £P to the cylinder £.S. [v- 7]

But, as the cylinder 40 is to the cylinder £, so is the
base ABCD to the base EFGH,

for the cylinders 40, £S are of the same height ; [xm. 11]

and, as the cylinder £7 is to the cylinder £, so is the height
MN to the height QN,

for the cylinder £/P has been cut by a plane which is parallel

to its opposite planes. [x1. 13]
Therefore also, as the base ABCD is to the base EFGH,
so is the height MV to the height QN. [v. 11]

But the height QN is equal to the height XL ;

therefore, as the base 4 BCD is to the base EFGH, so is the
height M to the height XL.

Therefore in the cylinders 40, EP the bases are re-
ciprocally proportional to the heights.

Next, in the cylinders 40, £2 let the bases be reciprocally
proportional to the heights,

that is, as the base 4B8CD is to the base EFGH, so let the
height MV be to the height XL ;

I say that the cylinder 40 is equal to the cylinder £2.
For, with the same construction,

since, as the base ABCD is to the base EFGH, so is the
height M to the height KL,

while the height KL is equal to the height QN,
therefore, as the base 4BCD is to the base £FGH, so is the
height /N to the height QN

But, as the base 4B8CD is to the base EFGH, so is the
cylinder 4O to the cylinder £,

for they are of the same height ; [xi. 11]
and, as the height #//V is to QN, so is the cylinder £2 to the
cylinder £S; [xm. 13]

therefore, as the cylinder 40 is to the cylinder £S, so is the
cylinder £P to the cylinder £S. [v. 11]
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Therefore the cylinder 40 is equal to the cylinder £2. ]
[v-9

Q. E. D.

I. If the heights of the two cylinders are equal, and their volumes are
equal, the bases are equal, since the latter are proportional to the volumes. ]
XIL 11
If the heights are mof equal, cut off from the higher cylinder a cy!inder of
the same height as the lower.
Then, if LX, QN be the equal heights,
we have, by xi1. 11,
(base ABCD): (base EFGH) = (cylinder 40) : (cylinder ES)
= (cylinder EP): (cylinder ES),
by hypothesis,
=MN: QN [x. 13]
=MN: KL
II. In the converse part of the proposition, Euclid omits the case where
the cylinders have equal heights. In this case of course the reciprocal ratios
are both ratios of equality; the bases are therefore equal, and consequently the
cylinders.
If the heights are nof equal, we have, with the same construction as before,
(base ABCD) : (base EFGH)=MN : KL.
But [x11. 11]
(base ABCD): (base EFGH) = (cylinder 40): (cylinder £S),
and MN: KL=MN: QN
= (cylinder £P): (cylinder £S). [xm. 13]

And the same is true for the cones also.

Therefore
(cylinder 40) : (cylinder ES) = (cylinder £P) : (cylinder £.S),
and consequently (cylinder 40) = (cylinder £P).
Similarly for the cones, which are equal to one-third of the cylinders
respectively.
re deduces these propositions about cones and cylinders from two
others which he establishes by a method similar
to that adopted by him for the theorem of xi11. 2 A
(see note on that proposition).
The first (for the cylinder) is as follows.
The volume of a cylinder is equal to the
product of its base by its height.
Suppose CA to be the radius of the base of
the given cylinder, 4 its height.
For brevity let us denote by (surf. C4) the
area of the circle of which CA 1s the radius.
If (surf. CA) x 4 is not the measure of the
given cylinder, it will be the measure of a
cylinder greater or less than it.
L. First let it be the measure of a less
cylinder, that, for example, of which the circle with radius CD is the base, and
4 is the height.
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Circumscribe about the circle with radius C.D a regular polygon GHY...
such that its sides do not anywhere meet the circle with radius C4. [See note
on XIL 2, p. 393 above, for Legendre’s lemma relating to this construction.]

Imagine a prism erected on the polygon as base and with height 4.

Then (volume of prism) = (polygon GHY...) x k.

[Legendre has previously proved this proposition, first for a parallelepiped
(by transforming it into a rectangular onei then for a triangular prism (half of
a palil.llelepiped of the same height), and lastly for a prism wiLE a polygonal
base.

But (polygon GHI...) < (surf. CA).
Therefore (volume of prism) < (surf. CA) x &
< (cylinder on circle of rad. CD),

by hypothesis.

But the prism is greafer than the latter cylinder, since it includes it:
which is impossible.

II. In order not to multiply figures let us, in this second case, suppose
that CD is the radius of the base of the given cylinder, and that (surf. CD) x &
is the measure of a cylinder greater than it, e.g. a cylinder on the circle with
radius CA as base and of height A

Then, with the same construction,

(volume of prism) = (polygon GH7...) x A.
And (polygon GHI...) > (surf. CD).
Therefore ~ (volume of prism) > (surf. CD) x A
> (cylinder on surf. C4), by hypothesis.

But the volume of the prism is also /ess than that cylinder, being included
by it:
which is impossible.

Therefore  (volume of cylinder) = (its base) x (its height).

It follows as a corollary that

Cylinders of the same height are to one another as their bases [X1L. 13), and
cylinders on the same base are to one another as their heights [xn. 14)

Also

Similar cylinders are as the cubes of their heights, or as the cubes of the
diamelers of their bases [Eucl. xu. 12).

For the bases are as the squares on their diameters; and, since the
cylinders are similar, the diameters of the bases are as their heights.

Therefore the bases are as the squares on the heights, and the bases
I;nl'ﬂtlipﬁed by the heights, or the cylinders themselves, are as the cubes of the

eighnts.

gI need not reproduce Legendre’s proofs of the corresponding propositions
for the cone.

ProrosiTION 16.

Given two circles about the same centre, lo inscribe in the
greater civcle an equilateral polygon with an even number of
stdes whickh does not touch the lesser circle.
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Let ABCD, EFGH be the two given circles about the
same centre X ;

thus it is required to inscribe in the
greater circle ABCD an equilateral
polygon with an even number of
sides which does not touch the circle
EFGH.

For let the straight line BXKD
be drawn through the centre X,

and from the point G let GA be
drawn at right angles to the straight
line BD and carried through to C;

therefore AC touches the circle EFGH. (1. 16, Por.]

Then, bisecting the circumference BAD, bisecting the
half of it, and doing this continually, we shall leave a circum-
ference less than AD. [x. 1]

Let such be left, and let it be LD ;

from L let LM be drawn perpendicular to B0 and carried
through to &V,

and let LD, DN be joined ;

therefore LD is equal to DNV. (1 3, 1. 4]
Now, since L/ is parallel to 4C,

and AC touches the circle EFGH,

therefore LN does not touch the circle £FGH ;

therefore LD, DN are far from touching the circle £FGH.

If then we fit into the circle ABCD straight lines equal
to the straight line ZD and placed continuously, there will
be inscribed in the circle ABCD an equilateral polygon with
an even number of sides which does not touch the lesser
circle £EFGH. Q. E. F.

It must be carefully observed that the polygon inscribed in the outer circle
in this proposition is such that not only do its own sides not touch the inncr
circle, but also tke chords, as LN, joining angular points next but one o each
other do not touck the inner circle either. In other words, the polygon is the
second in order, not the first, which satisfies the condition of the enunciation.
This is important, because such a polygon is wanted in the next proposition ;
hence in that proposition the exaef construction here given must Ee followed.
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PRroPosITION 17.

Given two spheres about the same centre, to inscribe in the
greater spheve a polyhedral solid whick does not touck the
lesser sphere at ils surface.

Let two spheres be conceived about the same centre A4 ;
thus it is required to inscribe in the greater sphere a poly-
hedral solid which does not touch the lesser sphere at its

surface.
(o]

Let the spheres be cut by any plane through the centre ;
then the sections will be circles,
inasmuch as the sphere was produced by the diameter
remaining fixed and the semicircle being carried round it;

[x1. Def. 14]
hence, in whatever position we conceive the semicircle to be,
the plane carried through it will produce a circle on the
circumference of the sphere.

And it is manifest that this circle is the greatest possible,



426 BOOK XII [xm. 17

inasmuch as the diameter of the sphere, which is of course
the diameter both of the semicircle and of the circle, is greater
than all the straight lines drawn across in the circle or the
sphere.

Let then BCDE be the circle in the greater sphere,
and /G H the circle in the lesser sphere ;
let two diameters in them, B0, CE. be drawn at right angles
to one another ;
then, given the two circles BCDE, FGH about the same
centre, let there be inscribed in the greater circle BCDE an
equilateral polygon with an even number of sides which does
not touch the lesser circle FGH,
let BK, KL, LM, ME be its sides in the quadrant BE.
let KA be joined and carried through to WV,
let A0 be set up from the point A4 at right angles to the
plane of the circle BCDE, and let it meet the surface of the
sphere at O,
and through A0 and each of the straight lines 8D, KN let
planes be carried ;
they will then make greatest circles on the surface of the
sphere, for the reason stated.

Let them make such,
and in them let BOD, KON be the semicircles on BD, KN.

Now, since OA4 is at right angles to the plane of the circle
BCDE,

therefore all the planes through OA are also at right angles
to the plane of the circle BCDE; [x1. 18]
hence the semicircles 0D, KON are also at right angles to
the plane of the circle BCDE.

And, since the semicircles BED, BOD, KON are equal,
for they are on the equal diameters 8D, KN,
therefore the quadrants BZ, BO, KO are also equal to one
another.

Therefore there are as many straight lines in the quadrants
BO, KO equal to the straight lines BK, KL, LM, ME as
there are sides of the polygon in the quadrant BE.

Let them be inscribed, and let them be B2, PQ, QR, RO
and XS, S7, 77U, UO,
let SP, 7Q, UR be joined,
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and from 2, S let perpendiculars be drawn to the plane of the

circle BCDE ; [x1. 11]

these will fall on 2D, KN, the common sections of the planes,

inasmuch as the planes of 0D, KON are also at right angles

to the plane of the circle BCDE. [cf. x1. Def. 4)
Let them so fall, and let them be PV, SW,

and let WV be joined.

Now since, in the equal semicircles B0D, KON, equal
straight lines B2, K'S have been cut off,

and the perpendiculars 2V, SW have been drawn,

therefore PV is equal to SW, and BV to KW. [mn. 27,1 26]
But the whole B4 is also equal to the whole A4 ;

therefore the remainder /4 is also equal to the remainder WA ;

therefore, as AV is to VA, sois KW to WA,

therefore WV is parallel to KB. [v1. 2]

And, since each of the straight lines 2V, SW is at right
angles to the plane of the circle ZCDE,

therefore PV is parallel to SW. [x1. 6]
But it was also proved equal to it;
therefore WV, SP are also equal and parallel. [1. 33)

And, since WV is parallel to SP,
while WV is parallel to KB,
therefore. S7 is also parallel to A°5. [x1. 9]
And BP, KS join their extremities ;
therefore the quadrilateral ABPS is in one plane,
inasmuch as, if two straight lines be parallel, and points be
taken at random on each of them, the straight line joining the
points is in the same plane with the parallels. [xt. 7]
For the same reason
each of the quadrilaterals SPQ7, 7QRU is also in one plane.
But the triangle URO is also in one plane. [x1. 2]
If then we conceive straight lines joined from the points
P S, 0 7, R U to A, there will be constructed a certain
polyhedral solid figure between the circumferences 50, KO,
consisting of pyramids of which the quadrilaterals KB2S,
SPQT, TQRU and the triangle URO are the bases and the
point A the vertex.
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And, if we make the same construction in the case of each
of the sides KL, LM, ME as in the case of BX, and further
in the case of the remaining three quadrants,

there will be constructed a certain polyhedral figure in-
scribed in the sphere and contained by pyramids, of which
the said quadrilaterals and the triangle URO, and the others
corresponding to them, are the bases and the point 4 the
vertex.

I say that the said polyhedron will not touch the lesser
sphere at the surface on which the circle FG/ is.

Let AX be drawn from the point 4 perpendicular to the
plane of the quadrilateral XBPS, and let it meet the plane at
the point X ; [x1. 11]
let XB, XK be joined.

Then, since AX is at right angles to the plane of the
quadrilateral XBPS,

therefore it is also at right angles to all the straight lines
which meet it and are in the plane of the quadrilateral.
[x1. Def. 3]

Therefore AX is at right angles to each of the straight
lines BX, XK.

And, since A8 is equal to AKX,
the square on 42 is also equal to the square on AKX.

And the squares on AX, XZB are equal to the square
on AB,

for the angle at X is right; [1- 47]
and the squares on 4X, XX are equal to the square on AKX
(]

Therefore the squares on AX, X B are equal to the squares
on AX, XK.

Let the square on 4X be subtracted from each ;
therefore the remainder, the square on BX, is equal to the
remainder, the square on X4 ;
therefore BX is equal to XK.

Similarly we can prove that the straight lines joined
from X to P, S are equal to each of the straight lines BX,
XK.
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Therefore the circle described with centre X and distance
one of the straight lines X5, XX will pass through P, § also,

and K'BPS will be a quadrilateral in a circle.

Now, since K7 is greater than WV,
while WV is equal to SP,
therefore KB is greater than SP.
But KB is equal to each of the straight lines XS, B7;
therefore each of the straight lines K'S, B2 is greater than SP.
And, since KB PS is a quadrilateral in a circle,
and KB, BP, KS are equal, and S less,
and BX is the radius of the circle,
therefore the square on KB is greater than double of the
square on BX.
Let KZ be drawn from X perpendicular to BV.
Then, since BD is less than double of DZ,

and, as BD is to DZ, so is the rectangle DB, BZ to the
rectangle DZ, ZB5,

if a square be described upon BZ and the parallelogram on
ZD be completed,

then the rectangle DB, BZ is also less than double of the
rectangle DZ, ZB.

And, if XD be joined,
the rectangle DB, BZ is equal to the square on BK,

and the rectangle DZ, ZB equal to the square on KZ;
[11. 31, V1. 8 and Por.]

therefore the square on KB is less than double of the square
on KZ. '

But the square ou X2 is greater than double of the square
on BX ;
therefore the square on X7 is greater than the square on 5.X.

And, since B4 is equal to K4,
the square on B4 is equal to the square on 4K,
And the squares on BX, X A are equal to the square on B4,
and the squares on XZ, ZA equal to the square on K4 ;
(. 47]

therefore the squares on BX, XA are equal to the squares on
KZ ZA,
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and of these the square on KZ is greater than the square
on BX;

therefore the remainder, the square on Z4, is less than the
square on X A4.

Therefore AX is greater than AZ ;
therefore 4X is much greater than 4G.

And A4X is the perpendicular on one base of the poly-
hedron,

and A G on the surface of the lesser sphere ;

hence the polyhedron will not touch the lesser sphere on its
surface,

Therefore, given two spheres about the same centre, a
polyhedral solid has been inscribed in the greater sphere
which does not touch the lesser sphere at its surface.

Q E. F.

Porism. But if in another sphere also a polyhedral solid
be inscribed similar to the solid in the sphere ZCDE,

the polyhedral solid in the sphere ZCDE has to the poly-
hedral solid in the other sphere the ratio triplicate of that
which the diameter of the sphere ZCDE has to the diameter
of the other sphere.

For, the solids being divided into their pyramids similar
in multitude and arrangement, the pyramids will be similar.

But similar pyramids are to one another in the triplicate
ratio of their corresponding sides ; [x11. 8, Por.]

therefore the pyramid of which the quadrilateral KBPS is
the base, and the point A4 the vertex, has to the similarly
arranged pyramid in the other sphere the ratio triplicate of
that which the corresponding side has to the corresponding
side, that is, of that which the radius A2 of the sphere about
A as centre has to the radius of the other sphere.

Similarly also each pyramid of those in the sphere about
A as centre has to each similarly arranged pyramid of those
in the other sphere the ratio triplicate of that which 42 has
to the radius of the other sphere.

And, as one of the antecedents is to one of the conse-
quents, so are all the antecedents to all the consequents ;

[v. 12]
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hence the whole polyhedral solid in the sphere about 4 as
centre has to the whole polyhedral solid in the other sphere
the ratio triplicate of that which 42 has to the radius of the
other sphere, that is, of that which the diameter BD has to
the diameter of the other sphere.

Q. E. D.

This proposition is of great length and therefore requires summarising in
order to make it easier to grasp. Moreover there are some assumptions in it
which require to be proved, and some omissions to be supplied. The figure
also is one of some complexity, and, in addition, the text and the figure treat
two points Z and ¥, which are really one and the same, as different.

The first thing needed is to know that all sections of a sphere by planes
through the centre are circles and equal to one another (great circles or
“ greatest circles ” as Euclid calls them, more appropriately). Euclid uses his
definition of a sphere as the figure described by a semicircle revolving about
its diameter. This of course establishes that all planes through the particular
diameter make equal circular sections ; but it is also assumed that the same
sphere is gencrated by any other semicircle of the same size and with its
centre at the same point.

o)

s

!
.
.

The construction and argument of the proposition may be shortly given
as follows.

A plane through the centre of two concentric spheres cuts them in great
circles of which B, GF are quadrants.

A regular polygon with an even number of sides is inscribed {exactly as in
Prop. 16) to the outer circle such that its sides do not touch the inner circle.
BK, KL, LM, ME are the sides in the quadrant BE.



432 BOOK XII [x11. 17

AO is drawn at right angles to the plane ABE, and through 40 are
drawn planes passing through B, K, Z, M, E, etc., cutting the sphere in great
circles.

OB, OK are quadrants of two of these great circles.

As these quadrants are equal to the quadrant BE, they will be divisible
into arcs equal in number and magnitude to the arcs BK, XL, LM, ME.

Dividing the other quadrants of these circles, and also all the quadrants of
the other circles through 04, in this way we shall have in all the circles a
polygon equal to that in the circle of which BE is a quadrant.

BP, PQ, QR, RO and XS, ST, TU, UO are the sides of these polygons
in the quadrants 80, KO.

Joining PS, Q7, RU, and making the same construction all round the
circles through 40, we have a certain polyhedron inscribed in the outer
sphere.

Draw PV perpendicular to 45 and therefore (since the planes OAB,
BAE are at right angles) perpendicular to the plane BAE ; [x1. Def. 4]
draw S W perpendicular to 4K and therefore (for a like reason) perpendicular
to the plane BAE.

Draw XZ perpendicular to B4, (Since BK =8P, and DB. BV=BF,
DB .BZ=BK" it follows that BV = BZ, and Z, V coincide.)

Now, since s PAV, SA W, being angles subtended at the centre by
equal arcs of equal circles, are equal,
and since Ls PVA, SWA are right,
while 45=42F,

As PAV, S4 W are equal in all respects, [1. 26]
and AV=AW.

Consequently AB:AV=AK:AW;
and VW, BX are parallel.

But PV, SW are parallel (being both perpendicular to one plane) and
equal (by the equal As PAV, SAW),
therefore VW, PS are equal and parallel,

Therefore BX (being parallel to /' ¥) is parallel to PS.

Consequently (1) BPSK is a quadrilateral in one plane.

Similarly the other quadrilaterals PQ7S, QRUT are in one plane ; and
the triangle OR U is in one plane.

In order now to prove that the plane BPSK does not anywhere touck the
inner sphere we have to prove that the shortest distance from A fo the plane
is greater than AZ, which by the construction in X\L. 16 is greater than AG.

Draw AX perpendicular to the plane BPSK.

Then AX'+ XB'=AX'+ XK'=AX'+ XS'=AX*+ XP*=AB,
whence XB=XK=XS=XP,
or (2) the quadrilateral ZPSK is inscribable in a circle with X as centre and
radius XB.

Now BK>VW

> PS;
therefore in the quadrilateral BPSX three sides BX, BP, KS are equal, but
PS is less.

Consequently the angles about X are three equal angles and one smaller

angle ;
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therefore any one of the equal angles is greater than a right angle, i.e. . BXK
is obtuse.

Therefore (3) BK*>2BX?%, [ 12]
Next, consider the semicircle BXD with KZ drawn perpendicular to B.D.
We have BD<2DZ,

so that DB.BZ<2DZ.-ZB,

or BK?<2K2%;

therefore, a fortiori, by (3) above]
(4) BX* < K22
Now AK*=AB;

therefore A2+ ZK*= AX*+ X B
And BX*< KZ*;

therefore AX*> AZ*,

or (5) AX> AZ.

But, by the construction in XL 16, AZ > AG; therefore, a fortiori,
AX> AG.

And, since the perpendicular 4X is the shortest distance from A to the
plane BPSX,

(6) the plane BPSK does not anywhere meet the inner sphere.

Euclid omits to prove that, a fortiori, the other quadrilaterals PQTS,
QRUT, and the triangle ROU, do not anywhere meet the inner sphere.

For this purpose it is only neeessary to show that the radii of the circles
circumscribing BPSK, PQTS, QRUT and ROU are in descerding order of
magnitude.

—C'

We have therefore to prove that, if ABCD, A'B'C' D' are two quadrilaterals

inscribable in circles, and
AD=BC=A'D =BC,

while 43 is not greater than 4D, A'B' = CD, and AB>CD> C'D,
then the radius 04 of the circle circumscribing the first quadrilateral is greater
than the radius 0’4’ of the circle circumscribing the second.

Clavius, and Simson after him, prove this by reductio ad absurdum.

(1) IfOo4=04,
it follows that s 40D, BOC, A'O D, B'O'C' are all equal.

Also Lt AOB>L A'OF,

LCOD>LCOD,

whence the four angles about O are together greater than the four angles
about @', i.e. greater than four right angles ;
which is impossible.
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(2) If O04'> 04,
cut off from O'4’, OB, O'C', O'D lengths equal to OA, and draw the inner
quadrilateral as shown in the figure (XYZ W),

Then AB> A'B > XY,

CD>CD>ZW,
AD=A'D > WX,
BC=BC>YZ
Consequently the same absurdity as in (1) follows a fortiori.
Therefore, since 04 is neither equal to nor less than 0’4,
, OA > O A,

The fact is also sufficiently clear if we draw MO, NO bisecting DA, DC
perpendicularly and therefore meeting in O, the centre of the circumscribed
circle, and then suppose the side D4 with the perpendicular MO to turn
inwards about D as centre. Then the intersection of MO and NO, as P, will
gradually move towards V.

Simson gives his proof as “Lemma 11.” immediately before xi. 17.
He adds to the Porism some words explaining how we may construct a
similar polyhedron in another sphere and how we may prove that the
polyhedra are similar.

The Porism is of course of the essence of the matter because it is the
porism which as much as the construction is wanted in the next proposition.
It would therefore not have been amiss to include the Porism in the enuncia-
tion of X11. 17 so as to call attention to it

ProrosiTion 18.

Spheres are to one another in the triplicate vatio of their
respective diamelers.

Let the spheres ABC, DEF be conceived,
and let BC, £F be their diameters ;
I say that the sphere 4B8C has to the sphere DEF the ratio
triplicate of that which BC has to £F.

Foru, if the sphere ABC has not to the sphere DEF the
ratio triplicate of that which BC has to £F,
then the sphere ABC will have either to some less sphere
than the sphere DEF, or to a greater, the ratio triplicate of
that which BC has to £F.

First, let it have that ratio to a less sphere GHX,
let DEF be conceived about the same centre with GHKX,
let there be inscribed in the greater sphere DEF a poly-
hedral solid which does not touch the lesser sphere GHK at
its surface, [x11. 17)
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and let there also be inscribed in the spnere 48C a pol
hedral solid similar to the polyhedral solid in the sphere .DEI?:

therefore the polyhedral solid in ABC has to the polyhedral
solid in DEF the ratio triplicate of that which ZC has to EF,
[x1. 17, Por.]

A

But the sphere ABC also has to the sphere GHK the
ratio triplicate of that which BC has to EF;

therefore, as the sphere ABC is to the sphere GHK, so is
the polyhedral solid in the sphere 45C to the polyhedral
solid in the sphere DEF;

and, alternately, as the sphere 4BC is to the polyhedron in
it, so is the sphere G/‘EVK to the polyhedral solid in the
sphere DEF. [v. 16]

But the sphere 4BC is greater than the polyhedron in it ;

therefore the sphere G/A K is also greater than the polyhedron
in the sphere DEF.

But it is also less,
for it is enclosed by it.

Therefore the sphere ABC has not to a less sphere than
the sphere DEF the ratio triplicate of that which the diameter
BC has to £F.
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Similarly we can prove that neither has the sphere DEF
to a less sphere than the sphere 4BC the ratio triplicate of
that which £ has to BC.

I say next that neither has the sphere 48C to any greater
sphere than the sphere DEF the ratio triplicate of that which
BC has to EF.

For, if possible, let it have that ratio to a greater, LMN ;

therefore, inversely, the sphere LZMN has to the sphere ABC
the ratio triplicate of that which the diameter £ has to the
diameter BC.

But, inasmuch as LM is greater than DEF,

therefore, as the sphere LMV is to the sphere ABC, so is the
sphere DEF to some less sphere than the sphere 45C, as

was before proved. (x11. 2, Lemma]

Therefore the sphere DEF also has to some less sphere
than the sphere 4ABC the ratio triplicate of that which £F
has to BC:

which was proved impossible.

Therefore the sphere 4 BC has not to any sphere greater
than the sphere DEF the ratio triplicate of that which BC
has to EI'E

But it was proved that neither has it that ratio to a less
sphere.

Therefore the sphere 4BC has to the sphere DEF the
ratio triplicate of that which BC has to £F.

Q E. D.

It is the method of this proposition which Legendre adopted for his proof
of X11. 2 (see note on that proposition).

The argument can be put very shortly. We will suppose S, S’ to be the
volumes of the spheres, and 4, @' to be their diameters; and we will for brevity
express the triplicate ratio of & to &' by 4°: 2",

If @:d%+ §:5,
then 4*:d*=8:1T,
where 7'is the volume of some sphere either greater or less than S'.

I. Suppose, if pussible, that "< 5",

Let 7" be supposed concentric with S’
As in x11. 17, inscribe a polyhedron in S’ such that its faces do not any-
where touch T;

and inscribe in .S a polyhedron similar to that in 5.



X1t 18] PROPOSITION 18 437

Then S:T=d*:d"
= (polyhedron in S) : (polyhedron in S');
or, alternately,
S : (polyhedron in S) = T': (polyhedron in .S").

And S > (polyhedron in S);
therefore T > (polyhedron in §').

But, by construction, 7 < (polyhedron in .§'):
which is impossible.

Therefore r<4S.

II. Suppose, if possible, that 7" > §".

Now at:d"'=5:T

=X:5,

where X is the volume of some sphere less than 5, [x1m. 2, Lemma)
or, inversely, a*: =5 X,
where X < S.

This is proved impossible exactly as in Part 1.

Therefore THS.

Hence 7, not being greater or less than S, is equal to it, and
?:d%*=5:5"
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HISTORICAL NOTE.

I have already given, in the note to 1v. 10, the evidence upon which the
construction of the five regular solids is attributed to the Pythagoreans. Some
of them, the cube, the tetrahedron (which is nothing but a m mid), and the
octahedron (which is only a double pyramid with a square ), cannot but
have been known to the Egyptians. And it appears that dodecahedra have
been found, of bronze or other material, which may belong to periods earlier
than Pythagoras’ time by some centuries (for references see Cantor's Geschichie
der Mathematik 1y, pp. 175—6).

It is true that the author of the scholium No. 1 to Eucl. X1 says that the
Book is about “the five so-called Platonic figures, which however do not
belong to Plato, three of the aforesaid five figures being due to the Pythagoreans,
namely the cube, the pyramid and the dodecahedron, while the octahedron
and the icosahed:on are due to Theaetetus.” This statement (taken probably
from Geminus) may perhaps rest on the fact that Theaetetus was the first to
write at any length all:.gnt the two last-mentioned solids. We are told indeed
by Suidas (s. v. @cairyros) that Theaetetus “first wrote on the *five solids’ as
they are called.” This no doubt means that Theaetetus was the first to write
a complete and systematic treatise on all the regular solids; it .does not
exclude the possibility that Hippasus or others had already written on the
dodecahedron. The fact that Theaetetus wrote upon the regular solids agrees
very well with the evidence which we possess of his contributions to the
theory of irrationals, the connexion between which and the investigation of
the regular solids is seen in Euclid’s Book xiur.

Theaetetus flourished about 380 B.c., and his work on the regular solids
was soon followed by another, that of Aristaeus, an elder contemporary of
Euclid, who also wrote an important book on So/id Lo, i.e. on conics treated
as loci. This Aristaeus (known as “the elder”) wrote in the period about
320 B.C. We hear of his Comparison of the five regular solids from Hypsicles
(2nd cent. B.c.), the writer of the short book commonly included in the editions
of the Elements as Book x1v. Hypsicles gives in this Book some six proposi-
tions supplementing Eucl. xm1.; and he introduces the second of the
propositions (Heiberg’s Euclid, Vol. v. p. 6) as follows:

“ The same circle circumscribes both the pentagon of the dodecahedron and the
triangle of the icosahedron when both are inscribed in the same sphere. This is
proved by Aristaeus in the book entitled Comparison of the five figures.”
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Hypsicles proceeds (pp. 7 sqq.) to give a proof of this theorem. Allman
pointed out (Greek Geometry from Thales to Euclid, 1889, pp. 201—2) that this
proof depends on eight theorems, six of which appear in Euclid’s Book xur.
(in Propositions 8, 10, 12, 15, 16 with Por,, 17); two other propositions not
mentioned by Allman are also used, namely xnL 4 and 9. This seems, as
Allman says, to confirm the inference of Bretschneider (p. 171) that, as
Aristacus’ work was the newest and latest in which, before Euclid’s time, this
subject was treated, we have in Eucl. x1m. at least a partial recapitulation of
the contents of the treatise of Aristaeus.

After Euclid, Apollonius wrote on the comparison of the dodecahedron
angd the icosahedron inscribed in one and the same sphere. This we also
learn from Hypsicles, who says in the next words following those about
Aristaecus above quoted: “But it is proved by Apollonius in the second
edition of his Comparison of the dodecahedron with the icosakedron that, as the
surface of the dodecahedron is to the surface of the icosahedron [inscribed
in the same sphere}, so is the dodecahedron itself [i.e. its volume] to the
icosahedron, because the perpendicular is the same from the centre of the
sphere to the pentagon of the dodecahedron and to the triangle of the
icosahedron.”
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PROPOSITION 1.

If a straight line be cut in extveme and mean ratio, the
square on the greater segment added to the half of the whole
is five times the square on the half.

For let the straight line 45 be cut in extreme and mean
ratio at the point C,
and let 4C be the greater segment;

let the straight line .40 be pro-
duced in a straight line with CA,

and let 4D be made half of 45 ; N

I say that the square on CD is P———g-
five times the square on A.D. o}

For let the squares AE, DF
be described on 48, DC, D A

and let the figure in D be drawn ;
let 7#C be carried through to G.

Now, since A5 has been cut in
extreme and mean ratio at C,
therefore the rectangle 4258, BC is K
equal to the square on AC.

[v1. Def. 3, v1. 17]

And CE is the rectangle 4B, BC, and FH the square
on AC;

therefore CE is equal to FH.
And, since BA is double of 4D,
while B4 is equal to K4, and AD to AH,
therefore A4 is also double of 4 /4.
But, as A4 is to AH, sois CK to CH ; [ve 1]
therefore CK is double of CH.
But LA, HC are also double of CH.
Therefore KC is equal to LH, HC.

L F
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But CE was also proved equal to HF;
therefore the whole square 4 £ is equal to the gnomon M NO.
And, since BA4 is double of 4D,
the square on B4 is quadruple of the square on 4D,
that is, 4 £ is quadruple of DA.
But AE is equal to the gnomon MNO;
therefore the gnomon M NO is also quadruple of 4AP;
therefore the whole DF is five times AP.
And DF is the square on DC, and AP the square on DA;
therefore the square on CD is five times the square on DA4.

Therefore etc.
Q. E. D.

The first five propositions are in the nature of lemmas, which are required
for later propositions but are not in themselves of much importance.

It will be observed that, while the method of the propositions is that of
Book 11., being strictly geometrical and not algebraical, none of the results of
that Book are made use of (except indeed in the Lemma to xi11. 2, which is
probably not genuine). It would therefore appear as though these propositions
were taken from an earlier treatise without being revised or rewritten in the
light of Book 11. It will be remembered that, according to Proclus (p. 67, 6),
Eudoxus “greatly added to the number of the theorems which originated with
Plato regarding tke section” (i.e. presumably the “golden section”); and it is
therefore probable that the five theorems are due to Eudoxus.

That, if A8 is divided at C in extreme and mean ratio, the rectangle
AB, BC is equal to the square on AC is inferred from vi. 17.

ADis e equal to half 4.8, and we have to prove that

(sq. on CD) =5 (sq. on 4D).

The figure shows at once that

0O CH=[J HL, A
sothat [JCH+JHL=2(0CH)
=[JAG.
Also sq. HF =(sq. on 4C)
=rect. 4B, BC A =
= CE.
By addition, /
(gnomon MNO) =sq. on AB R
=4(sq. on 4D);
whence, adding the sq. on 4D to each, we have
(sq. on CD)=5(sq. on AD).
The result here, and in the next propositions, | é E

is really seen more readily by means of the figure
of i 11,

In this figure SR=.4C+}A4B, by construction;
and we have therefore to prove that

(sq. on SR) = 5(sq. on 4R).
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This is obvious, for
(sq. on SR) =(sq. on RB)
= sum of sgs. on 458, AR
=5(sq. on 4R).

The Mss. contain a curious addition to x111. 1—j5 in the shape of analyses
and syntheses for each proposition prefaced by the heading :

““What is analysis and what is synthesis.

* Analysis is the assumption of that which is sought as if it were admitted
<and the arrival > by means of its consequences at something admitted to
be true.

“Synthesis is an assumption of that which is admitted <and the arrival >
by means of its consequences at something admitted to be true.”

There must apparently be some corruption in the text ; it does not, in the
case of synthesis, give what is wanted. B and V have, instead of *something
admitted to be true,” the words *“the end or attainment of what is sought.”

The whole of this addition is evidently interpolated. To begin with, the
analyses and syntheses of the five propositions are placed all together in four
Mss. ; in P, q they come after an alternative proof of xu. 5 (which alternative
proof P gives after X111 6, while q gives it instead of x11. 6), in B (which has
not the alternative proof of X 5) after xu1 6, and in b (in which xm 6 is
wanting, and the alternative proof of X111 5 is in the margin, in the first hand)
after xnr. 5, while V has the analyses of 1—3 in the text after xu1 6 and
those of 4—s5 in the same place in the margin, by the second hand: Further,
the addition is altogether alien from the Plan and manner of the Elements.
The interpolation took place before Theon’s time, and the probability is that
it was originally in the margin, whence it crept into the text of P after x1. 5.
Heiberg (after Bretschneider) suggested in his edition (Vol. v. p. Ixxxiv.) that
it might be a relic of analytical investigations by Theaetetus or Eudoxus, and
he cited the remark of Pappus (v. p. 410) at the beginning of his
“ comparisons of the five [regular solid] figures which have an equal surface,”
to the effect that he will not use ‘“the so-called analytical investigation by
means of which some of the ancients effected their demonstrations.” More
recently (Paralipomena su Euklid in Hermes XxxviL, 1903) Heiberg con-
jectures that the author is Heron, on the ground that the sort of analysis and
synthesis recalls Heron’s remarks on analysis and synthesis in his commentary
on the beginning of Book 1. (quoted by an-Nairizl, ed. Curtze, p. 89) and his
quasi-algebraical alternative proofs of propositions in that Book.

To show the character of the interpolated matter I need only give the
analysis and synthesis of one proposition. In the case of xm 1 it is in
substance as follows. The figure is a mere
straight line. D A c B

Let A8 be divided in extreme and mean t '
ratio at C, AC being the greater segment ;

and let AD=} A5,
I say that (sq. on CD)=5(sq. on AD).
(Analysis.)
“For, since (sq. on CD)=5(sq. on AD),”

and (sq. on CD) = (sq. on CA) +(sq. on AD) + 2z (rect. CA, AD),
therefore (sq. on CA) + 2z (rect. CA, AD) = 4(sq. on AD).

But rect. BA.AC =z (rect. CA. AD),
and (sq. on CA4) =(rect. AB, BC).
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Therefore
. (rect. BA, AC) + (rect. AB, BC)= 4(sq. on AD),
or (sq. on AB)=4(sq. on AD):
and this is true, since AD=}A4B.
(Synthesis.)
Since (sq. on 4B) = 4(sq. on AD),
and (sq. on AB)= (rect. BA, AC) + (rect. AB, BC),
therefore 4(sq. on AD) = 2(rect. DA, AC)+sq. on AC.
Adding to each the square on 4.0, we have
(sq. on CD) = 5(sq. on AD).

ProrosiTION 2.

If the square on a straight line be five times the square on
a segment of il, then, when the double of the said segment is cut
in extreme and mean ratio, the greater segment is the yemaining
part of the original straight line.

For let the square on the straight line 45 be five times
the square on the segment AC
of it,
and let CD be double of AC; r
Isaythat, when CD is cut in extreme
and mean ratio, the greater segment 4N
is CB. L™ ;

Let the squares 4F, CG be de- Lol
scribed on A8, CD respectively,
let the figure in AF be drawn, A c
and let £ be drawn through.

Now, since the square on B4 is
five times the square on 4C,
AF is five times AH.

Therefore the gnomon MNO is
quadruple of 4 4.

And, since DC is double of CA4,
therefore the square on DC is quadruple of the square on CA4,
that is, CG is quadruple of 4 4.

But the gnomon MN O was also proved quadruple of 4/;
therefore the gnomon MNO is equal to CG.

And, since DC is double of CA4,
while DC is equal to CX, and 4AC to CH,
therefore X7 is also double of BA. [v. 1]
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But LA, HRB are also double of 5 ;
therefore KB is equal to LH, HB.
But the whole gnomon M NO was also proved equal to
the whole CG ;
therefore the remainder /£ is equal to BG.
And BG is the rectangle CD, DB,
for CD is equal to DG ;
and /AF is the square on C5;
therefore the rectangle CD, DB is equal to the square on CA.
Therefore, as DC is to CB, so is CB to BD.
But DC is greater than C5;
therefore CA is also greater than BD.
Therefore, when the straight line C2 is cut in extreme and
mean ratio, CZ is the greater segment.
Therefore etc.
Q E.D.

LEMMA,

That the double of AC is greater than BC is to be proved
thus,

If not, let BC be, if possible, double of CA4.

Therefore the square on BC is quadruple of the square
on CA ;

therefore the squares on BC, CA are five times the square
on CA.

But, by hypothesis, the square on B4 is also five times
the square on CA4 ;
therefore the square on B4 is equal to the squares on BC, CA:
which is impossible. (1. 4]

Therefore CA is not double of AC.

Similarly we can prove that neither is a straight line less
than CA double of CA4 ;
for the absurdity is much greater.

Therefore the double of AC is greater than CB.

Q. E. D,

This proposition is the converse of Prop. 1. We have to prove that, if

AB be so divided at C that

(sq. on A8)=5(sq. on AC),
and if CD = 24C,

then (rect. CD, DB)=(sq. on CB).
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Subtract from each side the sq. on AC;
then (gnomon MNO) = 4(sq. on 4AC)
=(sq. on CD).
Now, as in the last proposition,
(JCE=2([JBH)
=[JBH+ [ HL.
Subtracting these equals from the equals, the square on CD and the
gnomon MANO respectively, we have
7 BG = (square HF),
ie. (rect. CD, DB) = (sq. on CB).
Here again the proposition can readily be proved by means of a figure
similar to that of 1. 11.

Draw CA through C af right angles to CB and of length equal to CA4 in
the original figure; make CD double of C4;

produce AC to R so that CR = CB.
Complete the squares on CB and CD, and

join A.D.
Now we are given the fact that
(sq. on AR) = 5(sq. on CA). 8 D
But C

5(sq. on AC)=(sq. on AC)+ (sq. on CD)

=(sq. on 4.D).
Therefore A

(sq. on AR)=(sq. on AD),

or AR=AD.
Now
(rect. KR, RC)+ (sq. on AC)=(sq. on AR) < E
= (sq. on AD)
=(sq. on AC) + (sq. on CD).
Therefore (rect. KR . RC)=(sq. on CD).
That is, (rectangle RE) = (square CG).
Subtract the common part CE,
and (rect, BG) = (sq. RB),
or rect. CD, DB =(sq. on CB).

Heiberg, with reason, doubts the genuineness of the Lemma following this
proposition.

ProrosITION 3.

If a straight line be cut in extreme and mean ratio, the
square on the lesser segment added to the half of the greater
segment is five times the squarve on the hkalf of the grealer

segment.
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For let any straight line 45 be cut in extreme and mean
ratio at the point C,

let AC be the greater segment,
and let AC be bisected at D ;

I say that the square on BD is
five times the square on DC. -t

For let the square A be =r o o ¥ M
described on AR5,

and let the figure be drawn
double. g H K F N

Since AC is double of DC,

therefore the square on AC is
quadruple of the square on DC,

that is, RS is quadruple of FG.

And, since the rectangle A8, BC is equal to the square
on AC,

and CE is the rectangle 45, BC,
therefore CZ is equal to RS.
But RS is quadruple of G ;
therefore CE is also quadruple of FG.
Again, since AD is equal to DC,
HK is also equal to K.
Hence the square GF is also equal to the square L.
Therefore GKX is equal to XL, that is, MN to NE ;
hence M F is also equal to FE.
But MF is equal to CG ;
therefore CG is also equal to FZ.
Let CN be added to each;
therefore the gnomon OPQ is equal to CE.
But CE was proved quadruple of GF;
therefore the gnomon OPQ is also quadruple of the square FG.
Therefore the gnomon OPQ and the square FG are
five times FG.
But the gnomon OPQ and the square FG are the
square DN,
And DN is the square on D25, and GF the square on DC.
Therefore the square on DB is five times the square
on DC. Q. E. D.
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In this case we have

(sq. on BD)=(sq. FG) + (rect. CG)+ (rect. CN)
=(sq. FG) + (rect. FE) + (rect. CN)

(sq. FG) + (rect. CE)

(sq. FG) + (rect. AB, BC)

= (sq. FG) + (sq. on AC), by hypothesis,

=5(sq. on DC).
The theorem is still more obvious if the figure
of 1. 11 be used. Let C# be divided in extreme
and mean ratio at £, by the method of 11. 11.

Then, since
(rect. AB, BC) + (sq. on CD)
=sq. on BD
=sgs. on CD, CF,
(rect. 4B, BC) =(sq. on CF)
= (sq. on CA4),
and 4B is divided at C in extreme and mean ratio.
And (sq. on BD)=(sq. on DF)
=5(sq. on CD).

ProrosiTION 4.

g

447

If a strvaight line be cut in extveme and mean ralio, the
square on the whole and the square on the lesser segment together
are lriple of the square on the greater segment.

Let A7 be a straight line,
let it be cut in extreme and mean ratio at C,
and let 4C be the greater segment ;

I say that the squares on A5, BC are
triple of the square on CA.

For let the square ADEZB be de-
scribed on A5,

and let the figure be drawn.

Since then A5 has been cut in extreme
and mean ratio at C,

and AC is the greater segment,

A Cc B
H E K
N
D G E

therefore the rectangle 48, BC is equal to the square on AC.
[v1. Def. 3, v1. 17]
And AK is the rectangle A5, BC, and HG the square

on AC;
therefore AKX is equal to ZG.



448 BOOK XIII [xum 4, 5

And, since AF is equal to FE,
let CK" be added to each;
therefore the whole 4K is equal to the whole C£;
therefore AKX, CE are double of AK.

But AK, CE are the gnomon LMN and the square CK;
therefore the gnomon LZMN and the square CK are double
of AK.

But, further, AKX was also proved equal to /G ;
therefore the gnomon LZMAN and the squares CK, HG are
triple of the square G,

And the gnomon LMN and the squares CK, HG are
the whole square A£ and CK, which are the squares on
AB, BC,
while /G is the square on AC.

Therefore the squares on A5, BC are triple of the square
on AC.

Q E. D.

Here, as in the preceding propositions, the results are proved de nove by
the method of Book 11., without reference to that Book., Otherwise the proof
might have been shorter.

For, by 1 7,

(sq. on AB) + (sq. on BC) = 2 (rect. AB, BC) +(sq. on AC)
=3(sq. on 4C).

ProrosITION 5.

If a straight line be cut in extveme and mean ratio, and
there be added to it a straight line equal to the greater segment,
the whole straight line has been cut in extreme and mean ratio,
and the original straight line is the greater segment.

For let the straight line 45 be cut in extreme and mean
ratio at the point C,
let AC be the greater segment,
and let A0 be equal to AC.

I say that the straight line
DB has been cut in extreme and R K
mean ratio at 4, and the original
straight line 458 is the greater
segment,

For let the square 4Z be described on 425,

and let the figure be drawn.

D A c B
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Since A has been cut in extreme and mean ratio at C,

therefore the rectangle 45, BC is equal to the square on AC.
[vi. Def. 3, vL 17]

And CE is the rectangle A8, BC. and CH the square
on AC;
therefore C£ is equal to AC.
But AE is equal to CZ,
and DA is equal to HC;
therefore DA is also equal to HE.
Therefore the whole DX is equal to the whole AE.
And DK is the rectangle BD, DA,
for AD is equal to DL ;
and A is the square on A5 ;
therefore the rectangle BD, DA is equal to the square
on AB.
Therefore, as DB is to BA, so is BA to AD. [vr. 17]
And DB is greater than BA ;
therefore BA is also greater than 4D, [v. 14]

Therefore DA has been cut in extreme and mean ratio at
A, and A B is the greater segment,

Q. E. D.
We have (sq. DH)=(sq. HC)
= (rect, CE), by hypothesis,
= (rect. HE).

Add to each side the rectangle 4X, and
(rect. DK) = (sq. AE),
or (rect. BD, DA)=(sq. on 4B).
The result is of course obvious from 11. 11.
'{here is an alternative proof given in P after xu 6, which depends on
Book v.

By hypothesis, BA:AC=AC: CB,
or, inversely, AC: AB=CB: AC.
Componendo, (AB+AC): AB=AB: AC,
or DB:BA=PBA: AD.

ProrosiTioN 6.

If a rational straight line be cut in extreme and mean ratio,
eack of the segments is the irrational straight line called
apotome.
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Let 4B be a rational straight line,

let it be cut in extreme and mean
ratio at C, D A [ B

and let AC be the greater segment ;

I say that each of the straight lines AC, CAB is the irrational
straight line called apotome.

For let BA be produced, and let 4.0 be made half of 54.
Since then the straight line A5 has been cut in extreme
and mean ratio,

and to the greater segment AC is added 4D which is half
of AB,

therefore the square on CD is five times the square on D 4.

[xnr 1]
Therefore the square on CD has to the square on DA the
ratio which a number has to a number;

therefore the square on CD is commensurable with the square
on DA, [x. 6]

But the square on 24 is rational,
for DA is rational, being half of 42 which is rational ;
therefore the square on CJ2 is also rational ; [x. Def. 4)
therefore CD is also rational.

And, since the square on CD has not to the square on
DA the ratio which a square number has to a square number,

therefore CO is incommensurable in length with DA ; [x. 9]
therefore CD, DA are rational straight lines commensurable
in square only ;

therefore AC is an apotome. [x. 73]

Again, since A48 has been cut in extreme and mean ratio,
and AC is the greater segment,
therefore the rectangle A5, BC is equal to the square on 4AC.
[v1. Def. 3, v1. 17]
‘T'herefore the square on the apotome AC, if applied to
the rational straight line 425, produces BC as breadth.
But the square on an apotome, if applied to a rational
straight line, produces as breadth a first apotome ; [x. 97]

therefore CAB is a first apotome.
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And CA was also proved to be an apotome.
Therefore etc.
Q E. D

It seems certain that this proposition is an interpolation. P has it, but the
copyist (or rather the copyist of its archetype) says that “this theorem is not
found in most copies of the new recension, but is found in those of the old.”
In the first place, there is a scholium to X1 17 in P itself which proves the
same thing as x111. 6, and which would therefore have been useless if xn. 6
had preceded. Hence, when the scholium was written, this proposition had
not yet been interpolated. Secondly, P has it before the alternative proof of
1L 5; this proof is considered, on general grounds, to be interpolated, and
it would appear that it must have been a /afer interpolation (x111. 6) which
divorced it from the proposition to which it belonged. Thirdly, there is cause
for suspicion in the proposition itself, for, while the enunciation states that
each segment of the straight line is an apofome, the proposition adds that the
lesser segment is a firs/ apotome. The scholium in P referred to has not this
blot. What is actually wanted in x11L 17 is the fact that the greater segment
is an apotome. It is probable that Euclid assumed this fact as evident enough
from xm. 1 without further proof, and that he neither wrote xir. 6 nor the
quotation of its enunciation in X1 17.

ProrosiTiON 7.
If three angles of an equilateral pentagon, taken either in
order or not in order, be equal, the pentagon will be equiangular.

For in the equilateral pentagon ABCDE let, first, three
angles taken in order, those at 4, B, C,
be equal to one another;

A
I say that the pentagon ABCDE is
equiangular.
B F E
c 0

For let AC, BE, FD be joined.

Now, since the two sides CB, BA
are equal to the two sides BA, AE
respectively,

and the angle CBA is equal to the
angle BAEg,

therefore the base A4C is equal to the base BE,

the triangle 4 5C is equal to the triangle ABE,

and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend, [r 4]
that is, the angle BCA to the angle BEA, and the angle
ABE to the angle CAB;

hence the side 4F is also equal to the side BZ. [1. 6]
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But the whole 4 C was also proved equal to the whole BE';
therefore the remainder FC is also equal to the remainder FE,

But CD is also equal to DE.
Therefore the two sides FC, CD are equal to the two
sides FE, ED;

and the base 7D is common to them;
therefore the angle #CD is equal to the angle FED, [ 8]

But the angle #CA was also proved equal to the angle
AEB;
therefore the whole angle BCD is also equal to the whole
angle AED.

But, by hypothesis, the angle BZCD is equal to the angles
at 4, B;
therefore the angle A£D is also equal to the angles at 4, 5.

Similarly we can prove that the angle CDE is also equal
to the angles at 4, 5, C;

therefore the pentagon A BCDE is equiangular.

Next, let the given equal angles not be angles taken in
order, but let the angles at the points 4, C, D be equal ;
I say that in this case too the pentagon 4 BCDE is equiangular.

For let BD be joined.

Then, since the two sides B4, AE are equal to the two
sides BC, CD,

and they contain equal angles,
therefore the base BE is equal to the base BD,
the triangle ABE is equal to the triangle 2CD,
and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend ; (1 4)
therefore the angle 4 £ 28 is equal to the angle CDB.
But the angle BED is also equal to the angle BDE,
since the side B£ is also equal to the side BD. [v 5]
"Therefore the whole angle 4£D is equal to the whole
angle CDE.
BuE‘ the angle CDE is, by hypothesis, equal to the angles
at 4, C;
therefore the angle A £D is also equal to the angles at 4, C.
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For the same reason
the angle ABC is also equal to the angles at A4, C, D.
Therefore the pentagon 4BCDE is equiangular.
Q. E. D.
This proposition is required in XL 17.
The steps of the proof may be shown thus.

I. Suppose that the angles at 4, B, C are all equal.
Then the isosceles triangles BAE, ABC are equal in all respects ;

thus BE=AC, LBCA=rLBEA, (CAB=crEBA.
By the last equality, FA = FB,
so that, since BE = AC, FC=FE.
The &s FED, FCD are now equal in all respects, [r. 8, 4]
and L FCD =L FED.
But L ACB =+ AEBRB, from above,
whence, by addition, LBCD=r AED.,

Similarly it may be proved that . CDE is also equal to any one of the
angles at 4, B, C.

II. Suppose the angles at 4, C, D to be equal.

Then the isosceles triangles 48E, CB.D are equal in all respects, and
hence BE = B (so that . BDE =. BED),
and t CDB=r AEB.

By addition of the equal angles,

L CDE =1 DEA.

Similarly it may be proved that £ 48C is also equal to each of the angles

at 4, C, D.

ProrosiTion 8.

If in an equilateral and equiangular pentagon straight
lines subtend two angles taken in order, they cut one another
in extreme and mean ratio, and their greater segments are equal
to the side of the pentagon.

For in the equilaterai and equiangular pentagon A BCDE
let the straight lines 4C, BE, cutting

one another at the point /7, subtend
two anEIeS taken in order, the angles
at 4, B;
3 8

I say that each of them has been A
cut in extreme and mean ratio at
the point /7, and their greater seg-
ments are equal to the side of the
pentagon. 5
For let the circle ABCDE be
circumscribed about the pentagon ABCDE, (1v. 14]
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Then, since the two straight lines £4, AB are equal to
the two A8, BC,

and they contain equal angles,

therefore the base BZ is equal to the base 4C,

the triangle ABE is equal to the triangle 4B8C,

and the remaining angles will be equal to the remaining angles

respectively, namely those which the equal sides subtend. (1. 4]
Therefore the angle BAC is equal to the angle ABE ;

therefore the angle A A E is double of the angle BAA. [1. 32]
But the angle £A4C is also double of the angle BAC,

inasmuch as the circumference £2C is also double of the
circumference CB; [11. 28, vi. 33]

therefore the angle 7 A E is equal to the angle AHE ;
hence the straight line /£ is also equal to £4, that is, to A 5.

1. 6

And, since the straight line BA4 is equal to AE, o

the angle 4B E is also equal to the angle AEB. [r. 5]

But the angle 4 BE was proved equal to the angle BAH;
therefore the angle BEA is also equal to the angle BAH.

And the angle 4 BE is common to the two triangles 4 BE
and ABH ;
therefore the remaining angle BA4E is equal to the remaining
angle AHB; (1. 32]
therefore the triangle ABE is equiangular with the triangle
ABH ;
therefore, proportionally, as £B is to BA, so is AB to BH.

VI.
But B4 is equal to £4 ; el
therefore, as BE is to EH, so is EH to HAB.
And BE is greater than £/ ;
therefore £/ is also greater than A 5. [v. 14)

Therefore BE has been cut in extreme and mean ratio at
A, and the greater segment /Z is equal to the side of the

pentagon.

Similarly we can prove that 4C has also been cut in
extreme and mean ratio at /7, and its greater segment CH
is equal to the side of the pentagon.

Q. E. D.
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In order to prove this theorem we have to show (1) that the As AEB,
HABR are similar, and (2) that EH = EA (= AB).
To prove (z) we have
As AEB, BAC equal in all respects,

whence EB=AC,
and L BAC=r ABE.
Therefore LtAHE =20 BAC
=L EAC,
so that EH=FEA
=AB.

To prove (1) we have, in the As AEB, HAB,
LBAH =t EBA

=L AEB,
and L ABE is common ,
therefore the third s AHB, £ARB are equal,
and As AEB, HAB are similar.

Now, since these triangles are similar,
EB : BA=PBA: BH,
or (rect. £B, BH)=(sq. on BA)
=(sq. on EH),
so that £2 is divided in extreme and mean ratio at /4.
Similarly its equal, C4, is divided in extreme and mean ratio at /4.

PropoSITION 9.

If the side of the hexagon and that of the decagon inscribed
in the same civcle be added together, the whole straight line
has been cut in extreme and mean ratio, and ils greater segment
is the side of the hexagon.

Let ABC be a circle ;
of the figures inscribed in the circle 48C let BC be the side
of a decagon, CD that of a hexagon,
and let them be in a straight line ;

I say that the whole straight line
BD has been cut in extreme and E
mean ratio, and CZ0) is its greater
segment.

For let the centre of the circle,
the point £, be taken,
let £8, EC, ED be joined,
and let BE be carried through to 4. D

Since BC is the side of an equilateral decagon,

>
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therefore the circumference ACAH is five times the circum-
ference BC;

therefore the circumference 4C is quadruple of CAB.

But, as the circumference AC is to CAB, so is the angle
AEC to the angle CEB; [vr. 33]

therefore the angle A £C is quadruple of the angle CEZ.
And, since the angle £BC is equal to the angle £CB5, [1. 5]

therefore the angle 4 Z£C is double of the angle £CB. [1. 32]
And, since the straight line £C is equal to CD,

for each of them is equal to the side of the hexagon inscribed
in the circle ABC, [tv. 15, Por.]

the angle CED is also equal to the angle CDE ; [ 5)

therefore the angle £CA is double of the angle £DC. [u 32]
But the angle 4 EC was proved double of the angle £CB;

therefore the angle 4 Z£C is quadruple of the angle £DC.

But the angle 4£C was also proved quadruple of the
angle BEC;
therefore the angle £DC is equal to the angle BEC.

But the angle £80 is common to the two triangles BEC
and BED;
therefore the remaining angle BED is also equal to the
remaining angle £CZ; [x. 32
thergfore the triangle £BD is equiangular with the triangle
EBC.

Therefore, proportionally, as DB is to BE, so is £B to BC.

[v1. 4]
But £2 is equal to CD.
Therefore, as BD is to DC, so is DC to CB.
And BD is greater than DC;
therefore DC is also greater than CAB.

Therefore the straight line B0 has been cut in extreme
and mean ratio, and DC is its greater segment.
Q. E. D.

BC is the side of a regular decagon inscribed in the circle; CD is the
sidi? cg the inscribed regular hexagon, and is therefore equal to the radius BE
or EC.

Therefore, in order to prove our theorem, we have only to show that ke
triangles EBC, DBE ave similar.
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Since BC is the side of a regular decagon,
(arc BCA) =5 (arc BC),

so that (arc CFA)= 4(arc BC),
whence LCEA=4LBEC.
But Lt CEA=2. ECB.
Theretore LECB=20LBEC .ooovrieieeianienninnins (1).
But, since CD = CE,
LCDE=LCED,
so that LECB=2.LCDE,

It follows from (1) that . BEC=c CDE.
Now, in the As EBC, DBE,
LBEC=L BDE,

and L EBC is common,
so that Lt ECB=r DEB,
and As EBC, DBE are similar.
Hence DB : BE=EB: BC,
or (rect. DB, BC)=(sq. on £B5)
=(sq. on CD),

and DB is divided at C in extreme and mean ratio.

To find the side of the decagon algebraically in terms of the radius we
have, if x be the side required,
(r+x)x=7r"

whence x=£(.j5-l).

ProrosiTION 10.

If an equilateral pemtagon be inscribed in a civcle, the
square on the side of the pentagon is equal to the squares on
the side of the hexagon and on that of the decagon inscribed in
the same circle.

Let ABCDE be a circle,
and let the equilateral pentagon 4BCDE be inscribed in the
circle ABCDE.

I say that the square on the side of the pentagon ABCDE
is equal to the squares on the side of the hexagon and on
that of the decagon inscribed in the circle 4BCDE.

For let the centre of the circle, the point %, be taken,
let AF be joined and carried through to the point G,
let 7B be joined,
let 7/ be drawn from F perpendicular to 42 and be carried
through to X,
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let AK, KB be joined,

let 7L be again drawn from # perpendicular to A4, and be
carried through to /7,

and let KV be joined.

i A
Since the circumference y
ABCG is equal to the circum-
ference AEDG,
and in them 4AB8C is equal to B £
AED, g

therefore the remainder, the
circumference CG, is equal to
the remainder GD.

But CD belongs to a pen-
tagon ; [*) ]
therefore CG belongs to a \\0/
decagon.

And, since 74 is equal to 725,
and £/ is perpendicular,
therefore the angle 4 7K is also equal to the angle XFB.

[r 5, 1 26]
Hence the circumference 4 X is also equal to X'Z ; [m. 26]

therefore the circumference 47 is double of the circumference
BK;

therefore the straight line 4K is a side of a decagon.

For the same reason
AK is also double of KM

Now, since the circumference 425 is double of the circum-
ference BK,
while the circumference CD is equal to the circumference 45,

therefore the circumference CD is also double of the circum-
ference BK.

But the circumference CD is also double of CG;

therefore the circumference CG is equal to the circumference
BK.

But BK is double of KM, since KA is so also;
therefore CG is also double of KM,
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But, further, the circumference CA is also double of the
circumference BKX,

for the circumference CB is equal to BA.

Therefore the whole circumference GAB is also double
of BM ;

hence the angle GFB is also double of the angle BFM. [vi. 33]
But the angle GF2 is also double of the angle A4 5,
for the angle #A4 2B is equal to the angle 4 BF.

Therefore the angle BFN is also equal to the angle 74 5.
But the angle 4BF is common to the two triangles ABF
and BFN ;

therefore the remaining angle 425 is equal to the remaining
angle BNF; (1 32]
therefore the triangle ABF is equiangular with the triangle
BFN.
Therefore, proportionally, as the straight line 42 is to BF,
so is /B to BN ; [v1. 4]
therefore the rectangle 4.8, BN is equal to the square on BF.
[vi 17]
Again, since AL is equal to LXK,
while ZNV is common and at right angles,
therefore the base KV is equal to the base 4V ; [1. 4]
therefore the angle LKV is also equal to the angle ZAN.

But the angle LAN is equal to the angle XBN;
therefore the angle LAV is also equal to the angle KBN.

And the angle at 4 is common to the two triangles 4 X3
and AKN.

Therefore the remaining angle AKZB is equal to the
remaining angle XN A ; [ 32]
therefore the triangle KB A is equiangular with the triangle
KNA.

Therefore, proportionally, as the straight line B4 is to
AK, so is KA to AN ; [vi. 4]
therefore the rectangle 84, AN is equal to the square on AKX

[ve 17

But the rectangle A58, BN was also proved equal to th(]z

square on BF;
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therefore the rectangle 43, BN together with the rectangle
BA, AN, that is, the square on BA [u. 2], is equal to the
square on BF together with the square on AKX,

And BA is a side of the pentagon, BF of the hexagon
[1v. 15, Por.], and AKX of the decagon.
Therefore etc.
Q. E. D,

ABCDE being a regular pentagon inscribed in a circle, and 4G the
diameter through 4, it follows that
(arc CG) = (arc GD),
and CG, GD are sides of an inscribed regular decagon.
FHK being drawn perpendicular to 4B, it follows, by 1. 26, that
Ls AFK, BFK are equal, and BK, KA are sides of the lar decagon.
Similarly it may be proved that, FLM being perpendicrﬁ?:r to AKX,
AL=LK,
and (arc AM) = (arc MK).
The main facts to prove are that
(1) the triangles ABF, FBN are similar, and (2) the triangles 48K, AKN
are similar.
(r) 2 (arc LG) = (arc CD)
= (arc 4.B)
=2 (arc BK),
or (arc CG) = (arc BK) = (arc AK)
=2 (arc KM).
And (arc CB) =2 (arc BK).
Therefore, by addition,
(arc BCG) = 2 (arc BKM).

Therefore L BFG =12t BFN.
But LBFG=12r FAB,
so that L FAB =L BFN.

Hence, in the As ABF, FBN,

t FAB=r BFN,
and L ABF is common ;
therefore L AFB'=r BNF,
and As ABF, FBN are similar.

(2) Since AL = LK, and the angles at L are right,
AN = NK,
and L NKA=t NAK
=r KBA.
Hence, in the As ABK, AKN,

L ABK =t AKN,
and L KAN is common,
whence the third angles are equal ;
therefore the triangles 48K, AKN are similar.
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Now from the similarity of As ABF, FBN it follows that
AB : BF=BF: BN,
or (rect. AB, BN)=(sq. on BF),
And, from the similarity of ABK, AKN,
BA : AK=AK : AN,
or (rect. B4, AN)=(sq. on AK).
Therefore, by addition,
(rect. 4B, BN) + (rect. B4, AN)=(sq. on BF) + (sq. on 4K),
that is, (sy. on 4.8)=(sq. on BF) + (sq. on 4K).

If  be the radius of the circle, we have seen (x111. g, note) that
AK = ; (5 1).

Therefore (side of pentagon)® = r* + :—:(6 -2.,/5)
rl
(r0—2./s),

Ni1o-2,/s5.

wiY &

so that (side of pentagon) =

ProrosiTION 11.

If in a circle whick has ils diameter rational an equilateral
pentagon be inscribed, the side of the pentagon is the irrational
straight line called minor.

For in the circle A BCDE which has its diameter rational
let the equilateral pentagon ABCDE be inscribed ;

I say that the side of the pentagon is the irrational straight
line called minor.

For let the centre of the circle, the point /#, be taken,
let AF, FB be joined and carried through to the points, G, A,
let AC be joined,
and let 7K be made a fourth part of AF.
Now AF is rational ;
therefore #KX is also rational.
But BF is also rational ;
therefore the whole BX is rational.

And, since the circumference ACG is equal to the circum-
ference ADG,

and in them AABC is equal to 4 £D,
therefore the remainder CG is equal to the remainder GD.
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And, if we join AD, we conclude that the angles at L
are right,

and £D is double of CL.

For the same reason
the angles at A/ are also right,
and AC is double of CH.

A
B E
N FK
H
L
(+) _/D
G

Since then the angle ALC is equal to the angle AMF,

and the angle ZAC is common to the two triangles ACL
and AMF,

therefore the remaining angle 4CL is equal to the remaining
angle MFA ; [ 32]

therefore the triangle ACL is equiangular with the triangle
AMF;

therefore, proportionally, as LC is to CA, so is MF to FA.
And the doubles of the antecedents may be taken ;

therefore, as the double of ZC is to CA, so is the double of
MFto FA.

But, as the double of M Fis to FA, so is MF to the half
of FA ;

therefore also, as the double of LC is to CA, so is MF to the
half of FA.

And the halves of the consequents may be taken ;

therefore, as the double of LZC is to the half of CA4, so is MF
to the fourth of ~A4.
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And DC is double of LC, CM is half of CA, and FK a
fourth part of 74 ;

therefore, as DC is to CM, so is MF to FK.

Componendo also, as the sum of DC, CM is to CM, so is
MK o KF; [v. 18]

therefore also, as the square on the sum of DC, CM is to the
square on CM, so is the square on MK to the square on KF.

And since, when the straight line subtending two sides of
the pentagon, as A4C, is cut in extreme and mean ratio, the
greater segment is equal to the side of the pentagon, that is,
to DC, [xm1. 8]

while the square on the greater segment added to the half
of the whole is five times the square on the half of the
whole, [xur 1]

and CM is half of the whole AC,

therefore the square on DC, CM taken as one straight line is
five times the square on CH/.

But it was proved that, as the square on DC, CM taken
as one straight line is to the square on C/H, so is the square
on MK to the square on KF;

therefore the square on MK is five times the square on KA.
But the square on K/ is rational,

for the diameter is rational ;

therefore the square on MK is also rational ;

therefore MK is rational

And, since BF is quadruple of FK,
therefore BK is five times K F;

therefore the square on BKX is twenty-five times the square
on KF.

But the square on MK is five times the square on X'F;
therefore the square on BK is five times the square on KM/

therefore the square on BK has not to the square on &M
the ratio which a square number has to a square number ;
therefore BK is incommensurable in length with AWM.  [x. 9]

And each of them is rational.
Therefore BK, KM are rational straight lines commen-
surable in square only.
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But, if from a rational straight line there be subtracted a
rational straight line which is commensurable with the whole
in square only, the remainder is irrational, namely an apotome;

therefore M B is an apotome and MK the annex to it. [x. 73]

I say next that M2 is also a fourth apotome.

Let the square on V be equal to that by which the square
on BK is greater than the square on K/ ;
therefore the square on ZX is greater than the square on XM/
by the square on V.

And, since KF is commensurable with 75,

componendo also, KB is commensurable with 75. [x. 15]
But BF is commensurable with B/ ;
therefore BK is also commensurable with B4, [x. 12]

And, since the square on BK is five times the square
on KM,
therefore the square on BK has to the square on KM the
ratio which 5 has to 1.

Theretore, convertendo, the square on BK has to the square
on /V the ratio which 5 has to 4 [v. 19, Por.], and this is not the
ratio which a square number has to a square number ;
therefore BK is incommensurable with V; [x. 9]
therefore the square on BK is greater than the square on X/
by the square on a straight line incommensurable with BX.

Since then the square on the whole BX is greater than
the square on the annex A/ by the square on a straight line
incommensurable with BX,

and the whole ZX is commensurable with the rational straight
line, BH, set out,

therefore MB is a fourth apotome. [x. Deff. ur. 4)

But the rectangle contained by a rational straight line and
a fourth apotome is irrational,

and its square root is irrational, and is called minor.  [x. 94]
But the square on 428 is equal to the rectangle 75, BM,

because, when 4/ is joined, the triangle 4B/ is equiangular
with the triangle AB8M, and, as HB is to BA, so is AB
to BM.
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Therefore the side 42 of the pentagon is the irrational
straight line called minor.

Q. E. D.

Here we require certain definitions and propositions of Book x.

First we require the definition of an apofome |see X. 73], which is a straight
line of the form (p ~ \/£. p), where p is a “rational ” straight line and £ is any
integer or numerical fraction, the square root of which is not integral or
expressible in integers. The lesser of the straight lines p, /2. p is the annex.

Next we require the definition of the fourth apotome |x. Defi. 1. (after
X. 84)], which is a straight line of the form (x-y), where x, y (being both
rational and comme able in square only) are also such that /2 —)* is
incommensurable wiu. x, while x is commensurable with a given rational
straight line p. As shown on X. 88 (note), the fourth apotome is of the form

kp
ol
( » V1 +A) ¥

Lastly the minor (straight line) is the irrational straight line defined in
X. 76. It is of the form (x - y), where x, y are incommensurable in square,
and (2®+)") is ‘rational,’ while xy is ‘medial.’ As shown in the note on
X. 76, the minor irrational straight line is of the form

LB ,\/l + ¥ & —L,\/r - ——@—-A-.
N NJi+£ W2 Ji+
The proposition may be put as follows. ABCDE being a regular
pentagon inscribed in a circle, 4G, BH the diameters through 4, & meeting
CD in L and AC in M respectively, FX is made equal to }4 7.
Now, the radius 4 (r) being rational, so are FK, BK.
The arcs CG, GD are equal ;
hence s at Z are right, and CD=2CL
Similarly £ s at M are right, and 4C=2CM.

We have to prove
(1) that BM is an apotome,
(2) that B is a fourth apotome,
(3) that B4 is a minor irrational straight line.

Remembering that, if CA is divided in extreme and mean ratio, the
greater segment is equal to the side of the pentagon [xu1. 8], and that accord
ingly [xut. 1] (CD + }CA)* = 5 (}CA)’, we work towards a proportion con-
taining the ratio (CD + CM)* : CAL, thus.

The As ACL, AFM are equiangular and therefore similar.

Therefore LC:CA=MF: F4,
and accordingly 2LC:CA=MF: }F4;
thus 2LC: }CA = MF: }FA,
or DC:CM=MF: FK;

whence, componendo, and squaring,
(DC + CMY : CM*= MK* : KF*.
But (DC+ CMy=5CM*;
therefore MK = KF,
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[This means that MK? = f 7
or MK = 145 r]

It follows that, XF being rational, K™, and therefore MK, is rational.
(1) To prove that BAf is an apofome and MK its annex.

We have BF=4FK;
therefore BK = 5FK,
BK*® =25 FK*®

= 5MK*, from above ;

therefore BK? has not to MK™ the ratio of a square number to a square
number ;
therefore BX, MK are incommensurable in length.

They are therefore rational and commensurable in square only ;
accordingly BM is an apolome.

[BK*=5MK*=}§#", and BK={r

Consequently BK - MK= (i r— %5 r) ]

(2) To prove that BM is a fourth apotome.

First, since X%, FB are commensurable,

BK, BF are commensurable, i.e. BK is commensurable with BH, a given
rational straight line.

Secondly, if Nt= BK*- KM,
since BK': KM'=5:1,
it follows that BK®: N*'=5:34,

whence BX, NV are incommensurable.
Therefore BM is a _fourth apotome.
(3) To prove that BA is a minor irrational straight line.

If a fourth apotome form a rectangle with a rational straight line, the side
of the square equivalent to the rectangle is minor [X. 94).

Now BA*=HB.BM,
HB is rational, and BM is a fourth apotome ;
therefore B4 is a minor irrational straight line.

[BA:r,Jz.J%-%:EJ:o—:Js.

If this is separated into the difference between two straight lines, we have

BA=§J5+2J5-—245—2J5.]

ProrosiTiON 12,

If an equilateral triangle be inscribed in a civcle, the square
on the side of the triangle is triple of the square on the radius
of the circle.
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Let ABC be a circle,
and let the equilateral triangle 4 8C be inscribed in it ;

I say that the square on one side of
the triangle A BC is triple of the square 2
on the radius of the circle.

For let the centre D of the circle
ARBC be taken,

let AD be joined and carried through
to £,

and let BE be joined. \ /c
Then, since the triangle 42C is >

: E
equilateral,

therefore the circumference B£C is a third part of the circum-
ference of the circle 45C.

Therefore the circumference ZBE is a sixth part of the
circumference of the circle;

therefore the straight line B belongs to a hexagon ;
therefore it is equal to the radius DE. [1v. 15, Por.]
And, since A is double of DE,

the square on 4 £ is quadruple of the square on £D, that is,
of the square on BE.
But the square on A is equal to the squares on A5, BE;
[ 31, 1. 47)
therefore the squares on 4B, BE are quadruple of the square
on BE.

Therefore, separando, the square on AZB is triple of the
square on BE.

But BE is equal to DE';
therefore the square on 428 is triple of the square on DE.

Therefore the square on the side of the triangle is triple
of the square on the radius.

D

Q. E. D.

ProposITION 13.

To construct a pyramid, to comprehend it in a given sphere,
and to prove that the square on the diameter of the spherve is
one and a half times the square on the side of the pyramid.
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Let the diameter 45 of the given sphere be set out,
and let it be cut at the point C so that AC is double of C5;
let the semicircle AD2B be described on 425,
let CD be drawn from the point C at right angles to 425,
and let DA be joined ;

let the circle £FG which has its radius equal to DC be
set out,

let the equilateral triangle £G be inscribed in the circle EFG,
[1v. 2]

let the centre of the circle, the point /7, be taken, [, 1]
let £H, HF, HG be joined ;

from the point A let Z K be set up at right angles to the plane
of the circle £FG, [x1. 12]
let /K equal to the straight line 4C be cut off from 7K,
and let KX£, KF, KG be joined.

5 g

Now, since K/ is at right angles to the plane of the
circle EFG,

therefore it will also make right angles with all the straight
lines which meet it and are in the plane of the circle £FG.
[x1. Def. 3]
But each of the straight lines Z £, AF, HG meets it :

therefore 7K is at right angles to each of the straight lines
HE, HF, HG.
And, since AC is equal to /KX, and CD to HE,
and they contain right angles,
therefore the base DA is equal to the base K'Z. [r 4]
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For the same reason
each of the straight lines K%, KG is also equal to DA ;

therefore the three straight lines KE, K'F, KG are equal to
one another.

And, since 4C is double of CB,
therefore 428 is triple of BC.

But, as 4B is to BC, so is the square on 4D to the square
on DC, as will be proved afterwards.

Therefore the square on 4D is triple of the square on DC.

But the square on #£ is also triple of the square on £/,

[xnr 12]
and DC is equal to £/ ;
therefore DA is also equal to £EF.
But DA was proved equal to each of the straight lines
KE, KF, KG;
therefore each of the straight lines £F, /G, GE is also equal
to each of the straight lines KE, KF, KG ;

therefore the four triangles £FG, KEF, KFG, KEG are
equilateral.

Therefore a pyramid has been constructed out of four
equilateral triangles, the triangle £/G being its base and the
point X its vertex.

It is next required to comprehend it in the given sphere
and to prove that the square on the diameter of the sphere
is one and a half times the square on the side of the pyramid.

For let the straight line /L be produced in a straight
line with KA,

and let /L be made equal to CA.

Now, since, as AC is to CD, so is CD to CB, [v1. 8, Por.]
while AC is equal to KH, CD to HE, and CB to HL,
therefore, as KA is to HE, sois EH to HL ;

therefore the rectangle X'/, HL is equal to the square on
EH. [ve. 17]

And each of the angles KAE. EHL is right;

therefore the semicircle described on AL will pass through
E also. [cf. v1. 8, 11 31]
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If then, K'Z remaining fixed, the semicircle be carried round
and restored to the same position from which it began to be
moved, it will also pass through the points 7, G,
since, if 7L, LG be joined, the angles at 7, G similarly become
right angles ;
and the pyramid will be comprehended in the given sphere.

For KL, the diameter of the sphere, is equal to the

diameter AB of the given sphere, inasmuch as K/ was
made equal to AC, and HL to CB.

I say next that the square on the diameter of the sphere
is one and a half times the square on the side of the
pyramid

For, since AC is double of CB5,
therefore A28 is triple of BC;
and, convertendo, BA is one and a half times AC.

But, as BA is to AC, so is the square on BA to the square
on AD.

Therefore the square on BA is also one and a half times
the square on AD.

And BA is the diameter of the given sphere, and 4D is
equal to the side of the pyramid.

Therefore the square on the diameter of the sphere is
one and a half times the square on the side of the pyramid.

Q. E. D.
LEMMA.

It is to be proved that, as A8 is to BC, so 1s the square
on AD to the square on DC.

For let the figure of the semi- D
circle be set out,
let DB be joined,
let the square £C be described
on AC,

and let the parallelogram 7B be
completed.

Since then, because the tri-
angle DAPB is equiangular with
the triangle DAC,

as BA is to AD,so is DAt AC, g 3
[vi. 8, v1. 4]
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therefore the rectangle B4, AC is equal to the square on 4D.

[ve. 17]
And since, as AR is to BC, so is £B to BF, [ve. 1]

and £2 is the rectangle BA, AC, for EA is equal to AC,
and BF is the rectangle AC, CB,

therefore, as A B is to BC, so is the rectangle B4, AC to the
rectangle AC, CB.

And the rectangle A4, AC is equal to the square on 4D,
and the rectangle 4C, CA to the square on DC,

for the perpendicular DC is a mean proportional between the
segments AC, CB of the base, because the angle 402 is
right. [v1. 8, Por.]
Therefore, as A8 is to BC, so is the square on AD to
the square on DC.
Q. E. D.

The Lemma is with reason suspected. Euclid commonly takes more
difficult theorems for granted in the stereometrical Books. It is also clumsy
in itself, while, from a gloss in the proposition rejected as an interpolation, it
is clear that the interpolator of the gloss had not the Lemma. With the
Lemma should disappear the words “as will be proved afterwards ” (p. 469).

In the figure of the proposition, the semicircle really represents half of
a section of the sphere through its centre and one edge of the inscribed
tetrahedron (40 being the length of that edge).

The proof is in three parts, the object of which is to prove
(1) that XEFG is a tetrahedron with all its edges equal to 4.0,
(2) that it is inscribable in a sphere of diameter equal to 4.5,

(3) that AB*=3AD"
To prove (1) we have to show
(a) that KE=KF=KG=AD,
(4) that AD = EF.
(a) Since HE=HF=HG=CD,
KH=AC,
and +s ACD, KHE, KHF, KHG are right,
As ACD, KHE, KHF, KHG are equal in all respects ;
therefore KE=KF=KG=AD.
(¢) Since AB=3BC,
and AB:BC=AB.AC: AC.CH
=AD*: CD?
it follows that AD?*=3CD>
But [xm1. 12] EF=3EH*;

and EH = CD, by construction
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Therefore AD=EF.
Thus EFGK is a regular tetrahedron.

(2) We now observe the usefulness of Euclid’s description of a sphere
[in x1. Def. 14].

Producing XA (= AC) to L so that AL = CB,
we have KZ equal to 4.5 ;
thus XL is a diameter of the sphere which should circumscribe our tetra-
hedron,
and we have only to prove that £, #, G lie on semicircles described on KL
as diameter.

E.g. for the point £,

since AC:CD=CD: CB,

while AC=KH, CD=HE, CB=HL,
we have KH HE=HE:HL,

or KH . HL=HE®

whence, the angles XA E, EHL being right,
EKL is a triangle right-angled at £ [cf. v1. 8].

Hence £ lies on a semicircle on XZ as diameter.

Similarly for %, G.

Thus a semicircle on XL as diameter revolving round XL passes
successively through £, # G.

(3) A8=358C;
therefore BA=34C.
And BA:AC=BA*:BA.AC
=BA*: AD
Therefore BA*=3AD*

If » be the radius of the circumscribed sphere,

(edge of tetrahedron) = ’j? r=3./6.7.

It will be observed that, although in these cases Euclid’s construction is
equivalent to inscribing the particular regular solid in a given sphere, he does
not actually construct the solid sn the sphere but constructs a solid which a
sphere egual to the given sphere will circumscribe. Pappus, on the other
hand, in dealing with the same problems, actually constructs the respective
solids in the given spheres. His method is to find circular sections in the
given spheres containing a certain number of the angular points of the given
solids. His solutions are interesting, although they require a knowledge of
some properties of a sphere which are of course not found in the Elements
but belonged to treatises such as the Sphaerica of Theodosius.

Pappus’ solution of the problem of Eucl. XIII. 13.

In order to inscribe a regular pyramid or tetrahedron in a given sphere,
Pappus (111. pp. 142—144) finds two circular sections equal and parallel to one
another, each of which contains one of two opposite edges as its diameter. In
this and the other similar problems he proceeds in the orthodox manner by
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analysis and synthesis. The following is a reproduction of his solution of
this case.

Analysis.

Suppose the problem solved, 4, B, C, D being the angular points of the
required pyramid. ¢

Through 4 draw £F parallel to CD; this will make equal angles with
AC, AD; and, since AB does so too, £F
is perpendicular to 4.5 [Pappus has a lemma
for this, p. 140, 12—24), and is therefore a
tangent to the sphere (for £ is parallel to
CD, the base of the triangle 4ACD, and
therefore touches the circle circumscribing
it, while it also touches the circular section
AB made by the plane passing through 4.5
and ZF perpendicular to it).

Similarly G& drawn through D parallel
to A8 touches the sphere.

And the plane through GA, CD makes
a circular section equal and parallel to 4.5. £

Through the centre X of that circular
section, and in the plane of the section, draw ZM perpendicular to CD and
therefore parallel to 48. Join BL, BM.

B M is then perpendicular to 48, LM, and LB is a diameter of the sphere.

Join MC.

Then LM = 2MC,
and BC=AB=LM,
so0 that BC*=2MC*

And BM, being perpendicular to the plane of the circle LA, is perpen-
dicular to CM,

whence BC*= BM*+ MC?,
so that BM=MC.

But BC=LM;
therefore LM*=28BM*

And, since the angle ZM2B is right,

BL*= LM+ MB*=3LM"

Synthesis.

Draw two parallel circular sections of the sphere with diameter &',
such that

= 3a,
where 4 is the diameter of the sphere.

[This is easily done by dividing BLZ, any diameter of the sphere, at 7, so
that LP=2PB, and then drawing PM at right angles to LB meeting the
great circle LM B of the sphere in M. Then LM*:LB*=LP:LB=12:3.]

Draw sections through A, B perpendicular to M8, and in these sections
respectively draw the parallel diameters LM, 4B.

Lastly, in the section LM draw CD through the centre X perpendicular
to LM.

ABCD is then the required regular pyramid or tetrahedron.
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ProrosITION 14.

To construct an octahedron and comprehend it in a sphere,
as in the preceding case,; and lo prove that the square on the
diameter of the sphere is double of the square on the side of the
octahedyon.

Let the diameter 42 of the given sphere be set out,
and let it be bisected at C;
let the semicircle 4028 be described on 45,
let CD be drawn from C at right angles to 45,
let DB be joined ;
let the square £FGH, having each of its sides equal to D25,
be set out,
let ZF, EG be joined,
from the point X let the straight line A'Z be set up at riguz

angles to the plane of the square £FGH [xu. 12), and let it be
carried through to the other side of the plane, as K/ ;

from the straight lines KL, KM let KL, KM be respectively
cut off equal to one of the straight lines £K, FK, GK, HK,

andlet LE, LF, LG, LH, ME, MF, MG, MH be joined.

L

F G

Then, since KE is equal to XA,
and the angle £KH is right,
therefore the square on A £ is double of the square on £X.

: ; [ 47]
Again, since LK is equal to KE,

and the angle LZKXE is right,

therefore the square on £L is double of the square on EX.
(4]
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But the square on /£ was also proved double of the
square on £K;

therefore the square on LZZ is equal to the square on £/ ;
therefore L £ is equal to £4.

For the same reason
LH is also equal to HE ;
therefore the triangle L £/ is equilateral.
Similarly we can prove that each of the remaining tri-

angles of which the sides of the square £FGH are the bases,
and the points Z, A the vertices, is equilateral ;

therefore an octahedron has been constructed which is con-
tained by eight equilateral triangles.

[t is next required to comprehend it in the given sphere,
and to prove that the square on the diameter of the sphere is
double of the square on the side of the octahedron.

For, since the three straight lines LX, KM, KE are equal
to one another,

therefore the semicircle described on LM will also pass

through £.
And for the same reason,

if, LM remaining fixed, the semicircle be carried round and
restored to the same position from which it began to be
moved,

it will also pass through the points 7, G, A,
and the octahedron will have been comprehended in a sphere.

I say next that it is also comprehended in the given sphere.
For, since LA is equal to KM,

while X'Z is common,
and they contain right angles,
therefore the base ZZ is equal to the base £M. [1 4]
And, since the angle LEM is right, for it is in a semicircle,
[ 31]
therefore the square on ZA/ is double of the square on LE.
[r. 47]
Again, since AC is equal to C5,
AB is double of RC.
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But,as 4B is to BC, so is the square on A5 to the square
on BD;
therefore the square on 425 is double of the square on BD.

But the square on LM was also proved double of the
square on LE,

And the square on D2B is equal to the square on LE, for
E H was made equal to DB5.

Therefore the square on 42 is also equal to the square
on LM ;
therefore A5 is equal to LM.

And AR is the diameter of the given sphere ;
therefore Z M is equal to the diameter of the given sphere.

Therefore the octahedron has been comprehended in the
given sphere, and it has been demonstrated at the same time
that the square on the diameter of the sphere is double of the
square on the side of the octahedron.

Q. E. D.

I think the accompanying figure will perhaps be clearer than that in
Euclid’s text.

EFGH being a square with side equal to B0, it follows that XE, KF,
KG, KH are all equal to C5.

L

NI
ek ok N
M

So are KL, KM, by construction ;
hence LE, LF, LG, LH and ME, MF, MG, MH are all equal to EF or BD,

Thus (1) the figure is made up of eight equilateral triangles and is therefore
a regular octahedron.

(2) Since KE=KL=KM,
the semicircle on Z# in the plane ZXE passes through E.

Similarly 7, G, A lie on semicircles on LM as diameter.

Thus all the vertices of the tetrahedron lie on the sphere of which LA is
a diameter.

(3) LE=EM=BD;
therefore LM?*=2El'=2B8D?
= AB3,

or LM=AB,
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(4) AB'=2BD*
=2EF,
If » be the radius of the circumscribed sphere,
(edge of octahedron) = /2. .

Pappus’ method.

Pappus (111. pp. 148—150) finds the two equal and parallel sections of the
sphere which circumscribe two opposite faces of the octahedron thus.

Analysis.

Suppose the octahedron inscribed, 4, B, C; D, E, F being the vertices.

Through ABC, DEF describe planes
making the circular sections 4B8C, DEF.

Since the straight lines DA, DB, DE, DF
are equal, the points 4, £, %, B lie on a circle
of which D is the pole.

Again, since 4B, BF, FE, EA are equal,
ABFE is a square inscribed in the said circle,
and 4B, EF are parallel.

Similarly DE is parallel to BC, and DF
to AC.

Therefore the circles through D, E, #and
A, B, C are parallel ; and they are also equal
because the equilateral triangles inscribed in
them are equal.

Now, 4BC, DEF being equal and parallel circular sections,and 4.8, £F
equal and parallel chords “not on the same side of the centres,”

AFis a diameter of the sphere.

[Pappus has a lemma for this, pp. 136—138].

And AE = EF, so that AF*=2FE"

But, if @' be the diameter of the circle DEF,

d*=4EF, [cf. xmm. 12]
Therefore, if 4 be the diameter of the sphere,
d*:d*=3:2.

pr d is given, and therefore @' is given; hence the circles DEF, ABC
are given.

Synthesis,

Draw two equal and parallel circular sections with diameter &', such that

S=3a"

where 4 is the diameter of the sphere.

Inscribe an equilateral triangle 4BC in either circle (4.8C).

__ In the other circle draw £ equal and parallel to 48 but on the opposite
side of the centre, and complete the inscribed equilateral triangle DEF.
ABCDEF is the octahedron required.
It will be observed that, whereas in the problem of x1. 13 Euclid first
finds the circle circumscribing a face and Pappus first finds an edge, in this

pr?blem Euclid finds the edge first and Pappus the circle circumscribing
a face.
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ProrosiTion 15.

To construct a cube and comprehend it in a sphere, like the
pyramid; and to prove that the squave on the diameter of the
sphere is triple of the square on the side of the cube.

Let the diameter 42 of the given sphere be set out,
and let it be cut at C so that AC is double of CZB;
let the semicircle 4028 be described on A5,
let CD be drawn from C at right angles to 425,
and let D2 be joined ;
let the square £/GH having its side equal to D8 be set out,

from £, F, G, H let EK, FL, GM, HN be drawn at right
angles to the plane of the square £ZFGH,

from EK, FL, GM, HN let EK, FL, GM, HN respectively
be cut off equal to one of the straight lines £F, FG,
GH, HE,

and let KL, LM, MN, NK be joined ;

therefore the cube #V has been constructed which is contained
by six equal squares.

It is then required to comprehend it in the given sphere,
and to prove that the square on the diameter of the sphere is
triple of the square on the side of the cube.

For let XG, EG be joined.

Then, since the angle KEG is right, because KZ is also
at right angles to the plane £G and of course to the straight
line £G also, [x1. Def. 3]
therefore the semicircle described on A'G will also pass through
the point Z.

Again, since GF is at right angles to each of the straight
lines FL, FE,

GF is also at right angles to the plane FK;
hence also, if we join #X, GF will be at right angles to FX';
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and for this reason again the semicircle described on GX will
also pass through 7.

Similarly it will also pass through the remaining angular
points of the cube.

If then, KXG remaining fixed, the semicircle be carried
round and restored to the same position from which it began
to be moved,

the cube will be comprehended in a sphere.

I say next that it is also comprehended in the given
sphere.
For, since GF is equal to FE,
and the angle at # is right,
therefore the square on ZG is double of the square on £F.
But £F is equal to £K;
therefore the square on £G is double of the square on £X;
hence the squares on GZ£, £K, that is the square on GK 1. 47],
is triple of the square on £X.
And, since A28 is triple of BC,

while, as 45 is to BC, so is the square on 4B to the square
on BD,
therefore the square on 42 is triple of the square on BD.
But the square on G KX was also proved triple of the square
on KE.
And KE was made equal to D5 ;

therefore KG is also equal to A 5.
And AB is the diameter of the given sphere ;

therefore KG is also equal to the diameter of the given
sphere.

Therefore the cube has been comprehended in the given
sphere ; and it has been demonstrated at the same time that
the square on the diameter of the sphere is triple of the square
on the side of the cube.

Q. E. D
AB is divided so that AC=2CB; CD is drawn at right angles to 4.5,
and BD is joined.

KG is, by construction, a cube of side equal to BD.
To prove (1) that it is inscribable in a sphere.

Since K'E is perpendicular to £H, EF,
KE is perpendicular to £G.
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Thus, XEG being a right angle, £ lies on a semicircle with diameter XG.

The same thmg is proved in the same way of the other vertices
£ H L M N

Thus the cube is inscribed in the sphere of which X'G is a diameter.

(2) KG*= KE*+ EG*
=KE*+ 2EF?
= 3EK"
Also =38C,
while AB: BC' AB': AB.BC
=ARB*: BD*;
therefore AB*=3BD"
But BD=EK,;
therefore KG=AB.
(3) AB*=38D"
=3KE*
If » be the radius of the circumscribed sphere,
(edge of cube) = J =¥ J37

Pappus’ solution.

In this case too Pappus (111. pp. 144—148) gives the full analysis and
synthesis.
Analysis.
Suppose the problem solved, and let the vertices of the cube be
Aiﬂqu!E!ﬁ;GlH'
Draw planes through 4, B, C, D and
E, F, G, H respectively; these will produce
parallel circular sections, which are also equal
since the inscribed squares are equal. E
And CE will be a diameter of the sphere. ~
Join EG. .
Now, since EG?*=2EH*=2GC?, R
and the angle CGE is right, O =39
CE*=GC*+ EG*=3EG". ‘A /
But CE* is given ;
therefore £G* is given, so that the circles
EFGH, ABCD, and the squares inscribed in them, are given.
Synthesis.
Draw two parallel circular sections with equal diameters &', such that
=37,
where 4 is the diameter of the given sphere.
Inscribe a square in one of the circles, as A BCD.
In the other circle draw #G equal and parallel to BC, and complete the
square on #G inscribed in the circle EFGH.
The eight vertices of the required cube are thus determined.




X1 16] PROPOSITIONS 15, 16 481

ProrosiTION 16.

7o construct an icosakedron and comprehend it in a sphere,
like the aforesaid figures; and lo prove that the side of the
cosahedron is the irrational straight line called minor.

Let the diameter 45 of the given sphere be set out,
and let it be cut at C so that AC is quadruple of CB,
let the semicircle 4027 be described on 45,

let the straight line CD be drawn from C at right angles
to AB,

and let DB be joined ;

let the circle EFGHK be set out and let its radius be equal
to DB,

let the equilateral and equiangular pentagon EFGHK be
inscribed in the circle EFGHK,

let the circumferences £F, FG, GH, HK, KE be bisected at
the points L, M, N, O, P,
and let LM, MN, NO, OP, PL, EP be joined.
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Therefore the pentagon LMNOP is also equilateral,
and the straight line Z 2 belongs to a decagon.

Now from the points £, F, G, H, K let the straight lines
EQ, FR, GS, HT, KU be set up at right angles to t%xe plane
of the circle, and let them be equal to the radius of the circle
EFGHK,
let OR, RS, S7, TU, UQ, OL, LR, RM, MS, SN, NT,
70, 0U, UP, PQ be joined.

Now, since each of the straight lines £Q, KU is at right
angles to the same plane,
therefore £Q is parallel to KU. [xr. 6]

But it is also equal to it;

and the straight lines joining those extremities of equal and
parallel straight lines which are in the same direction are equal
and parallel. [ 33)

Therefore QU is equal and parallel to £X.

But £X belongs to an equilateral pentagon ;
therefore Q U also belongs to the equilateral pentagon inscribed
in the circle EFGHK.

For the same reason

each of the straight lines QR, RS, S7, 77U also belongs to
the equilateral pentagon inscribed in the circle £FGHK ;

therefore the pentagon QRS7 U is equilateral.

And, since QF belongs to a hexagon,
and £2 to a decagon,
and the angle QEP2 is right,
therefore Q2 belongs to a pentagon ;

for the square on the side of the pentagon is equal to the
square on the side of the hexagon and the square on the side
of the decagon inscribed in the same circle. [xm1. 1o)

For the same reason
PU is also a side of a pentagon.

But QU also belongs to a pentagon ;
therefore the triangle QPU is equilateral.

For the same reason
each of the triangles QLR, RMS, SNT, 70U is also equi-
lateral.
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And, since each of the straight lines QZ, QP was proved
to belong to a pentagon,
and L2 also belongs to a pentagon,
therefore the triangle QL P is equilateral.

For the same reason
each of the triangles LZRM, MSN, NT0O, OUP is also equi-
lateral.

Let the centre of the circle £FGHK. the point V, be
taken ;
from V let VZ be set up at right angles to the plane of the
circle,
let it be produced in the other direction, as VX,
let there be cut off /"W, the side of a hexagon, and each of
the straight lines VX, WZ, being sides of a decagon,
and let QZ, QW, UZ, EV, LV, LX, XM be joined.

Now, since each of the straight lines VI, QF is at right
angles to the plane of the circle,

therefore VW is parallel to QF. [xu. 6]
But they are also equal ;
therefore £V, Q W are also equal and parallel. [ 33)

But £V belongs to a hexagon;
therefore Q W also belongs to a hexagon.
And, since Q W belongs to a hexagon,
and WZ to a decagon,
and the angle QWZ is right,
therefore QZ belongs to a pentagon. [xm1. 10]

For the same reason
UZ also belongs to a pentagon,
inasmuch as, if we join VK, WU, they will be equal and

opposite, and VX, being a radius, belongs to a hexagon ;
[xv. 15, Por.]

therefore WU also belongs to a hexagon.
But WZ belongs to a decagon,

and the angle UWZ is right ;

therefore UZ belongs to a pentagon. [x1. 10]
But QU also belongs to a pentagon ;

therefore the triangle QUZ is equilateral.
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For the same reason

each of the remaining triangles of which the straight lines
QR, RS, ST, TU are the bases, and the point Z the vertex,
is also equilateral.

Again, since VL belongs to a hexagon,
and VX to a decagon,
and the angle L VX is right,
therefore L X belongs to a pentagon. [x11. 10]

For the same reason,
if we join MV, which belongs to a hexagon,
MX is also inferred to belong to a pentagon.
But LM also belongs to a pentagon ;
therefore the triangle ZMX is equilateral.

Similarly it can be proved that each of the remaining
triangles of which MN, NO, OP, PL are the bases, and the
point X the vertex, is also equilateral.

Therefore an icosahedron has been constructed which is
contained by twenty equilateral triangles.

It is next required to comprehend it in the given sphere,
and to prove that the side of the icosahedron is the irrational
straight line called minor.

For, since /W belongs to a hexagon,
and WZ to a decagon,
therefore Z has been cut in extreme and mean ratio at I
and VW is its greater segment ; [xm. 9)
therefore, as ZV'is to VW, sois VW to WZ.

But VW is equal to VE, and WZ to VX ;
therefore, as ZV is to VE, sois EV to VX.

And the angles ZVE, EVX are right;
therefore, if we join the straight line £Z, the angle X£EZ
will be right because of the similarity of the triangles X £Z,
VEZ.

For the same reason,
since,as ZV'isto VW, sois VIWto WZ,
and ZV is equal to X W, and VW to WQ,
therefore, as X W is to WQ, sois QW to WZ.
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And for this reason again,

if we join QX, the angle at Q will be right ; [vi 8]
therefore the semicircle described on XZ will also pass
through Q. [ 31]

And if, XZ remaining fixed, the semicircle be carried
round and restored to the same position from which it began
to be moved, it will also pass through Q and the remaining
angular points of the icosahedron,
and the icosahedron will have been comprehended in 2
sphere.

I say next that it is also comprehended in the given sphere.
For let V¥ be bisected at A4'.
Then, since the straight line ’Z has been cut in extreme
and mean ratio at i
and ZW is its lesser segment,

therefore the square on Z W added to the half of the greater
segment, that is WA’ is five times the square on the half
of the greater segment ; [xmr. 3]
therefore the square on ZA4’ is five times the square on
AW.

And ZX is double of ZA', and V' W double of 4'W;
therefore the square on ZX is five times the square on
wv.

And, since AC is quadruple of C5,
therefore A28 is five times BC.

But, as A B is to BC, so is the square on 475 to the square
on BD; [vy. 8, v. Def. g]
therefore the square on A28 is five times the square on BD.

But the square on ZX was also proved to be five times

the square on VW,
And DB is equal to VW,

for each of them is equal to the radius of the circle EFGHK;
therefore 42 is also equal to XZ.

And AB is the diameter of the given sphere;
therefore XZ is also equal to the diameter of the given sphere.

Therefore the icosahedron has been comprehended in the
given sphere
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I say next that the side of the icosahedron is the irrational

straight line called minor.

or, since the diameter of the sphere is rational,
and the square on it is five times the square on the radius
of the circle EFGHK,
therefore the radius of the circle EFGHK is also rational ;
hence its diameter is also rational.

But, if an equilateral pentagon be inscribed in a circle
which has its diameter rational, the side of the pentagon is
the irrational straight line called minor. [xum. 11]

And the side oFthe pentagon £FGHK is the side of the
icosahedron.

Therefore the side of the icosahedron is the irrational
straight line called minor.

PorisM. From this it is manifest that the square on the
diameter of the sphere is five times the square on the radius
of the circle from which the icosahedron has been described,
and that the diameter of the sphere is composed of the side
of the hexagon and two of the sides of the decagon inscribed
in the same circle.

Q E. D.

Euclid’s method is
(1) to find the pentagons in the two parallel circular sections of the sphere,
the sides of which form ten (five in each circle) of the edges of the icosahedron,
(2) to find the two points which are the poles of the two circular sections,

(3) to prove that the triangles formed by joining the angular points of the
pentagons which are nearest to one another two and two are equilateral,

(4) to prove that the triangles of which the poles are the vertices and the
sides of the pentagons the bases are also equilateral,

(5) that all the angular points other than the poles lie on a sphere the
diameter of which is the straight line joining the poles,

(6) that this sphere is of the same size as the given sphere,

(7) that, if the diameter of the sphere is rational, the edge of the icosahedron
is the minor irrational straight line.

I have drawn another figure which will perhaps show the pentagons, and
Ehe position of the poles with regard to them, more clearly than does Euclid’s
gure,
(1) If AB is the diameter of the given sphere, divide A8 at C so that
AC=4CB;
draw CD at right angles to 4.5 meeting the semicircle on 48 in .D.
Join BD.
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BD is the radius of the circular sections containing the pentagons.
[If 7 is the radius of the sphere,

since AB:BC=AB*:4AB.BC
=ARB*: BD?,

while AB=5BC,

it follows that AB*=35BD",

or (radius of section)® = g%

Thus [X111. 10, note] (side of pentagon)® =§ (10 —12,/5).]

Inscribe the regular pentagon EFGHK in the circle EFGHK of radius
equal to BD.

Bisect the arcs £F, FG, ..., so forming a decagon in the circle.

Joining successive points of bisection, we obtain another regular pentagon
LMNOP.

LMNOP is one of the pentagons containing five edges of the icosakedron.

The other circle and inscribed pentagon are obtained by drawing perpen-
diculars from E, , G, H, K to the plane of the circle, as E£Q, FR, GS,
HT, KU, and making each of these perpendiculars equal to the radius of the
circle, or, as Euclid says, the side of the regular hexagon in it.

QRSTU is the second pentagon (of course equal to the first) containing five.
edges of the icosahedron.

Joining each angular point of one of the two pentagons to the two nearest
angular points in the other pentagon, we complete ten triangles each of which
has for one side a side of one or other of the two pentagons.

V, W are the centres of the two circles, and VW is of course perpen-
dicular to the planes of both.

(2) Produce VW in both directions, making VX and WZ both equal to
a side of the regular decagon in the drce (as EL).
Joining X, Z to the angular points of the corresponding pentagons, we
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have five more triangles formed with the sides of each pentagon as bases, ten
more triangles in all.

Now we come to the proof.
(3) Taking two adjacent perpendiculars, £Q, XU, to the plane of the circle
EFGHK, we sez that they are parallel as well as equal;
therefore QU, E£X are equal and parallel.

Similarly for Q&, EF etc.

Thus the pentagons have their sides equal.

To prove that the triangles Q2L etc., are equilateral, we have, e.g.

QL' =LE*+ EQ*
= (side of decagon)® + (side of hexagon)*

= (side of pentagon)?, [xm1. 10]
ie. QL = (side of pentagon in circle)
=-LP.
Similarly QP=LP,
and A QPL is equilateral,

So for the other triangles between the two pentagons.
(4) Since VW, EQ are equal and parallel,
VE, WQ are equal and parallel.
Thus WQ is equal to the side of a regular hexagon in the circies.
Now the angle ZWQ is right ;
therefore ZQ=ZW*+ W
= (side of decagon)® + (side of hexagon)®
= (side of pentagon)®. [xn. 10]
Thus ZQ, ZR, ZS, ZT, ZU are all equal to Q&, RS etc.; and the
triangles with Z as vertex and bases Q&, RS etc. are equilateral.
Similarly for the triangles with X as vertex and LM, M etc. as bases.
Hence the figure is an icosahedron, being contained by twenty equal
equilateral triangles.
To preve that all the vertices of the icosahedron lie on the sphere
which has XZ for diameter.

VIV being equal to the side of a regular hexagon, and WZ to the side of
a regular decagon inscribed in the same circle,

VZ is divided at ¥ in extreme and mean ratio. [xn g]
Therefore ZV . VW =VW:WZ,
or, since VW =VE, WZ=VX,
ZV.VE=VE:VX.
Thus £ lies on the semicircle on ZX as diameter. [v 8]

Similarly for all the other vertices of the icosahedron.
Hence the sphere with diameter XZ circumscribes it.
(6) To prove XZ= AAB.

Since VZ is divided in extreme and mean ratio at W, and VW is
bisected at A4,

A'Z2=sd' W [ 3]
Taking the doubles of 4’2, A' W, we have
XZ2=sVIV*
= sﬂﬂ
=AB. [see under (1) above]
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That is, XZ=AB.

[1f # is the radius of the sphere,
2

VW=BD= 75 7
VX = (side of decagon in circle of radius .B.D)
L BTD(JS —1) [x111. 9, note]
=7 Ws=1)
Consequently XZ=VW +2VX
o r(J5-1)
Js s
=2r]
(6) The radius of the circle EFGHK is equal to 72-5— 7, and is therefore

“rational ” in Euclid’s sense.
Hence the side of the inscribed pentagon is the irrational straight line

called minor. [xun 11)
[The side of this pentagon is the edge of the icosahedron, and its value is
(note on xII1. 10)
22 Jo—a7s
i I
=—4J10—2
75 /10-245
r — T
=5/10(5-V5).]

Pappus’ solution.

This solution (Pappus, 111. pp. 150—6) differs considerably from that of
Euclid. Whereas Euclid uses fwo circular sections of the sphere (those:
circumscribing the pentagons of his construction), Pappus finds four parallel
circular sections each passing through tkrez of the vertices of the icosahedron;
two of the circles are small circles circumscribing two opposite triangular
faces respectively, and the other two circles are between these two circles,
parallel to them and equal to one another.

Analysis.

Suppose the problem solved, the vertices of the icosahedron being 4, 5, C;
D EF; G H K; L, M, N.

Since the straight lines B4, BC, BF, BG, BE drawn from B to the
surface of the sphere are equal,

4, C, F, G, E are in one plane.

And 4AC, CF, FG, GE, EA are equal;
therefore A CFGE is an equilateral and equiangular pentagon.

So are the figures KEBCD, DHFBA, AKLGB, AKNHC, and
CHMGAB.

Join EF, KH.
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Now AC will be parallel to ZF (in the pentagon 4CFGE) and to KH
(in the pentagon A XNHC), so that EF, KH are also parallel ;

and further KA is paralle}l to ZM (in the pentagon ZKDHM).

Similarly BC, £D, GH, LN are all parallel ;
and likewise B4, FD, GK, MN are all parallel.

Since BC is equal and parallel to L, and B4 to MN, the circles 4BC,
LMN are equal and parallel.

Similarly the circles DEF, KGH are equal and parallel ; for the triangles
inscribed in them are equal (since each of the sides in both is the chord
subtending an angle of equal pentagons), and their sides are parallel re-
spectively.

Now in the equal and parallel circles DEF, KGH the chords EF, KH
are equal and parallel, and on opposite sides of the centres ;
therefore #KX is a diameter of the sphere [Pappus’ lemma, pp. 136—8], and the
angle FEK is right [Pappus’ lemma, p. 138, 20—26].

[The diameter ZX is not actually drawn in the figure.]

In the pentagon GEACKE, if EF be divided in extreme and mean ratio,

the greater segment is equal to 4C. [Eucl. xm1. 8]
Therefore ZF: AC = (side of hexagon) : (side of decagon in same circle).
XIIL ¢

And EFt+ AC*=EF+ EK*=d°, l ]

where 4 is the diameter of the sphere.

Thus #K, EF, AC are as the sides of the pentagon, hexagon and decagon
respectively inscribed in the same circle. [xm1. 10]
But FX, the diameter of the sphere, is given ;
therefore EF, AC are given respectively ;

thus the radii of the circles £Z#D, ACB are given (if », # are their radii,
A=Y EF, 7=} ACY).
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Hence the circles are given
and so are the circles XHG, LMN which are equal and parallel to them
respectively.

Synthests.

If @ be the diameter of the sphere, set out two straight lines x, y, such
that 4, x, y are in the ratio of the sides of the pentagon, hexagon and decagon
respectively inscribed in one and the same circle.

Draw (1) two equal and parallel circular sections in the sphere, with radii
equal to », where = }2°, as DEF, KGH,
and (2) two equal and parallel circular sections as 4B8C, LMN, with radius #
such that »* =}y

In the circles (1) draw £F, KH as sides of inscribed equilateral triangles,
parallel to one another, and on opposite sides of the centres ;
and in the circles (2) draw AC, LM as sides of inscribed equilateral triangles
parallel to one another and to £F, XA, and so that 4C, EF are on opposite
sides of the centres, and likewise XA, LM.

Complete the figure.

The correctness of the construction is proved as in the analysis.

It follows also (says Pappus) that

(diam. of sphere)® = 3 (side of pentagon in DEF).

For, by construction, KF.FE=p:h,
where p, & are the sides of the pentagon and hexagon inscribed in the same
circle DEF.

And FE : /= the ratio of the side of an equilateral triangle to that of a
hexagon inscribed in the same circle ;

that is, FE :k=,[3:1,
whence KF:p=./3:1,
or K= gpt,

Another construction.

Mr H. M. Taylor has a neat construction for an icosahedron of edge a.
Let 7 be the length of the diagonal of a regular pentagon with side equal
to a.
Then (figure of x11. 8), by Ptolemy’s theorem,
P=la+a
Construct a cube with edge equal to /
Let O be the centre of the cube.
From O draw OL, OM, ON perpendicular to three adjacent faces, and in
these draw PP, QQ', RR' parallel to 458, AD, AE respectively.
Make LP, LF', MQ, MQ, NR, NR' all equal to }a.
Let g, #, ¢, ¢, », # be the reflexes of P, £, Q, @', R, R’ respectively.
Then will 2, 7', Q, @', R, K, ¢, #, ¢, ¢, » r be the vertices of a regular
icosahedron.
The projections of PQ on AB, AD, AE are equal to }(/—a), 4a, §/
respectively.
Therefore PP=}(—-al+ia*+1
=} (P-al+a)
=a%
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Therefore PQ=a.

Similarly it may be proved that every other edge is equal to a.
All the angular points lie on a sphere with radius 0.2, and

OFP'=}(a’+ D).

P’

Each solid pentahedral angle is composed of five equal plane angles, each
of which is the angle of an equilateral triangle.
Therefore the icosahedron is regular.

[a*=40P*- 1.
And, from the equation /= /a + 4%, we derive
1=2(J5+1).
Therefore, if 7 be the radius of the sphere,
a® {1 + (ﬁd‘ﬁ} = 47,
4

whence a=4r[J10+ 25
=4rJ10-2./5/"/80
=z Vie-2Js

-G
as above.]
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ProrosiTION 17.

To construct a dodecahedron and comprekend it in a sphere,
like the aforesaid figures, and to prove that the side of the
dodecahedron is the irrational straight line called apolome.

Let ABCD, CBEF, two planes of the aforesaid cube at
right angles to one another, be set out,
let the sides AB, BC, CD, DA, EF, EB, FC be bisected at
G, H, K, L, M, N, O respectively,
let GK, HL, MH, NO be joined,
let the straight lines N2, PO, HQ be cut in extreme and
mean ratio at the points &, S, 7 respectively,
and let RP, PS, TQ be their greater segments ;

from the points R, S, 7 let RU, SV, TW be set up at right
angles to the planes of the cube towards the outside of the
cube,

let them be made equal to £7, PS, 70,
and let UB, BW, WC, CV, VU be joined.

J X v

L D

I say that the pentagon UBWCV is equilateral, and in
one plane, and is further equiangular.
For let RB, SB, VA be joined.
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Then, since the straight lime V.2 has been cut in extreme
and mean ratio at &,
and RP is the greater segment,
therefore the squares on PN, NR are triple of the square
on RP. [xm. 4]

But PN is equal to VB, and PR to RU;
therefore the squares on BN, NR are triple of the square
on RU.

But the square on BR is equal to the squares on BN, NR;

[r. 47]
therefore the square on BR is triple of the square on RU;
hence the squares on BR, RU are quadruple of the square
on RU.

But the square on B U is equal to the squares on BR, RU;
therefore the square on B is quadruple of the square on RU;
therefore BU is double of RU.

But VU is also double of UR,
inasmuch as SZ& is also double of PR, that is, of RU;
therefore BU is equal to UV.

Similarly it can be proved that each of the straight lines
BW, WC, CV is also equal to each of the straight lines
BU, UV.

Therefore the pentagon BUVCW is equilateral.

I say next that it is also in one plane.

For let PX be drawn from 2 parallel to each of the
straight lines RU, SV and towards the outside of the cube,
and let XA, AW be joined ;

I say that XA W is a straight line.

For, since /Q has been cut in extreme and mean ratio at
7, and QT is its greater segment,
therefore, as HQ isto Q7,sois Q7 to TH.

But ZQ is equal to AP, and Q7 to each of the straight
lines 7W, PX;
therefore, as AP is to PX, sois W7 to TH.

And HP is parallel to 7W,
for each of them is at right angles to the plane BD;  [xu 6]
and 7'/ is parallel to PX,
for each of them is at right angles to the plane BF. - [4]
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But if two triangles, as XPH, HTW, which have two
sides proportional to two sides be placed together at one
angle so that their corresponding sides are also parallel,

the remaining straight lines will be in a straight line; [v1. 32]
therefore X/ is in a straight line with Z/ W.

But every straight line is in one plane; [x1. 1]
therefore the pentagon UBWCV is in one plane.

I say next that it is also equiangular.

For, since the straight line V2 has been cut in extreme
and mean ratio at &, and PR is the greater segment,
while PR is equal to A5,

therefore /'S has also been cut in extreme and mean ratio
at P,

and VP is the greater segment ; [xm. 5]
therefore the squares on VS, SP are triple of the square
on NP, [xur. 4]

But N2 is equal to N5, and PS to SV

therefore the squares on NS, SV are triple of the square
on NB;

hence the squares on VS, SNV, NB are quadruple of the square
on NB.

But the square on S2 is equal to the squares on SN, NB;

therefore the squares on BS, SV, that is, the square on BV
—for the angle VSA is right—is quadruple of the square
on NB;

therefore VB is double of BNV.
But BC is also double of BN ;
therefore BV is equal to BC.

And, since the two sides BU, UK are equal to the two
sides BW, WC,

and the base BV is equal to the base BC,
therefore the angle BUYV is equal to the angle BWC. [ 8]

Similarly we can prove that the angle UVC is also equal
to the angle BWC;

therefore the three angles BIWC, BUV, UVC are equal to
one another.
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But if in an equilateral pentagon three angles are equal to
one another, the pentagon will be equiangular, [xu. 7]
therefore the pentagon BUVCW is equiangular.

And it was also proved equilateral ;
therefore the pentagon BUVCW is equilateral and equi-
angular, and it is on one side ZC of the cube.

Therefore, if we make the same construction in the case
of each of the twelve sides of the cube,

a solid figure will have been constructed which is contained
by twelve equilateral and equiangular pentagons, and which is
called a dodecahedron.

It is then required to comprehend it in the given sphere,
and to prove that the side of the dodecahedron is the irrational
straight line called apotome.

For let X2 be produced, and let the produced straight
line be X7 ;

therefore 2Z meets the diameter of the cube, and they bisect
one another,

for this has been proved in the last theorem but one of the
eleventh book. [xt. 38]
Let them cut at £ ;
therefore Z is the centre of the sphere which comprehends
the cube,
and ZP is half of the side of the cube.
Let UZ be joined.
Now, since the straight line /S has been cut in extreme
and mean ratio at £,
and V2 is its greater segment,
therefore the squares on NS, SP are triple of the square
on NP. [xm1. 4]
But AVS is equal to XZ,
inasmuch as V2 is also equal to 2Z, and X2 to PS.
But further A2S is also equal to XU,
since it is also equal to R7;

therefore the squares on ZX, XU are triple of the square
on NP.

But the square on UZ is equal to the squares on ZX, XU;
therefore the square on UZ is triple of the square on V2.



Xt 17] PROPOSITION 17 497

But the square on the radius of the sphere which compre-
hends the cube is also triple of the square on the half of the
side of the cube,

for it has previously been shown how to construct a cube and
comprehend it in a sphere, and to prove that the square on
the diameter of the sphere is triple of the square on the side
of the cube. [, 15]

But, if whole is so related to whole, so is half to half also;
and VP is half of the side of the cube;

therefore UZ is equal to the radius of the sphere which com-
prehends the cube.

And Z is the centre of the sphere which comprehends the
cube ;

therefore the point U is on the surface of the sphere.

Similarly we can prove that each of the remaining angles
of the dodecahedron is also on the surface of the sphere;

therefore the dodecahedron has been comprehended in the
given sphere.

I say next that the side of the dodecahedron is the irrational
straight line called apotome.

For since, when VP has been cut in extreme and mean
ratio, K2 is the greater segment,

and, when PO has been cut in extreme and mean ratio, S
is the greater segment,

therefore, when the whole VO is cut in extreme and mean
ratio, KS is the greater segment.
[Thus, since, as NP is to PR, so is PR to RN,
the same is true of the doubles also,
for parts have the same ratio as their equimultiples;  [v. 15]
therefore as VO is to RS, so is RS to the sum of NR, SO.
But VO is greater than RS ;
therefore RS is also greater than the sum of VR, SO;
therefore VO has been cut in extreme and mean ratio,
and RS is its greater segment. ]
But RS is equal to UV;

therefore, when VO is cut in extreme and mean ratio, UV is
the greater segment,
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And, since the diameter of the sphere is rational,

and the square on it is triple of the square on the side of the
cube,

therefore VO, being a side of the cube, is rational.

[But if a rational line be cut in extreme and mean ratio,
each of the segments is an irrational apotome.]

Therefore UV, being a side of the dodecahedron, is an
irrational apotome, [xmr 6]

Porism. From this it is manifest that, when the side of
the cube is cut in extreme and mean ratio, the greater segment
is the side of the dodecahedron.

Q. E. D.

In this proposition we find Euclid using two propositions which precede
but are used nowhere else, notably vi. 32, which some authors, in consequence
of their having overlooked its use here, have been hard put to it to explain.

Euclid’s construction in this case is really identical with that given by
Mr H. M. Taylor, and also referred to by Henrici and Treutlein under “crystal-
formation.”

Euclid starts from the cube inscribed in a sphere, as in x11 15, and then
finds the side of the regular pentagon in which the side of the cube is a
diagonal.

Mr Taylor takes / to be the diagonal of a regular pentagon of side a,
so that, by Ptolemy’s theorem,

P=al+d’,

constructs a cube of wnich / is the edge, and gets the side of the pen
by drawing ZX from Z, the centre of the cube, perpendicular to the face BF
and equal to } (/+a), then drawing UV through X parallel to BC, and
making UX, XV both equal to }a.

Euclid finds UV thus.

Draw NO, MH bisecting pairs of opposite sides in the square BF and
meeting in P,

Draw GX, HL bisecting pairs of opposite sides in the square BD and
meeting in Q.

Divide PN, PO, QH respectively in extreme and mean ratio at R, S, T"
(PR, PS, QT being the greater segments); draw KU, SV, TW outwards

ndicular to the mpecti\re faces of the cube, and all equal in length

to PR, PS, TQ.

Jmn BU, UV, VC CW, WB.

Then BUVCW is one of the pentagonal faces of the dodecakedron ;
and the others can be constructed in the same way.

Euclid now proves

(1) that the pentagon BUVC W is equilateral,
(2) that it is in one plane,

(3) that it is equiangular,
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N (4) that the vertex U is on the sphere which circumscribes the cube, and
ence
(5) that all the other vertices lie on the same sphere,

and (6) that the side of the dodecahedron is an apofome.

(1) To prove that the pentagon BUVCW is equilaleral.
We have BU=BR*+ RU?
=(BN*+ NR) + RP?
=(PN'+ NRY) + RP?
=3RP*+ RP* [x1 4]
=4RP?
= UV,
Therefore BU=UV.

Similarly it may be proved that BW, WC, CV are all equal to UV
or BU.

Mr Taylor in this way. With his notation, the projections of
BU on BA, BC, BE are respectively }a, } (/- a), §.
Therefore BU=}a*+}(l-a)+ 1l
=}(P-al+a)
= a’.

Similarly for BW, WC etc.]

(2) To prove that the pentagon BUVC W is in one plane.
Draw PX parallel to U or S¥ meeting UV in X.
Join XH, HW.
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Then we have to prove that XA, H W are in one straight line.
Now AP, W1, being both perpendicular to the face B.D, are parallel.
For the same reason XP, HT are
Also, since QA is divided at 7 in extreme and mean ratio,
QH: QT=QT: TH.
And QH=HP, QT=WT=PX.
Therefore HP: PX=WT:TH.
Consequently the triangles APX, WTH satisfy the conditions of V1. 32;
hence XA W is a straight line.
[Mr Taylor proves this as follows :
The projections of WA, WX on BE are }a and 4 (a + /),
and the projections of WH, WX on BA are §(/—a) and }/;
and a:(a+l)=(-a):/
since al=0I-a%
Therefore WHX is a straight line.]

(3) To prove that the pentagon BUVC W is equiangular.

We have BVi=BS5"+ SV
=(BN* + NS*) + SP*
= PN+ (NS* + SP?)
=PN*+ 3 PN?,
since VS is divided in extreme and mean ratio at 2 [xIiL 5], so that
NS+ SP*=3PN*, [xm. 4]
Consequently BV*=4PN?
=BC*
or BV =BC.
The As UBV, WBC are therefore equal in all respects,
and LBUV=LBWC.
Similarly L CVU =L BWC.
Therefore the pentagon is equiangular. [xm 7]

(4) To prove that the sphere which circumscribes the cube also circum-
scribes the dodecahedron we have only to prove that, if Z be the centre of
the sphere, ZU = ZB, for example.

Now, by x1. 38, X2 produced meets the diagonal of the cube, and the
portion of X.P produced which is within the cube and the diagonal bisect
one another.

And ZU'=ZX*+ XU*
=NS*+ PS*
=3 PN,

as before.

Also (cf. xi1. 15)

ZB*=ZP'+ PR
=ZP'+ PN + NB
=3 PN,

Hence ZU=28.

(5) Similarly for ZV, ZW etc.
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(6) Since PN is divided in extreme and mean ratio at &,
NP: PR=PR: RN
Doubling the terms, we have
NO: RS=RS: (NR+ S0),

so that, if VO is divided in extreme and mean ratio, the greater segment
is equal to RS.

Now, since the diameter of the sphere is rational,
and (diam. of sphere)® = 3 (edge of cube)?,
the edge of the cube (i.e. NO) is rational.

Consequently R.S is an apofome.

This is proved in the spurious x111. 6 above; Euclid assumes it, and the
words purporting to quote the theorem are probably interpolated, like x11. 6

itself.]
As a matter of fact, with Mr Taylor’s notation,
= la+ a’,
and PR e
2

Since, if # is the radius of the circumscribing sphere, »=,/3. -2.
r r, —
a=— -1)==(J15—/3)
5 Ws=t)=3 (15— 3)
Pappus’ solution.

Here too Pappus (111 pp. 156—162) finds four circular sections of the
sphere all parallel to one another and all passing through five of the vertices
of the dodecahedron.

Analysis.

Suppose (he says) the problem solved, and let the vertices of the
dodecahedron be 4, B, C, D, E; F, G, H K, L; M, N, 0, P, Q;
RS T,U V.

Then, as before, £D is parallel to FZ, and AE to FG; therefore the
planes A BCDE, FGHKL are parallel.

But, since P4 is parallel to BH, and BH to OC, PA is parallel to OC;
and they are equal ; therefore PO, AC are parallel, so that S7, £D are also

lel.

Similarly RS, DC are parallel, and likewise the pairs (70U, E£4),
(U¥, AB), (VR, BC).

Therefore the planes ABCDE, RSTUV are parallel; and the circles
ABCDE, RSTUV are equal, since the inscribed pentagons are equal.

Similarly the circles #GHKL, MNOPQ are equal, since the pentagons
inscribed in them are equal.

Now CL, OU are parallel because each is parallel to XN ;
therefore Z, C, O, U are in one plane.

And LC, CO, OU, UL are all equal, since they subtend angles of equal

pentagons.

Also Z, C, O, U are on a plane section, i.e. a circle ;
therefore LCOU is a square. -

Therefore 0L =2LC*=2LF*

(for LC, LF subtend angles of equal pentagons).
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And the angle OLF is right; for PO, LF are equal and parallel chords
in two e]qual and parallel circular sections of a.sphere [Pappus’ lemma, p. 138,
20—26].

Therefore OF= QL+ FI'= 3FI*. [from above]

And OF is a diameter of the sphere; for PO, FL are on opposite sides
of the centres of the circles in which they are [Pappus’ lemma, pp. 136—8].

Now suppose p, 4, & to be the sides of an equilateral pentagon, triangle
and hexagon in the circle G HKL, d the diameter of the sphere.

Then d:FL=,[3:1 [from above]
=f:4k; [Eucl. xm1. 12]
and it follows alternando (since FL = p) that
d:t=p:h

Now let @', #', ' be the sides of a regular decagon, pentagon and hexagon
respectively inscribed in any one circle.
Since, if #L be divided in extreme and mean ratio, the greater segment is
equal to £D, ?:m. 8]
FL:ED=FK:d. [vr. Def. 3, xu. 9]
And FL : ED is the ratio of the sides of the regular pentagons inscribed
in the circles FGHKL, ABCDE, and is therefore equal to the ratio of the
sides of the equilateral triangles inscribed in the same circles.

Therefore t: (side of A in ABCDE)=K : d',
But dit=p:h
=pK;

therefore, ex aequali, d : (side of A in ABCDE)=p': d'.

Now 4 is given ;
therefore the sides of the equilateral triangles inscribed in the circles 4 BCDE,
FGHKL respectively are given, whence the radii of those circles are also
given.
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Thus the two circles are given, and so accordingly are the equal and
parallel circular sections.
Synthesis.

Set out two straight lines x, y such that 4, x, y are in the ratio of the sides
of a regular pentagon, hexagon and decagon respectwely inscribed in one and
the same circle.

Find two circular sections of the sphere with radii 7, #, where

P=ia =10

Let these be the circles FGHKL, ABCDE respectively, and draw the
equal and parallel circles on the other side of the centre, namely MNOPQ,
RSTUV.

In the first two circles inscribe regular pentagons with their sides respec-
tively parallel, £ being parallel to #Z.

Draw equal and parallel chords (on the other sides of the centres) in the
other two circles, namely S7" equal and parallel to £D, and PO equal and
parallel to #Z ; and complete the regular pentagons on ,57' PO inscribed in
the circles.

Thus all the vertices of the dodecahedron are determined.

The proof of the correctness of the construction is clear from the analysm.

Pappus adds that the construction shows that the circles containing five
vertices of the dodecahedron are the same respectively as those containing
three vertices of the icosahedron, and that the same circle circumscribes the
triangle of the icosahedron and the pentagonal face of the dodecahedron in
the same sphere.

ProrosiTioN 18.
T set out the sides of the five figures and to compare them

with one another.

Let A B, the diameter of the given sphere, be set out,

and let it be cut at C so that
AC is equal to CB, and at D
so that 40 is double of D27 ;

let the semicircle 4£F be de-
scribed on A5,

from C, Dlet CE,DFbedrawn H Fm
at right angles to 4.5,

and let A%, FB, EB be joined.

Then, since 4D is double
of DB,

therefore A8 is triple of BD. A K i "
Convertendo, therefore, BA is one and a half times AD.
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But, as BA is to AD, so is the square on BA to the
square on AF, [v. Def. g, v1. 8]
for the triangle 4 F2B is equiangular with the triangle 47D ;

therefore the square on B4 is one and a half times the square
on AF.

But the square on the diameter of the sphere is also one
and a half times the square on the side of the pyramid.

[xuL 13]
And A2B is the diameter of the sphere ;

therefore AF is equal to the side of the pyramid.

Again, since 4D is double of D23,
therefore A B is triple of BD.
But, as A8 is to BD, so is the square on 4 B to the square
on BF; [vr. 8, v. Def. 9]
therefore the square on A2 is triple of the square on BF.
But the square on the diameter of the sphere is also triple
of the square on the side of the cube. [xu. 15)
And A4B is the diameter of the sphere;
therefore B/ is the side of the cube.

And, since 4C is equal to CA,
therefore 4.8 is double of BC.
But, as A8 is to BC, so is the square on 425 to the square
on BE;
therefore the square on 423 is double of the square on BE.
But the square on the diameter of the sphere is also double
of the square on the side of the octahedron. [x11. 14]

And A4B is the diameter of the given sphere;
therefore BE is the side of the octahedron.

Next, let 4G be drawn from the point A4 at right angles
to the straight line 45,

let 4G be made equal to 425,

let GC be joined,

and from /7 let ZK be drawn perpendicular to 453.
Then, since GA is double of 4C,

for GA is equal to 45,

and, as GA is to AC, so is HK to KC,

therefore /K is also double of XC.
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Therefore the square on 7K is quadruple of the square
on KC;

therefore the squares on AKX, KC, that is, the square on ZC,
is five times the square on XC.

But AC is equal to CB;

therefore the square on BC is five times the square on CK.
And, since 428 is double of CB,

and, in them, 40 is double of D25,

therefore the remainder B0 is double of the remainder DC.
Therefore BC is triple of CD ;

therefore the square on BC is nine times the square on CD.
But the square on BC is five times the square on CK;

therefore the square on CK is greater than the square on CD;

therefore CK is greater than CD.
Let CL be made equal to CKX,

from L let LM be drawn at right angles to 425,

and let /B be joined.

Now, since the square on BC is five times the square
on CK,
and A2 is double of BC, and KL double of CX,
therefore the square on 423 is five times the square on KZ.
But the square on the diameter of the sphere is also five
times the square on the radius of the circle from which the
icosahedron has been described. [xm. 16, Por.]
And 4B is the diameter of the sphere ;
therefore KL is the radius of the circle from which the icosa-
hedron has been described ;
therefore AL is a side of the hexagon in the said circle.
[1v. 15, Por.]
And, since the diameter of the sphere is made up of the
side of the hexagon and two of the sides of the decagon
inscribed in the same circle, [xn1. 16, Por.]
and A Z is the diameter of the sphere,
while K'L is a side of the hexagon,
and AK is equal to LA,
therefore each of the straight lines A&, LB is a side of the
decagon inscribed in the circle from which the icosahedron

has been described.
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And, since LB belongs to a decagon, and ML to a
hexagon,,
for ML is equal to KL, since it is also equal to AKX, being
the same distance from the centre, and each of the straight
lines K, KL is double of XC,

therefore M/ B belongs to a pentagon. [xur 10]
But the side of the pentagon is the side of the icosa-
hedron; [x111L 16)

therefore A/ B belongs to the icosahedron.

Now, since #5B is a side of the cube,
let it be cut in extreme and mean ratio at /V,
and let VB be the greater segment ;
therefore V.5 is a side of the dodecahedron. [x111. 17, Por.]

And, since the square on the diameter of the sphere was
proved to be one and a half times the square on the side A/
of the pyramid, double of the square on the side BE of the
octahedron and triple of the side 75 of the cube,
therefore, of parts of which the square on the diameter of the
sphere contains six, the square on the side of the pyramid
contains four, the square on the side of the octahedron three,
and the square on the side of the cube two.

Therefore the square on the side of the pyramid is four-
thirds of the square on the side of the octahedron, and double
of the square on the side of the cube ;
and the square on the side of the octahedron is one and a half
times the square on the side of the cube.

The said sides, therefore, of the three figures, I mean the
pyramid, the octahedron and the cube, are to one another in
rational ratios.

But the remaining two, I mean the side of the icosa-
hedron and the side of the dodecahedron, are not in rational
ratios either to one another or to the aforesaid sides ;
for they are irrational, the one being minor [xu1 16] and the.
other an apotome [xm. 17].

That the side MB of the icosahedron is greater than the
side VB of the dodecahedron we can prove thus,

For, since the triangle #DZ is equiangular with the
triangle FAB, [v1. 8]
proportionally, as DA is to BF, so is BF to BA. [v1. 4]
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And, since the three straight lines are proportional,
as the first is to the third, so is the square on the first to the
square on the second ; [v. Def. g, v1. 20, Por.]
therefore, as DB is to BA, so is the square on DB to the
square on BF;
therefore, inversely, as 48 is to BD, so is the square on 5
to the square on 8D,
But 4B is triple of BD ;
therefore the square on 72 is triple of the square on BD.
But the square on 4D is also quadruple of the square
on DB,
for AD is double of DB ;
therefore the square on 40 is greater than the square on F5;
therefore 4D is greater than /B ; \
therefore 4L is by far greater than F5.
And, when AL is cut in extreme and mean ratio,
KL is the greater segment,
inasmuch as LK belongs to a hexagon, and X4 to a decagon;
[x1. 9]
and, when 72 is cut in extreme and mean ratio, VB is the
greater segment ;
therefore AL is greater than N5,
But KL is equal to LM ;
therefore LM is greater than V5.
Therefore M B, which is a side of the icosahedron, is by

far greater than VB which is a side of the dodecahedron.
Q E. D

I say next that no other figure, besides the said five figures,
can be constructed whick is contained by equilateral and equi-
angular figures equal to one another.

For a solid angle cannot be constructed with two triangles,
or indeed planes.

With three triangles the angle of the pyramid is constructed,
with four the angle of the octahedron, and with five the angle
of the icosahedron ;

but a solid angle cannot be formed by six equilateral and equi-
ahgular triang%es placed together at one point,
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for, the angle of the equilateral triangle being two-thirds of a

right angle, the six will be equal to four right angles :

which is impossible, for any solid angle is contained by angles

less than four right angles. [x1. 21]
For the same reason, neither can a solid angle be con-

structed by more than six plane angles.

By three squares the angle of the cube is contained, but
by four it is impossible for a solid angle to be contained,
for they will again be four right angles.

By three equilateral and equiangular pentagons the angle
of the dodecahedron is contained ;
but by four such it is impossible for any solid angle to be
contained,
for, the angle of the equilateral pentagon being a right angle
and a fifth, the four angles wil?ebe greater than E)ur right
angles :
which is impossible.

Neither again will a solid angle be contained by other
polygonal figures by reason of the same absurdity.
herefore etc.
Q. E. D.

LEMMA.

But that Zke angle of the egquilateral and equiangular
pentagon is a right angle and a fifth we must prove thus.

Let ABCDE be an equilateral and equiangular
pentagon, A
let the circle A BCDE be cir-
cumscribed about it,
let its centre /& be taken, E
and let 74, FB, FC, FD, FE
be joined. i
Therefore they bisect the
angles of the pentagon at 4,
B, C, D} E.
And, since the angles at # )
are equal to four right angles
and are equal,
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therefore one of them, as the angle 475, is one right angle
less a fifth ;

therefore the remaining angles #4B, ABF consist of one
right angle and a fifth.
But the angle 74 B is equal to the angle FBC;
therefore the whole angle ABC of the pentagon consists of
one right angle and a fifth.
Q. E. D.

We have seen in the preceding notes that, if » be the radius of the sphere
circumscribing the five solid figures,
(edge of tetrahedron) = §./6.7,
(edge of octahedron) = /2.7,

(edge of cube) =3 ./3.7,
(edge of icosahedron) = E V1o (5 - J5),

(edge of dodecahedron) = E(JTs - J3)
Euclid here exhibits the edges of all the five regular solids in one figure.
(1) Make 4D equal to 205.

Thus BA=3AD,

and BA : AD=BA*: AF;

therefore BA'=§AF,
Thus AF= 3} . 2r=3./6.r = (edge of tetrahedron).
(2) AB': BF*=AB : BD

=3:1.

Therefore BF*=}A4B,

or BF:%.r:EJ;.r:(edgvg{mbe).
(3) AB'=2BE*.
Therefore BE = /2. r=edge of octahedron).

(4) Draw AG ndicular and equal to 48. Join GC, meeting the
semicircle in &, and draw AKX perpendicular to 45.

Then GA=24C;
therefore, by similar triangles, AKX =2KC.
Hence HEK? = 4 KC,
and therefore sKC*= HK*+ KC*
= HC?
= CB.
Again, since A8 =2CB, and AD=2DB5,
by subtraction, BD=2DC,

or BC=3DC.
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Therefore 9DC*= BC*
=5KC%.
Hence KC> CD.
Make CL equal to XC, draw LM at right angles to 45, and join
AM, MB.
Since CR=5KC",
AB =5KL
It follows that KZ (= /%.7) is the radius of, or the side of the regular
hexagon in, the circle containing the pentagonal sections of the icosaihedron]
XIIL 16
And, since

2r = (side of hexagon) + 2 (side of decagon in same circle)
[xmu1. 16, Por.]

AK = LB = (side of decagon in the said circle).
But LM = HK = KL = (side of hexagon in circle).
Therefore ZM* + LB* (= BM*) = (side of pentagon in circle)’  [xu1. 10]
= (edge of icosahedron)?,

and BM = (edge of icosahedron).
[More shortly, HK=2KC,
whence HK*=4KC?,
and sKC'=HC*=.
Also AK=f—CK=f(I—7I§).
Thus BM= HK*+ AK*
4 Y
== Plr—-
s™% (: JE)
10 2
= " —_———
( 5 Js)
=2 (0-2s)
and Bﬂf:g-\/w (5 — /5) = (edge of icosahedron).]

(s) Cut BF (the edge of the cube) in extreme and mean ratio at V.
Then, if BNV be the greater segment,

BN = (edge of dodecahedron). [xmmr. 17]
[Solving, we obtain

BN=JL;—'.5F
i Sl
2 A3

=3 (Wis=4/3)
= (edge of dodecahedron).)
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(6) If # o, ¢ are the edges of the tetrahedron, octahedron and cube

respectively,
4t =31 =20"= 32
If each of these equals is put equal to X,
4r' =X,

X

.

% S s
I
o bt

]

b

whence 42 8:00:8=6:4:3:2,
and the ratios between 27, 4, o, ¢ are all rafional (in Euclid’s sense).

The ratios between these and the edges of the icosahedron and the
dodecahedron are irrational.

(7) To prove that

(edge of icosahedron) > (edge of dodecahedron),

iLe. that MB > NB.

By similar As #DB, AFB,

DB : BF=BF: BA,

or DB : BA=DB : BF*.
But 3DB =BA;
therefore BF*=3DR.
By hypothesis, AD'=4DB;
therefore AD > BF,
and, a fortiori, AL > BF.

Now LK is the side of a hexagon, and 4K the side of a decagon in the
same circle ;
therefore, when AL is divided in extreme and mean ratio, XL is the greater
segment.

And, when BF is divided in extreme and mean ratio, B is the greater

segment.
Therefore, since AL > BF,
KL> BN,
or LM> BN,

And therefore, a fortiori, MB > BN.



APPENDIX.

I. THE CONTENTS OF THE SO-CALLED BOOK XIV.
BY HYPSICLES.

This supplement to Euclid’s Book xi11. is worth reproducing for the sake
not only of the additional theorems proved in it but of the historical notices
contained in the preface and in one or two later passages. Where I translate
literally from the Greek text, I shall use inverted commas; except in such
passages I reproduce the contents in briefer form.

I have already quoted from the Preface (Vol. 1. pp. §5+=6), but I will
repeat it here.

“ Basilides of Tyre, O Protarchus, when he came to Alexandria and met
my father, spent the greater part of his sojourn with him on account of the
bond between them due to their common interest in mathematics. And on
one occasion, when looking into the tract written by Apollonius about the
comparison of the dodecahedron and icosahedron inscribed in one and the
same sphere, that is to say, on the question what ratio they bear to one
another, they came to the conclusion that Apollonius’ treatment of it in this
book was not correct; accordingly, as I understood from my father, they
proceeded to amend and rewrite it. But I myself afterwards came across
another book published by Apollonius, containing a demonstration of the
matter in question, and I was Erea.tly attracted by his investigation of the
problem. Now the book published by Apollonius is accessible to all ; for it
has a large circulation in a form which seems to have been the result of later
careful elaboration.

“For my part, I determined to dedicate to you what I deem to be
necessary by way of commentary, partly because you will be able, by reason
of your proficiency in all mathematics and particularly in geometry, to pass an
expert judgment upon what I am about to write, and partly because, on
account of your intimacy with my father and your friendly feeling towards
myself, you will lend a kindly ear to my disquisition. But it is time to have
done with the preamble and to begin my treatise itself.

[Prop. 1.] “ The perpendicular drawn from the centre of any circle fo the
side of the pentagon inscribed in the same circle is half the sum of the side of the
hexagon and of the side of the decagon inscribed in the same civcle”
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Let ABC be a circle, and BC the side of the inscribed regular pentagon.

Take D the centre of the circle, draw DE from .D perpendicular to BC,
and produce DZ£ both ways to meet the circle in 5, 4.

I say that DE is half the sum of the side of the hexagon and of the side
of the decagon inscribed in the same circle.

Let DC, CF be joined ; make GE equal to £F, and join GC.

Since the circumference of the circle is five

times the arc BFC, A
and half the circumference of the circle is the arc
ACKF,

while the arc #C is half the arc BFC,
therefore  (arc ACF) = 5 (arc FC)

or (arc AC) = 4 (arc CF). Y,
Hence LADC=4 L CDF,
and therefore Lt AFC=2 + CDF. a
Thus L CGF=LAFC=2 L CDF; c
therefore (1. 32] + CDG =1 DCG, F
so that DG=GC=CF.
And GE=EF;
therefore DE=EF+ FC.
Add DE to each;
therefore 2DE = DF+ FC,

And DF is the side of the regular hexagon, and FC the side of the regular
decagon, inscribed in the same circle.
Therefore etc.

‘““Next it is manifest from the theorem [12] in Book xXIIL that #ke perpen-
dicular drawn from the centre of the circle to the side of the equilaleral triangle
[inscribed in it) és kalf of the radius of the circle.

[Prop. 2.] “ The same circle circumscribes both the pentagon of the dodeca-
hedron and the triangle of the icosahedron inscribed in the same sphere.

“This is proved by Aristaeus in his work entitled Comparison of the five
Jfigures. But Apollonius proves in the second edition of his comparison of the
dodecahedron with the icosahedron that, as the surface of the dodecahedron
is to the surface of the icosahedron, so also is the dodecahedron itself to the
icosahedron, because the perpendicular from the centre of the sphere to the
pentagon of the dodecahedron and to the triangle of the icosahedron is the
same,

“ But it is right that I too should prove that

[Prop. 2] The same circle circumscribes both the pentagon of the dodecahedron
and the triangle of the icosahedron inscribed in the same sphere.

“For this I need the following
Lemma.

“ Jf an equilateral and equiangular pentagon be inscribed in a civcle, the sum
of the squares on the straight line sublending two sides and on the side of the
Pentagon is five limes the square on the radius.”
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Let ABC be a circle, AC the side of the pentagon, D the centre ;
draw DF perpendicular to 4 C and produce it to
B E; B

join AB, AE.

I say that

BA*+ AC*=5DE"
For, since BE = 2ED,
BE'=4ED" D

And BE= BA*+ AE*;
therefore BA*+ AE*+ ED*=sEDP

But AC*=DE'+ EA*; F é

[Eucl. x111. 10]

therefore ~ BA'+ AC*=5DE:. E

“This being proved, it is required to prove that the same circle circum-
scribes both the pentagon of the dodecahedron and the triangle of the
icosahedron inscribed in the same sphere.”

Let AB be the diameter of the sphere, and let a dodecahedron and an
icosahedron be inscribed.

A
]

8 K
M 6 N
D Q
L H

Let CDEFG be one pentagon of the dodecahedron, and XZH one
triangle of the icosahedron.
I say that the radii of the circles circumscribing them are equal.
Join DG ; then D@ is the side of a cube inscribed in the sphere.
Eucl. xm. 17]
Take a straight line MV such that 4.5* = s MN.
Now the square on the diameter of the sphere is five times the square on
the radius of the cirdle from which the icosahedron is described.
[xm. 16, Por.]
Therefore M is equal to the radius of the circle passing through the five
vertices of the icosahedron which form a pentagon.
Cut M in extreme and mean ratio at O, MO being the greater segment.
Therefore MO is the side of the decagon in the circle with radius MV,
[x11. g and s, converse]
Now sMN*= AB*=3DG" [xm. 15]
But 3DG*: 3CG*=sMN* : sMO*
(since, if DG is cut in extreme and mean ratio, the greater segment is equal
to CG, and, if two straight lines are cut- in extreme and mean ratio, their
segments are in the same ratio: see lemma later, pp. 518—g).
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And sMO* + sMN® =5 KI*
[This follows from x11. 10, since XZ is, by the construction of xmnL 16, the
side of the regular pentagon in the circle with radius equal to M, that is, the
circle in which M4V is the side of the inscribed hexagon and MO the side of
the inscribed decagon.]

Therefore sK1'=3CG* + 3DG.

But 5K = 15 (radius of circle about XZH), [xmm. 12]
and 3DG* + 3CG* = 15 (radius of circle about CDEFG).

[Lemma above]
Therefore the radii of the two circles are equal.
Q. E. D,

Prop. 3.] “If there be an equilateral and equiangular pentagon and a
dircle circumscribed about 1t, and if a perpendicular be drawn from the centre fo
one side, then

30 times the rectangle contained by the side and the perpendicular is equal fo
the surface of the dodecahedron.”

Let ABCDE be the pentagon, & the centre of the circle, #G the
perpendicular on a- side CD.

I say that A

30CD . FG = 12 (area of pentagon).
Let CF, FD be joined. E
Then, since
CD.FG=2(ACDF),
5CD.FG=10(ACDF),

whence  30CD. FG = 12 (area of pentagon). o

Similarly we can prove that,

[Prop. 4] if ABC &e an equilateral triangle in a
drcle, D the centre, and DE perpendicular to BC,
30BC. DE = (surface of icosahedron).

For DE.BC=2(ADBC);
therefore = 3DE.BC=6(0DBC)
—2(AABC),

whence 30DE . BC=120(AABC).

It follows that [Prop. 5]
(surface of dodecahedron) : (surface of icosahedron)
= (side of pentagon) . (its perpendicular) : (side of triangle) . (its perp.).

“This being clear, we have next to prove that,

(Prop. 6] As the surface of the dodecahedron is to the susface of the icosahedron,
50 is the side of the cube to the side of the icosahedron.”
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Let ABC be the circle circumscribing the pentagon of the dodecahedron
and the triangle of the icosahedron, and let CD
be the side of the triangle, 4C that of the
pentagon.

Let £ be the centre, and EF, EG perpen-
diculars to CD, AC.

Produce £G to meet the circle in B and
join BC. o o

Set out A equal to the side of the cube in-
scribed in the same sphere.

a a

I say that

(surface of dodecahedron) : (surface of icosahedron)
=H:CD.

For, since the sum of £B5, BC is divided at B in extreme and mean ratio,
and BE is the greater segment, [xm1. g]
and £G =} (EB+ BC), [Prop. 1]
while EF=}BE, [see p. 513 above]

therefore, if £G is divided in extreme and mean ratio, the greater segment is
equal to £F [that is to say, since £B is the greater segment of £B8 + BC
divided in extreme and mean ratio, §£8 is the greater segment of
}(£B+ BC) similarly divided].

But, if A is also divided in extreme and mean ratio, the greater segment

is equal to C4. [xm1. 17, Por.]
Therefore H:CA=EG: EF,
or FE.H=CA.EG.
And, since H:CD=FE.H:FE.CD,
and FE.H=CA.EG,
therefore H:CD=CA.EG:FE.CD
= (surface of dodecahedron) : (surf. of icos.).
[Prop. 5]

Another proof of the same theorem.
Preliminary.
Let ABC be a circle and 4B, A4C sides of an inscribed regular pentagon.
Join BC; take D the centre of the circle, join 40D and produce it to
meet the circle at Z. Join BD.
Let DF be made equal to $4.D, and CH equal A
to 31CG.
I say that G
rect. AF. BH = (area of pentagon). o
For, since 4D =2DF,
AF=3A4D. F
And, since GC= 3HC,
GC=3GH.
Therefore FA: AD=CG: GH,
so that AF.GH=AD. CG
=2(AABD).




I. THE SO-CALLED “BOOK XIV” 517

Therefore
5AF. GH=10(AABD)= 2 (area of pentagon).

And GH=2HC;
therefore 54F. HC = (area of pentagon),
or AF. BH = (area of pentagon).

Proof of theorem.

This being clear, let the circle be set out which circumscribes the pentagon
of the dodecahedron and the triangle of the icosahe-
dron inscribed in the same sphere. A

Let ABC be the circle, and 4B, 4C two sides of
the pentagon ; join BC.

Take £ the centre of the circle, join 4% and g K c
produce it to F.

Let AE=2EG, KC=3CH.

'I:hrouhgh G ’driwDD;{! at right angles to 4% p ™M
meeting the circle at D, Af;
DM is then the side of the inscribed equilateral Y~
triangle.

Join 4D, AM, which are equal to DM,

Now, since AG . BH = (area of pentagon),
and AG . GD = (area of triangle),
therefore BH : GD = (area of pentagon) : (area of triangle),
and 12BH : 20G.D = (surface of dod.) : (surface of icos.).

But 128H = 108C, since BH =5HC, and BC=6HC;
and 20GD = 10DM;
therefore (surface of dodecahedron) : (surface of icosahedron)

= (side of cube) : (side of icosahedron).

“ Next we have to prove that,

|Prop. 7] If any straight line whatever be cut in extreme aud mean ratio, then,
as fs (1) the straight line the square on which is equal to the sum of the squares
on the whole line and on the greater segment to (2) the straight line the square on
which is equal to the sum of the squares on the whole and on the lesser segment,
s0 15 (3) the side of the cube to (4) the side of the icosahedron.”

Let AHB be the circle circumscribing both the pentagon of the dodeca-
hedron and the triangle of the icosahedron inscribed
in the same sphere, C the centre of the circle, and A
CB any radius divided at D in extreme and mean
ratio, C'D being the greater segment.

CD is then the side of the decagon inscribed in
the circle. [xm1. g and s, converse B

Let £ be the side of the icosahedron, & that o
the dodecahedron, and G that of the cnbe, inscribed
in the sphere.

Then E, F are the sides of the equilateral triangle £
and pentagon inscribed in the circlé, and, if G is
divided in extreme and mean ratio, the greater F—
segment is equal to F. [xnn 17, Por.] G~
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Thus E*=3BC", [xamm. 12]
and CB'+ BI? = 3CD°. [xm. 4]
Therefore B CB =(CB*+ BDF): CL?,
or B (CB+BDY)=CB: Clr
=@

Therefore, alternately and inversely,
G:EB=F:(CB+ B¢,
But F' . BC*+ CIP; for the square on the side of the pentagon is equal

to the sum of the squares on the sides of the hexagon and decagon inscribed
in the same circle. [xm1. 10]

Therefore G : E'=(BC*+ CD?) : (CB*+ BDP),
which is the result required.

It has now to be proved that
[Prop. 8] (Side of cube) : (side of icosahedron)
= (content of dodecahedron) : (content of icosahedron).

Since equal circles circumscribe the pentagon of the dodecahedron and
the triangle of the icosahedron inscribed in the same sphere,
and in a sphere equal circular sections are equally distant from the centre,
the perpendiculars from the centre of the sphere to the faces of the two solids
are equal ;

in other words, the pyramids with the centre as vertex and the pentagons of
the dodecahedron and the triangles of the icosahedron respectively as bases
are of equal height.

Therefore the pyramids are to one another as their bases.
Thus (12 pentagons) : (20 triangles)
= (12 pyramids on pentagons) : (20 pyramids on triangles),
or (surface of dodecahedron) : (surface of icosahedron)

= (content of dod.) : (content of icos.).
Therefore

(content of dodecahedron) : (content of icosahedron)
= (side of cube) : (side of icosahedron). [Prop. 6]
Lemma.

If two straight lines be cut in extreme and mean ratio, the segments of both
are in one and the same ratio.

Let AB be cut in extreme and mean ratio at C, AC being the greater
segment ;
and let DE be cut in extreme and mean ratio at %, DF being the greater
segment,

I say that AB:AC=DE : DF A c B
Since AB.BC=A4C, 5 F E
and DE.EF=DF*, —————

AB.BC: AC*=DE . EF: DF?
and 4AB.BC: AC*=4DE . EF: DF*,
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Componendo,
(44B.BC + AC?) : AC*=(4DE . EF+ DF*) : DF*,

or (AB+ BC) : AC'=(DE + EF) : DF*; [1. 8]
therefore (4B +BC): AC=(DE + EF) : DF,

Componendo,

(4B + BC+ AC) : AC=(DE + EF + DF) : DF,

or 24AB: AC=2DE : DF;
that is, AB : AC=DE : DF.

Summary of results.

If AB be any straight line divided at C in extreme and mean ratio, AC
being the greater segment, and if we have a cube, a dodecahedron and an
icosahedron inscribed in one and the same sphere, then :

(1) (side of cube) : (side of icosahedron) = ./ (48 + AC?Y): /(4B + BCY);

(2) (surface of dod.) : (surface of icos.)
= (side of cube) : (side of icosahedron) ;
(3) (content of dod.) : (content of icos.)

= (surface of dod.) : (surface of icos.) ;
and (4) (content of dodecahedron) : (content of icos.)
=J(4B*+4C?) : J (4B + BC?).

IL. NOTE ON THE SO-CALLED “BOOK XV.”

The second of the two Books added to the genuine thirteen is also
supplementary to the discussion of the regular solids, but is much inferior
to the first, * Book x1v.” Its contents are of less interest and the exposition
leaves much to be desired, being in some places obscure and in others
actually inaccurate. It consists of three portions unequal in length. The
fist (Heiberg, Vol. v. pp. 40—48) shows how to inscribe certain of the
regular solids in certain others, (a) a tetrahedron (“pyramid”) in a cube,
(4) an octahedron in a tetrahedron (“ pyramid ”), () an octahedron in a cube,
(d) a cube in an octahedron and (¢) a dodecahedron in an icosahedron.
The second portion (pp. 48—s50) explains how to calculate the number of
edges and the number of solid angles in the five solids respectively, The
third (pp. 50—66) shows how to determine the angle of inclination between
faces meeting in an edge of any one of the solids. The method is to con-
struct an isosceles triangle with vertical angle equal to the said angle of
inclination ; from the middle point of any edge two perpendiculars are drawn
to it, one in each of the two faces intersecting in that edge; these perpen-
diculars (forming an angle which is the inclination of the two faces to one
another) are used to determme the two equal sides of an isosceles triangle,
and the base of the triangle is easily found from the known properties of the
particular solid. The rules for drawing the respective isosceles triangles are
first given all together in general terms (pp. 50—52) ; and the special interest
of the passage consists in the fact that the rules are attributed to “Isidorus
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our great teacher.” This Isidorus is no doubt Isidorus of Miletus, the
architect of the Church of St Sophia at Constantinople (about 532 A.p.),
whose pupil Eutocius also’ was ; he is often referred to by Eutocius (Comm.
on Archimedes) as 6 Msjowos pyyavicds "loiduwpos tjuérepos ddaoxades. Thus
the third portion of the Book at all events was written by a pupil of Isidorus
in the sixth century. Kluge (De Euclidis elementorum libris qus feruntur XIV
et XV, Leipzig, 1891) has closely examined the language and style of the
three portions and conjectures that they may be the work of different authors;
the first portion may, he thinks, date from the end of the third century (the
time of Pappus), and the second portion too may be older than the third.
Hultsch however (art. “ Eukleides” in Pauly-Wissowa'’s Real-Encyclopddie der
classischen Altertumswissenschaft, 1907) does not think his arguments con-
vincing.

It may be worth while to set out the particulars of Isidorus’ rules for
constructing isosceles triangles with vertical angles equal respectively to
the angles of inclination between faces meeting in an edge of the several
regular solids. A certain base is taken, and then with its extremities as
centres and a certain other straight line as radius two circles are drawn;
their point of intersection determines the vertex of the particular isosceles
triangle. In the case of the cube the triangle is of course right-angled ; in
the other cases the bases and the equal sides are as shown below.

Equal sides of

Base of isosceles triangle isosceles triangle
For the tetrahedron the side of a triangular face the perpendicular from the
vertex of a triangular face
to its base
For the octahedron the diagonal of the square ditto
on one side of a triangular
face
For the icosahedron the chord joining two non- ditto

consecutive angular points
of the regular pentagon on
an edge (the * pentagon of
the icosahedron”)

For the dodecahedron the chord joining two non- | the perpendicular from the
consecutive angular points middle point of the chord
of a pentagonal face [BC joining two non
in the figure of Eucl. x111. tive anﬁ:ﬂar points of a
17] face to the lel side of

that face [#/X in the figure
of Euel. x111. 17]




GENERAL INDEX OF GREEK WORDS
AND FORMS.

[The references are to volumes and pages.]

i-yw.'mw ang’k -less (figure) 1.
% els d 48, I'a'ynrr# 1} Sid ol 48,
&t{u. ﬁ els 70 dd. dyovoa dwddecfis 1. 136
daidoadds, barb-like 1. 188
dxpos, extreme (of numbers in a series) 1I.
328, 367: (els) dxpov xal péoor Abyor
rerpfiefa, *“to be cut in extreme and
mean ratio” 11, 189
dhoyos, having no ratio, irrational 11. 117-8:
a relative term, resting on assumption or
convention (Pythagoreans) 111, 1, 11: use
of term restricted in Euclid 111, 12
dufheia (ywrla), obtuse (angle) 1. 181
duBhrydwios, obtuse-angled 1. 187
duepis, indivisible 1. 41, 268
dugixohos (of curvilineal angles) 1. 178
duplcvproes (of carvilineal angles) 1. 178
draypdgew dwb, to describe on, contrasted
with to comstruct (overfoactar) 1. 348:
peculiar use of active participle; al loa
rerpdywra dvaypdovas=straight lines on
which equal squares are described 111. 13
drakoyla, proportion: definitions of, inter-
polated 11. 11
drdhoyor =drd xzw proportiunal or in pro-
portion : used as indeclinable adj. and as
l.dr 1. :‘3. 165: péon dvdloyor, mean
(of straight line) 11. 129,
smnln.rl péoos numbers 11,
295, 363 etc.: Tplrn (rpiros) dvdhoyor,
third pro munl.l Il 214, 407-8: Terdpry
(rﬁwrabdw fourth proportional
1L 1:5, 409 : IEih dwdMoyor, in continued
rtion I1.
inh 05 (rhm). Treasury of Analysis,
1. 8, 10, 11, 138
drdwakir (Adyos), inverse (ratio), inversely 11.
134

dvagrphjarr, convertendo, in proportions II.
135: analogous use Glherwisc than in

rtions 111, 164
"z;rog:ﬂ Aéryov, “conversion” of a ratio 11

burrpméc (species of locus) 1. 330

dngdais dviwdxs [oos, unequal by unequal
by equal (of solid numbers) = se
agmploxos, opneloxos or Buwplexos 11. ago

dvopowopepts, Mon-unij 1. 40, 161-2

dropolws Terayuévwr Tiv Mrywr (of perturbed
proportion) in Archimedes II. 136

dvraralpemis, ) adrh, definition of same ratio
in Aristotle (dvfugalpeois Alexander) 11.
120: terms explained 1. 121

drﬂﬂrovl?&ruvx;mrn, reciprocal (=recipro-
cally &ge!ated) figures, interpolated def. of,
L 1

drrigTpog, conversion 1. 156-7: leading
variety, % wpomyoupdrn or % suplws, ibid.

os, non-existent 1. 129

dfwr, axis 111. 269

dbpwrros, indeterminate: (of lines or curves)
L 16o0: (of problems) 1. 129

dwaywyh, reduction 1. 1353 els 7d ddiwaror
I 13

drepos, infinite: 7 éx’ dw. dxSaddouédrny of
line or curve extending without limit and
not **forming a figure” I. 160—1 : ¢’ dm. or
els dw. adverbial 1. 190: éx’ dr. Biaipeiofac
1. 268 : Aristotle on 7 dweipor 1. 2324

dwkarét. breadthless : in definition of a line,
pijkos dwharés, breadthless length 1. 158:
(of prime numbers) 11. 285

amhobs, simple : (of lines or curves} 1. 161-2:
(of surfaces) 1. 170

dwbdetis, proof (one of necessary divisions of
a proposition) 1. 129, 130

dwoxaracraribs, recurrent (=spherical), of
numbers 1I. 291

dworout, apolome, a compound irrational,
ditfcrenoe of two terms 111. 7 defined 111,
158 péons dworopt) wpdrn (Sevrépa),
first second) tome of a medial (straight
line) 11 7, deﬁeﬁ 111. 159-60

drrecfai, to meef, occasionally to Zfowch
(instead of épdwreodas) 1. 57, 11 2: also
=to pass th h, to lie on 11.

dpﬂpd:.mmb::'%eﬁmtmus of, n 339

o, P
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I. 137: dppyros Bidperpos THs weuwddos,
““jrrational diameter of 5" (Plato)= /50,
1. 399, 111. 12, 525

dpruixis dprioSiwapor (Nic hus) 11. 282

dpreaxes dprios, evem-times even 11. 281-2

dprudkis wepiaals, even-times odd 11, 282—4

dpriowépirros even-odd (Nicomachus etc.) II.
282

dpreos (dpifuds), even (number) 11. 281

devpufaros, incompatible 1. 129

dovpperpos,incommensurable : d. pixet (udvor)
incommensurable in length (only), durdue
*“in square™ I11. 11

dolurrwros, not-meeting, non-secant, asym-
protic 1. 40, 161, 203 (of parallel planes)
111. 265

daivberos, incomposite : (of lines) 1. 160, 161 :
(of surfaces) 1. 170: (prime and) incom-
posite (of numbers) 11. 284

draxros, wnordered: (of problems) 1. 128:
(of irrationals) 1. 115, 111. 1o

dropot ypappal, *indivisible lives™ 1. 268

Bados, depth 1. 158-9

Bdais, base 1. 248?

Bepnxévar, to stand (of angle standing on
circumference) 11, 4

Buwplokos, altar-shaped (of *‘scalene” solid
numbers) II. 290

yeyovérw (in constructions), * let it be (kave
been) made ™ 11, 248

yeyords &v eln 70 émraxfév, “what was
enjoined will have been done " 11. 8o, 261

yeypapluw, “let it be (lit. have been) drawn ”
L 242

yevbuevos, & é abriw, “their product™ 11.
316, 326 etc.: & éx Tol évds yewbuevos
='"the sguare of the one” 1I. 327

yrépwr, gnomon g¢.v.: Democritus wepl dia-
popiis yrwporos (yrwuns or yurins?) 7 wepl
Yabows xixhov kal ogalpys 11. 40: (of
numbers) 11. 28g

ypaput, line.(or curve) ¢.7.

ypauuixds, linear (of numbers in one dimen-
sion) 11, 287 : (of prime numbers) 11. 285:
Ypaupukds, graphically 1. 400

ypaperfar, ‘““to be proved” (Aristotle) 11. 120

dedoudvos, given, different senses 1. 132-3:
Euclid’s defouéva or Data g.v.

delypara, illustrations, of Stoics 1. 329

d¢t &4, “thus it is required” (or *is neces-
sary”), introducing dwopopbs 1. 293

dedrepos, secondary (of numbers): in Nico-
machus and Iamblichus a subdivision of
odd 11, 286, 287

Bexbuevor, ‘*admitting " (of segment of circle
admitting or containing an angle) I1. 3

Sidypappa = proposition Eﬁristot e) 1. 252

SiaipeioBar (used of *‘separation” of ratios) :
duaipefévra, separands, opp. to ovyxelueva,
componends 11. 168

Sialpears, point of division (Aristotle) 1. 165,
170, 171: method of division (exhaustion)
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1. 285: Euclid's wepl Siapéoewr, On divi-
sions (of figures) 1. 8, 9, 18, 87, 110: &al-
peais Noyou, separation, literally division,
of ratio 11. 135

Suduerpos, diameter: of a circle, parallelogram
etc. 1. 185, 325: of sphere 111 270

Siaordoes, almost = * dimensions ™ 1 1567.
158, 111. 262 : Aristotle speaks of six 111, 263

Swararbe, extended, i’ & one way, éxl Sbo
fwo ways, éwl tpla three ways (of lines,
surfaces and solids respectively) 1. 158,
170, 111. 263

duaoryua, distance 1. 166, 167, 207 : (of radius
of circle) 1. 199: (of an angle) =divergence

6

1. 176-7

Bieferyuévn (dradoyla), disjoined = discrete
(proportion) 11. 29

SueNdvre, separando, fitcrally dividendo (of
proportions) 11. 13,

Suefolints (of a class of loci) 1. 330

dippyuévn (dvakoyla), discrete {‘pmponion}. ie.
in four terms, as distinct from comfimmous
(owwextis, auwnupéen) in three terms I1. 131,

2

hﬁxgﬂsu, ‘“let it be drawn through” (=pro-
duced) or “across” 1. 280, 1I. 7

3 loov, ex aeguali (of ratios) 1. 136: &'
foou év Terapayudvy dvakoylg, “ex acquali
in perturbed proportion * II.O}?,G

Eowd) hu‘: 1 fard (

231

numbers) 11. 291 %

Siopiopds= (1) particular statement or defini-
tion, one of the formal divisions of a pro-
position 1. 129: (2) statement of condition
of possibility 1. 128, 129, 130, 131, 234,
243 293 |

durhdaios Niyos, dowdle ratio : Sirhaclwy Aoyos,
duplicate ratio, contrasted with, 11. 133

Gﬁ-nru,m'.tl‘T power: =actual value of a sub-
multiple in units (Nicomachus) 11, 282:
=side of not a pl q
(i.-e. root or surd) in Plato 11. 288, 290,
L 1, 2, 3: =syuare in Plato 11. 294-5

dvwvacfar, *“to be side of square equal to"
1L 13: al Svwaperar adrd, sides of squares
equal to them 111 13: 4 BI' vijs A peifor
Sovarar 7y AZ, ““the square on BC is
greater than the square on 4 by the square
on DF," literally * BC is in power greater
than A éy DF" 111, 43

elfos, figure 11. 234: =form 11. 254

eloasywyn dpuovixn, Introduction to Harmony,
by Cleonides 1. 17

#xacros, each: curious use of, 1L 79

éxarépa dxarépg, meaning respectively 1. 248,

350

éuBefhfiofuwrar, use of, 1. 244

éxeivos= Euclid 1. 400

Exbeos, sefting-out, one of formal divisions
of proposition 1. 129: may sometimes be
omitted 1. 130

¢xrbs, kard 16 (of an exterior angle in sense
of re-entrant) 1. 263: % éxvos ywela, the
exterior angle 1. 280
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Jhuw, minor (irrational) straight line 111,

mmcbﬁi. l-shaped 1. 159

erppua, &Fm‘ [II‘I application of areas) 11.262

e helwewr, **fall
areas) 11. 262

ENewus, falling-short (in application of areas)
1. 36, 343-5: 3834

urés wpéBhnua, a deficient (=indetermi-
nate) problem I. 129

!prt-rmv aﬂm{ be interpolated) 11. 358

ternately or (adjectivally) alternate
bmzf Advyos, alternate ratio,

dkrnamfc 1. 13

fra whelw, "seveml ones” (def. of number)
1. 280

dvapuolew, to fit in (active) Book 1v, Def. 7
and Prop. 1, 11, 79, 8o, 81

Evvoa, motion, use of, 1. 221

Eroraous, objection 1. 135

dvrés, within: (of internal contact of circles)
1L 13: xatd 7d dvrds or § dvrids (ywrla), of
an smlerior angle 1. 263, 280: % dvrds xkal
dwevarrior ywvla, the interior and opposite
angle 1. 280

s bihw, in continued proportion (of
terms in rical ion) 11. 346

Jﬂfﬂ?x&um (émifetyru, Join) 1. 242

éxiudpeos Noyos, superparticularis ratio=ratio
(m41):m 11 295

éxiwedor, plane in Euclid, used for swrface
also in to and Aristotle 1. 16g, 111. 263

éxixedos (dpfuds), plane (number) 11. 287-8

dwiwpocbelr, éwiwpoofer elvas, to siand in
JSromt of (hiding from view), in Plato’s
definitions of straight line and plane 1.

165, 166
ea, surface: in Euclid 1. 169: in
Aristotle 111. 263
érﬁueu.. consequents (="**following " terms)
ina ion II 134, 238
‘pmporrl ér rst, . , oblong (figure)
I. l_!,:, 188 of numbers) in Plato=mpo-

pinns, which however is distinguished from
érepoprens by Nicomachus etc. 11. 289-go,

203

€08, 7d, the straight 1. 159: edfeia (ypapu),
straight line 1. 165-9

ebdvypapunds, rectilinear (term for prime
numbers) 11, 285

l'ﬁ“‘ymm. rectilineal 1.
substantive 1. 346

edfuperpucds, euthymetric (of prime numbers)
11. 28

dﬁrﬂa’gm, to fouch 1. 57

dpapublew, to coincide, épapublesfas, to be
applied to 1. 168, 224-5, 249

dpexticbs (of a class of loci) 1. 330

égpetfis, **in order” 1. 181 : of adjacent angles
1. 181, 278

short” (in application of

187: neuter as

fryolpeva, antecedents (*‘ leading” terms) in
a proportion II. 134

fiwep, than: construction after iwhaciwr etc.
1. 133

523

fewpnua, theorem, g.z.
Bupets (shield) =ellipse 1. 165

8woprxns, of square number ([amblichus) 11.
293
fﬂgll wédn, hippopede (horse- fetterg. name

for a certain curve I 162-3
loaxis lodxes [gos, equal multi ll
and again by equal (of a cu

290, 291
lodxis ﬁro:'. aqbe multiplied by equal (of a
square number) 11 291

lodiis loos é\arrovdes Um‘{'nhm), species of
solid numbers, =wAwdls (Joxls or erghis)
1L 291

loopérpwy oxnpdrwr, wepl, On isometric
JSigures (Zenodorus) 1. 26, 27, 333

xdferos (edfela ~ypauusd), perpendicular 1.
181-2, 271: ‘‘plane” and * solid” per-
pendicular 1. 272

xabnyynris 1. 20

“let it be called,”
originality of a definition 11.

xm:gmt, curved (of lines) 1. 159

xaraperpeiv, measure 11. I15: without re-
mainder, **completely "' (*Anpotrrws)11. 280

xaragxevd{w, construct: rdv alridv kara-
oxevagbévrwv, ' with the same construc-
tion” 11. 11

xarackevs, consiruction, or mn:bnm-y. one
of the divisions of a proposition I. 129:
sometimes unnecessary 1. 130

kararoud) kavbvos, Sectio canonis attributed Lo
Euclid 1. 17, I1. 295

xelgfw, ‘‘let it be made ™ 1. 269

xexauuévn, bent (of lines) 1. 150, 176

xévrpor, centre 1. 183, 184, 199: of sphere 111.
270: 1) éx Toii :é»rpou_m'llus 1. 190. 1. 2

xeparoedhs (yurla), bom-k‘h (angle) 1. 177,
178, 182, 1L 4, 30, 4

xN@v, to break off, deflect, or inflect : xexhdafau,
def. of, alluded léhll:y Aﬂs{:tle 1. 118, 150,
176, 178, II. 47: xexhaguéern -ypw-lmj
defined by Heron I. 150, 159: Kexhdofw
& wdd 11,

kAdaus, &rmémg (of lines) 1. 176

x\igts, inclination: (of line to lme} L 176:
(of straight line to plane or of plane to
plane) 111 263~4: ouolws xexMafar, to be
similarly inclined 111. 265

xethoydwiov, hollow-angled (figure), in Zeno-
dorus 1. 27, 188

xowal fvvorar, Common Notions (=axioms)
1. 221-2: called also r& xowd, xowal Séfat
(Aristotle) 1. 120, 221

xowd) wporkelofw, dgmpgofw, *‘let there be
added to, subtracted from, each” 1. 276

xowrd) Tour, common section (of planes) 111,
263

d)mupo: truncated (of pyramidal number
minus vertex) 11. 291

xopug, vertex : xard xopugniw, vertical (angles)

8

numbe n

indicating
129

L 27
xplxos, ring (Heron) 1. 163
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xukMikbs, cyelic, a particular species of square
number 11. 291

xthrdpos, cylinder 111 271

xdvos, cone I11. 270

Mippa, lemma (=something assumed, hag-
Parbpevor) 1. 1334

Aéyos, ratio: meaning IL. 117: definition of,
11, 116-9: original meaning (of something
expressed) accounts for use of #&hoyos,
having mo ratio, irrational 11. 1y

Aowrds, remaining: Aocry) § AA howrg 7§ BH
lon doriv 1. 245

pelfwr, major (irrational straight line) 111. 7,
87-8 ete.

pepordabar, to be isolated, of pords, unit
(Theon of Smyrna) 11. 279

pépos, part: two meanings 11. 115: generally
=submultiple 11. 280: uépy, parts (= proper

fraction) 11. 115, 280: wépy (=direction)
L 308, 323: (=side) L. 271
péon (etBeia), pdaos dvdhoyor (dped-

pbs), mean proportional (straight line or
number) 11. 129, 295, 363 etc.

péoos, *“medial’ a certain irrational
straight line or area) 111. 49, éo : 9 éx S0
péawy wpiry (Sevrépa), "1he tst (second)

bimedial (straight lme} L. 7, 84-6:
p{d’m drn‘rolu'q wpirn (kwépu}, *first

of a medial (straight
line)” mI. 7, 7y 15g-62: pyrév xal péoov

duvapdrn, “side of (square equal to) the
sum of a rational and a medial area”
11 7, 88—g: b0 péoa Suwauévn, ‘*side of
the sum of two medial areas” mn1 7,
8g-go: ) perd prol (péoov) péoor T Ehor
wowoica, **side of (square equal to) the
difference between a medial and a rational
(medial) area 111. 7, 164-7

ueréwpos, elevated (above a plane) 111, 272

) ydp, ‘‘suppose it is not " 11. 7

wikos, length 1. 158-9: in Plato =side of
complete square or length commensurable
with unit of length 11. 288, 111. 3: more
generally, of number im ome dimension
11, 287-8

pawoerdijs, lune-like (of angle) 1. 26, 201: 1o
pypoedés (oxfpa), lune 1. 187

pixrés, “ mixed " (of lines or curves) 1. 161,
162 : (of surfaces) 1. 170

povds, unit, monad : supposed etymological
connexion with wévos, solitary, powd, rest
1L. 279 pords wpoohafoioa Béoww, definition
of a point 1. 155

povborpogos ENE, ** single-turn spiral " 1. 122-
3 m., 164-5: in Pappus=cylindrical helix
1. 165

veboes, inclinations, a class of problems
1. 150-1: wedew, to verge 1. 118, 150

Everpoadiys, scraper-like (of angle) 1. 178

dpoaidis, *‘of the same form” 1. 250
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dpowopepts, uniform (of lines or curves) 1. 40,
161-2

poos, similar: (of rectilineal figures) 11. 188
(of angles) = equal (Thales, Aristotle) 1.
252: (of segments of circles) 1. 5; (of
plane and solid numbers) 1. 357, 11. 293

duowbrns Mywr, * similarity of ratios ” (inter-

lated def. of proportion) 11. 119

] logous, corresp g 11 1342
exceptsmnllly “in the same ratio with”
1. 2

3 rsulme or ferm, in such expressions as

7 éx Svo dropdrwr, the binomial (straight
line) 111. 7 ete.

dteia (ywvla), acute (angle) 1. 181

dfvydeios, acute-angled 1. 187

Umwep Edes Beifau (or woufjear) Q.E.D. (or F.) 1. §7

dpbloyuwios, right-angled : as used of quadri-
laterals = rectangular 1. 188-9

dpuopds, definition 1. 143

8pos, definition 1. 143 : original meaning of,

I 143 : =boundary, limit 1. 182: =/ferm
in a proportion I1. 131

dyus, visual ray 1. 166

wdvry perahapSarduevar, ** taken together in

any manner " 1. 282

wapafdihew, to apply (an area) : wapaBdilew
dwd used, exceptionally, instead of wapa-
PéMhew wapd or draypdpew dwb 11. 263

wapafohy Tov ywplww, application of areas
1. 36, 343-5: contrasted with {wepBoli
(exceeding) and ENewhs (falling-short) 1.
343 : wapafohd contrasted with edorams
(comstruction) 1. 343 : application of terms
to conics by Apollonius 1. 344-5

wapddofos Téwos, 8, The I'reasury of Para-
doxes 1. 329

wapaddrrw, * fall beulde ” “gideways"” or
“awry” 1. 262, 11,

wapadiyhewiwedos [nd] ], pamllelepipcdala
*with parallel planes or faces': orepeor
wapahnheriredor = rﬂ]ele pipedal
solid,” not ** solid plnllclepiped" 1. 326

rapalAphéypappos, parallelogrammic (= pa-
rallel-lined) : rnpcll\qlhwuov xuwplow
¢ parallelogrammic area,” shortened to
upul\kq)\b-ymw, punlleiognm L 325

raparNipua, complement (of
gram) g.v.

wevrdypappor 11,

wepaivovoa rwdrrm “limiting quantity”
(Thymaridas’ definition of unit) 11. 279

wépas, extremity 1. 1065, 182 : wépas avyxheior
(Posidonius’ definition of figure) 1. 183

wepexoudrn (of angle), wepiexbueror (of rect-
angle), contained 1. 370: 1d Bls wepeyb-
pevov, fwice the rectangle contained 1. 380:
(of figure) contained or bounded 1. 181,
183, 184, 186, 187

wepiradnis dprios, odd-fimes even 11. 2814

wepioodKis wepuwobs, odd-times odd 11. 284

wepiwoodprios, odd-even (Nicomachus etc.)

11. 283
wepoads, odd (number) 11. 281
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wepupépew, circumference (includes are) 1. 184
wepupeptis, circular 1. 159
wepupepbypappos, contained by a circum-
ference of a circle or by arcs of circles
1. 183, 184
wyMkos, how great: refers to comtinuons
(geometrical) magnitude as woobs to discrete
(multitude) 11. 116-7
wnhidrys, used in v. Def. 3 and vi. Def. 5:
=size (not guantuplicity as it is translated
by De Morgan) 11. 116-7, 189-go: sup-
B:srd multiplication of wph\kbrares (VI.
5) 1. 131: distinction between
wohxbrys and péyefos 11, 117
wAdros, breadth 1. 158-9: (of numbers) 11. 288
wheovd{or (xpbfhnua), ** (problem) in excess ”
1. 12
rknpi? side: (of factors of ** plane ” and
““solid ” numbers) 11. 288
whijflos wpopévor or wemwepaouévor, defined
or finite multitude (definition of number)
11. 280: dx porddwr ovyxeluevor whijfos
(Euclid’s def.) 11. 28¢
woMarhagidfew, multiply : defined 11. 287
wolarhasaouss, multip ication: xaf’ dwot-
ovoliv woAharAagiaoubr, ** (arising) from any
multiple whatever” 11. 120
w05, multiple : lediis wolharhdoa,
equimultiples 11. 120 etc.
wbhos, a mathematical instrument 1. 370
wohtrhevpor, multilateral, many-sided
1. 187: cxcluda rerpdrAevpor, quadri-
lateral 11,
woploasias, to 4 find" or * furnish " 1. 125,
1. 248
wbpuaya, porism ¢.v.
wooduis woodxis rwot “so many times so
many times so many” (of solid numbers,
in Aristotle) 11. 2
woardxis woool, ¥ s0  many times so many " (of
plane numben. in Aristotle) 11. 286
woaby, ¢ , in Aristotle 11. 115 : refers
to multitude as wyhixov to magnitude 11.
116-7
wplopa, prism 111. 268
wpdfhnua, problem g v

E/ wevos,
complete 1. 256 rpomémw &wmuu}
M?q{lheotems contrasted with converse

L2

"P‘FW. (of numbers): in Plato
= érepopriens, but distinguished from it by
Nicomachus etc. 11. 289—90, 293

wpds, in geometry, various meanings of, 1. 277

wposaraypdyai, to draw om fo: (of ncm:le) to
complete, when segment is given 11. 56

l'pwnmnwu (edBeia) =" annex,” the strai ght

line which, when added to a compound ir-

rational straight line formed bym traction,
makes up the ter “term,” i.e. the
negative ““term” 111 1§

wpogevpeir, to find in addition (of finding
third and fourth proportionals) 11 214

wplracws, enunciation 1. 129-30

wporelvw, to propound 1. 128
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rpuﬂﬂévm. to wporefeioa edfela,

any assi eIntnlght line nr. 1r

wpliTo srpus dMjhous, (numbers) prime to
one another 11. 285-6

wpiros, prime: two senses of, I. 146: 11. 2845

wrdois, case I. 13

wupapls, p)rramld 111, 268

pnrés, rational (literally *‘expressible”) I.
137, 1L 117, 1L 1 : a relative term, un-
like dovpuerpos (incommensurable) which
is a matwral kind (Pythagoreans) 1L 1:
pyrhy Siudperpos THs weuwddos, **rational
diameter of 5" (=7, as approximation to
~/50) 1. 399, I111. 13, 525: fyrdv xal péoow
Bwunéms??-. side of squgre equal to sum of
a rational and a medial area) etc. 111, 7

onueior, point 1. 155-6

ordfun, & mathematical instrument L. 371

orepebs, solid 111. 262-3: of solid numbers
11. 2go—1: oreped ywrla, solid angle 111.
267~ fpown oreped oxfpara, similar
SQ]l.d ﬁgures 1. 265-7

ﬂwmi. point 1. 156

arouyelov, element 1. 114-6

arpoyyihor, T8, the round (circular), in Plato
1. 159, 184

oTpoyyvhérys, roundness I. 182

adpuperpos, commensurable : pixes, in length,
duvdpet pbvov, in square only 1L 11

cuuwrépasua, conclusion (of a proposition)
. 129, 130

oUvevots, convergence I, 282

ovrexfs, continuous: owexhs dvak
“continuous proportion ” (in three terms)
11 131

.rmuu%m drakoyla,connected (i.e. continuous|
proportion IL. 131, 293 : ouwnuuévos
compound ratio in Archimedes 11. 133

auwlévri, componends 11. 134-5

airfeais Abyou, **composition of a ratio,”
distinct from compounding of ratios 1l
134-5

ovvferos, composite: (of lines or curves)
1. 160: (of surfaces) 1. 170: (of numbers),
in Ni hus and Iamblichus a sub-
division of odd 11, 286

owloracfa:, construct: special connotation
1. 259, 289 : with érés 1. 289 : contrasted
with wapaSd\ew (apply) 1. 343 : of qvoTa-
Hhreral, vwmﬂﬂcovrm. “ there cannot be
constructed " 1. 259, 1. 53

owwrifnp, obycequat (of ratios) 11. 135, 189—
9o: arwnlpm and duupetévra (com-

and separando) used relatively to

one another I1. 168, 170

olorua pordduwr, collection of units” (def.
of number) 11. 280

overnuaricds, collective I1. 279

opaipa, sphere 111. 2

cx::h?w:rkd (g?, particular species of
cube number) 11, 291

a¢nrioxos or ognrloxos, of solid number witk
all three sides unequal (=scalene) 11. 290
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axéais, “relation”: wouk axéas, ‘‘a sort of
relation” (in def. of ratio) i1 116-7
axnuaroypageir, oxnuaroypapla, representing
(numbers) by figures of like shape 1. 359
oxnuarowoioloa or oxfjua woodea, * forming
a figure " (of a line or curve) 1. 160-1

radroptxys, of sq by
IL 293

rabrbrys Mywr, * sameness of ratios” 11. 119

réhews, perfect (of a class of numbers) 11.
293~

rerayuévos," ordered” : rerayuévor wpbiNnua,
“ordered” problem I 128: rerayuérn
dvahoyla, **ordered” proportion 1L 137

ﬂmpdwlslm drakoyla, perturbed proportion
11, 13

TeTpaywviopbs, squaring, definitions of, 1. 149~
50, 410

mpd"rww, square : sometimes (but not in
Euclid) any four-angled figure 1. 188

rerpdwhevpor, quadrilateral I, 187: not a
“polygon” 11. 239

Tfpa xixhov, ent of a circle: rufuaros
ywrla, angle of a segment I1. 4: év Tpfpare
qwrla, angle ¢ a segment 11. 4

Toueds (xUxhov), sector (of a circle‘): aKvToTo-
puaxds Topels, * shoemaker's knife " 11. 5

Tout, section, =point of section 1. 170, 171,
278 : xowd Topd, * common section ™ 111,

26
ﬂmn%his (of figure), sector-like 11. §
Tomudy Bedpnpa, locus-theorem 1. 329
réwos, locus 1. 320-31: =room or space
1. 33 n.: place ?whem things may be
found), thus réwos dvalvbuevos, Treasury
o; Analysis 1. 8, 10, wapddoles véwos,
of Paradoxes, 1. 329

(Ni hus)
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répros, instrument for drawing a circle 1. 371

rogavrarAdoor, * the same multiple " 11. 146

rplywvov, triangle : 8 rpurholy, T8 &' dMAMd-
Awe, triple, interwoven triangle, =penta-
gram IL

Tpurhdoues, triple, rpurhaciwy, triplicate (of
ratios) 11. 133

rplwhevpor, three-sided figure 1. 187 )

Tuyxdvew, happen: ruxdw onueior, any point
at dom 1. 251 Tu)oboa yuwvla, “‘any
angle” H. 212 : d\\a, d Eruxer, lodis wol-
Aarhdaia, ‘“other, chance, equimultiples”
1L 1434

trepBol, exceeding, with ref to method
application of areas 1. 36, 343-5,

3867

Uwepredds or Iwepréheos, “‘over-perfect” (of
a class of numbers) 1. 293-4

b, il:;xpmﬁo:lndfor an angle (# ¢wd BAD
yuwrla) 1, 249, a rectangle 1. 370

Uwodirhdcios, sub-duplicate, = half (Nico-
machus) 11. 280

{roxeluevos, laid down or assumed : 7d dwo-
xeluevor dwlwedow, the plane of reference
1L 272

Umbrerrar, **is by hypothesis' 1. 303, 313

Uwomohharhdoios, m{multiplc (Ni us)
1I. 280

bworelvew, subtend, with acc. or dwd and ace.
1. 249, 283, 350

tpos, height 11. 189

xwplov, area II. 254

wpirpdvy ypapus, deferminate line (curve)
“forming a figure” 1. 160 | :
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al-'Abbas b, Sa'id al-Jauhari 1. 85
“ Abthiniathus” (or * Anthisathus") 1. 203
Abil ’l "'Abbas al-Fadl b. Haitim, see an-

Nairizi

Abii "Abdallih Muh. b. Mu'adh al-Jayyani
1

Abi 9g.l‘l al-Bagri 1. 88

Abii 'All al-Hasan b. al-Hasan b. al-Haitham

1. 88, 89
Abii Da'id Sulaiman b. ‘Uqba 1. 85, go
Abii Ja'far al-Khézin 1. 77, 85
Abii Ja'far Muh. b. Muh. b. al-Hasan
Nasiraddin at-Tisi, se¢ Nasiraddin
Abii Muh. b. Abdalbiqi al-Bagdadi al- Faradi

1. 8 1., g0
Abii Muh. al-Hasan b. 'Ubaidallah b. Sulai-
min b, Wahb 1. 87
Abii Nagr Gars al-Na'ma 1. go
Abi Nasr Mansir b, 'All b. 'Irdq 1. go
Abi Nagr Mub. b. Muh. b. Tarkhin b.
Uzlag al-Faribi 1. 88
Abii Sahl Wijan b. Rustam al-Kiihi 1. 88
Abil Sa'id Sinan b. Thabit b. Qurra_ 1. 88
Abii 'Uthmin ad-Dimashqi 1. 25, 77
Abii, 'l Wafi al-Biizjini 1. 77, 85, 86
Abii Yiisuf Ya'qib b. Ishiq b. ag-Sabbih al-
Kindi 1. 86
Abi Yisuf Ya'qiib b. Muh. ar-Razi 1. 86
Adjacent (épekfis), meaning 1. 181
tus II. 292
Aenaeas (or Aigeias) of Hierapolis 1. 28, 311
is 1. 27-8, 191
Ahmad b. al-Husain al-Ahwazi al-Katib 1. 89
Ahmad b. 'Umar al-Karabisi 1. 85
al-Ahwizl 1. 89
Aigeias (? Aenaeas) of Hierapolis 1. 28, 311
Alcinous 11. 98
Alexander Aphrodisiensis 1. 7., 29, II. 120
Algebra, geometrical I. 373-4: classical
method was that of Eucl. 11. (cf. Apol-
lonius) 1. 373: preferable to semi-alge-
braical metimd 1. 377-8: semi-algebraical
method due to Heron 1. 373, and favoured
5{ Pappus 1. 373 : geometrical equivalents
algebraical operations 1. 374 algebraical
equivalents m;nsiﬁons in Book 11., I.
372-3: equi ts in Book X. of pro-
positions in algebra, 4/£ -4/A cannot be

equal to &, 111. 58-60: if a=.fé=x%,]Jy,
then a=x, b=y, I1I. 93-4, 167-8
Ali b. Ahmad Abii 'l Qisim al-Antaki 1. 86
Allman, G. J. 1. 135m., 318, 352, I1II. 18—

9 439 =

Alternate: (of angles) 1. 308: (of ratios),
alternately 11. 134

Alternative proofs, interpolated 1. 58, 59:
cf. n1. g and following 11. 22: that in
111. 10 claimed by Heron 1. 234

Amaldi, Ugo 1. 175, 179-80, 193, 201, 313,
318, 11. 30, 126

Ambiguous case 1. 306-7 : in VI. 7, 11. 208—-9

Amphinomus 1. 125, 128, 150 .

Amyclas of Heraclea 1. 117

Analysis (and synthesis) 1, 18: definitions
of, interpolated, 1. 138, 111. 443 : described
by Pappus 1. 138-9: mystery of Greek
analysis 111. 246: modern studies of Greek
analysis 1. 139: theoretical and problem-
atical analysis 1. 138: Treasury of Analy-
sis (réwos dralvbpevos) 1. 8, 10, 11, 138:
method of analysis and precautions neces-
sary to, 1. 139—40: analysis and synthesis
of problems 1. 140—2: two parts of analysis
(a) trans, ion, (b) resolution, and two
parts of synthesis, (a) comstruction, (b)
demonstration 1. 141: example from
Pappus 1. 141-2: analysis should also
reveal Swpwopbs (conditions of possibility)
L 142: interpolated alternative proofs of
XI11. 1-5 by analysis and synthesis 1. 137,
1L 442-

Analytical method 1. 36 : supposed discovery
of, by Plato 1. 134, 137

Anaximander 1. 370, II. 111

Anaximenes II. 111

Anchor-ring 1. 163

Andron 1. 126

Angle: curvilineal and rectilineal, Euclid’s
definition of, 1. 176 sq.: definition criti-
cised by Syrianus I. 176: Aristotle’s notion
of angle as x\daus 1. 176: Apollonius’ view
of, as contraction 1. 176, 177: Plutarch and

Carpus on, 1. 177: to which category does

it gelong? guantum, Plutarch, Carpus,

“ Aganis™ I l','g. Euclid 1. 178; guale,

Aristotle and Eudemus 1. 177-8: relation,
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Euclid 1. 178: Syrianus' compromise
1. 178: treatise on the Angle by Eudemus
L. 34, 38, 177-8: classification of angles
(Geminus) 1. 178-9: curvilineal and
“mixed ” angles 1. 26, 178-9, horn-like
(xeparoeidfs) 1. 177, 178, 182, 265, II. 4,
30, 40, lune-like (pnwoadis) 1. 26, |7B}9.
scraper-like (Evarpoedis) 1. 178: angle of a
segment 1. 253, II. 4: angle of a semi-
circle 1. 182, 253, 11 4: controversies about
“ angle of semicircle” and Aorm/ike angle
1I. 3g—42: definitions of angle classihed
I. 179: recent Italian views i. 179-81:
angle as cluster of straight lines or .rays
1. 18o~1, defined by Veronese 1. 18o: as
g:n of a plane (*‘angular sector ) 1. 179~
: fat angle (Veronese etc.) 1. 180-1,

269: three kinds of angles, which is prior
(Aristotle)? 1. 181-2: angles not less than
two right angles not recognised as angles
(cf. Heron, lus, Zenodorus) 1I. 47g-g=
did Euclid extend *“‘angle” to angles
greater than two right angles in vi. 33?
11. 275-6: Mftﬂ#angles 1. 181 : alternate
L. 308: similar (=equal) 1. 178, 182, 252:
vertical 1. 278: exterior and interior
(to a figure) 1. 263, 280: exferior when
re-entrant 1. 263, in which case we have a
hollow-angled figure 1. 27, 188, 11 48:
inlerior and opposite 1. 280: construction
by Apollonius of angle equal to angle
1. 296: angle in a semicircle, theorem of,
I. 317-9: trisection of angle, by con-
choid of Nicomedes 1. 265-6, by quadratrix
of Hippias I. 266, by spiral of Archimedes
1. 267: dihedral angle 111, 264-5: solid
angle 111. 261, 267-8

Annex (wposapubfovoa) = the straight line
which, when added to a compound ir-
rational straight line formed by subtraction,
makes up the greater “term,” i.e. the
negative ‘““term” 111. 1

al-Aef:akt 1. 86 2

Antecedents (leading terms in proportion) 11.

134

*“ Anthisathus” (or *‘ Abthiniathus ) 1. 203

Antiparallels: may be used for construction
of VI 13, II. 21§

Antiphon 1. 7., 35

Apastamba-Sulba-Sutra 1. 352: evidence in,
as to early discovery of Eucl. 1. 47 and use
of gnomon 1. 360-4: Biirk’s claim that
Indians had discovered the irrational 1.
363-4: approximation to ,/2 and Thibaut’s
explanation 1. 361, 363-4: inaccurate

ﬁvll‘::; of ™ illj(':g'{. 364
pollodorus * sticus” 1. 37, 319, 351

Apollonius : _dxspamﬁed by Pappus in com-
parison with Euclid 1. 3: sup by
some Arabians to be author of the Zl-
ments 1. §: a “carpenter” 1. 5: on ele-
mentary metrz L 416 : on the Jine 1.
159: on the amgle 1. 176: general defini-
tion of diameter 1. 315! ged to prove
axioms I. 43, 63, 222-3: his ‘‘general

treatise” 1. 42! constructions by, for
bisection of straight line 1, 268, for a
perpendicular 1. 270, for an angle equal to
an angle 1. 296: on parallel-axiom (?)
I. 42-3: adaptation to conics of theory of
arp]ication of areas I. 344—5: geometrical
algebrain, 1. 373: Plane Loci, 1. 14, 259,339,
theorem from (arising out of Eucl. V1. 3),
also found in Aristotle 11. 198-200: Plane
veboes 1. 151, problem from, 11. 81, lemma
by Pappus on, I1. 64-5: comparison of do-
decahedron and icosahedron 1. 6, I11. 439,
512, 513: on the cocklias 1. 34, 43, 1
on “‘unordered” irrationals 1. 43, 115, I11.
3, 10, 246, 255-9: general definition of ob-
lique (circular) cone 111. 270: I. 138, 188,
211, 222, 246, 259, 370, 373, 1I. 75, 199,
258, 111. 264, 267
Apotome : compound irrational straight line
difference between two ‘‘terms") 111. 7:
efined 111. 158-9: connected by Theae-
tetus with harmonic mean 1. 3, 4:
biquadratic from which it arises 111, 7:
uniquely formed 111, 167-8: first, second,
third, fourth, fifth and sixih apotomes,
3uadnlics from which arising 111. 5-6,
efined 111, 177, and found respectively
(x. 85-go) 111 1}3—99: apotome equivalent
to square root of firsz apotome I11. 1g0-4:
Sirst, second, third, fourth, fifth and sixth
apotomes equivalent to squares of agofome,
/f;:f apotome of a medial ete. 111, 212-29:
pot, t be dinomial also 111, 240-2:
different from medial (straight line) and
from other irrationals of same series with
itself 111. 242 : used to rationalise binomial
with proportional terms 111. 243-8, 252—4
Apotome d?: medial (straight line): first and
d, and biquadratics of which they are
roots 111, 7: first apotome of a medial
defined 111. 159-60, uniquely formed 111
168-9, equivalent to square root of secomd
apotome II1. 194-8: second apotome of a
medial, defined 111. 1612, uniquely formed
111. 170-2, equivalent to square root of
third apotome 111. 199-202
Application of areas 1. 36, 343-5: contrasted
with exceeding and falling-short 1. 343:
plete method equivalent to geometrical
solution of mixed quadratic equation 1.
344-5, 383-5, 386-8, 1. 187, 258-6o,
203-5, 266-7 : adaptation to conics (Apol-
lonius) 1. 344-5: application contrasted
with comstruction (Proclus) 1. 343
Approximations: 7/5 as approximation to /2
(Pythagoreans and Plato) I1. 11g: approxi-
mations to ?/3 in Archimedes and (in
sexagesimal fractions) in Ptolemy 11, 119:
to = (Archimedes) 11. 119! to J.;%oo
(Theon of Alexandria) 11 119: remarkably
close approximations (stated in sexagesimal
fractions) in scholia to Book X., I. 74 .
“ Aqaton” 1. 88
Arabian editors and commentators 1. 75~
90
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Arabic numerals in scholia to Book x.,
1th e, 1. 71

Archibald, R, C. 1. g n., 10

Archimedes: * postulates” in, I. 1120, 123:
‘‘porisms" in, L. 11, 13: on straight

. 166: on plame 1. 171-2: Liber

assumptorum, proposition from, 1. 65:
pproximations to /3, sq roots of large

numbers and to w, I1. 119: extension of

a prop tion ween bles to

cover incommensurables 11. 193: “Axiom”

of (called however **lemma,” assumption,
by A. himself) 1. 234 : relation of * Axiom”
to X. 1, N1 15~6: * Axiom” already
used hy Eudoxus and mentioned by
Aristotle 111. 16: proved by means of
Dedekind’s Postulate (Stolz) 111. 16: on
discovery by Eudoxus of method of ex-
haustion 111. 365-6, 374: new fragment
of, “‘Method (¥podos) of Archimedes about
mechanical t ems,” or épbdior, dis-
covered by Heiberg and published by
him 11. 40, 111. 366-8, adds new chapter to
history of integral calculus, which the
method actually 1s, 111. 366-7: application
to area of parabolic segment, f&:a’.ﬂ : spiral
of Archimedes 1. 26, 267: 1. b, 21, 116,
143, 225, 249, 370, 1L. 136, 190, 111 246,
270, 375

ytas 1. 20: proof that there is no

numerical geometric mean between » and
%+ 1 1L 29§

Areskong, M. E. 1. 113

Arethas, Bishop of Caesarea 1. 48: owned
Bodleian Ms. (B) 1. 47-8: had famous
Plato ms. of Patmos (Cod. Clarkianus)
written 1. 48.

Argyrus, Isaak 1. 74

Armuusﬁ L 138: mconien;i_sﬁ: .Sm'n'Lim'
1. 16, 329: compari ve (regular
solid) gg&m L 6, 111. 4389, 5r3qu

Aristotelian Problems 1. :33, 182, 187

Aristotle : on nature of elements 1. 116: on
first principles 1. 117 sqq. : on definitions
L 117, 119-20, 143—4, 146-30: on distinc-
tion between hypotheses and definitions
I. 119, 120, between hypotheses and
postulates 1. 118, 119, between hypotheses
and axioms 1. 120 : on axioms I. 119-21:
g'xionr indemonstrable 5&_ 121: on defini-
tion by negation 1. 1 : on poinis 1.
155-6, lli_r,f; on fl'u;.r‘, d’cﬁlgfag:lof. 1.
158-9, classification of, 1. 15 1 quotes
Plato’s definition of straight line |? 166:
on definitions of surface 1. 170: definition
of “body” as that which has three
dimensions or as * depth ” 111. 262 : body
‘‘bounded by surfaces” (éwerédois) IIL
nﬁg: of six “ dimensions ” 111. 263 :
dehnition of sphere 111. 269 : on the amgle
L. 176-8: on priority as between right and
acute angles 1. 181~2: on figwre and
definition of, 1 182-3: definitions of
“squaring” 1. 149-50, 410: on parallels
I 19o-2, 308-9: on gmomen 1. 351, 355,
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359 : on attributes xard warrés and wpdror
xafbhov 1. 319, 320, 325: on the objection
1. 135: on reduction 1. 135 : on reductio aa
absurdum 1. 136: on the infinite 1. 2132—4:
supposed postulate or axiom about diver-
gent lines taken by Proclus from, I. 45,
207 : gives pre-Euclidean proof of Eucl. 1.
5, 1. 252-3: on theorem of angle in a semi-
circle 1. 149; has proof (pre-Euclidean)
that angle in semicircle is right 1. 63 :
on sum of angles of triangle I. 319-21:
on sum of exterior angles of po.? gon 1.
322: on def. of same rafio (=same
drraralpesis) 11. 1201 : on tion as
‘‘equality of ratios” 11. 119: on theorem in
proportion (alternando) not proved generally
till his time 11. 113 : on proportion in three
terms (surexis, continuous), and in four
terms (Sippnuévn, discrete) 11. 131, 293: on
alternate ratios 11. 1341 on fmverse ratio I1.
134, 149: on similar rectilineal figures 1L
138: 1::5 locus-theorem (arising out of
Eucl. vi. 3) also given in Apollonius’
Plane Loci 11, 198-200: on unmif 11. 279°
on number 11. 280: on non-applicability of
arithmetical proofs to magnitudes if these
are not numbers I1. 113: on definitions of
odd and even by one another 11. 281: on
prime numbers 11. 284-5: on composite
numbers as plane and solid 11, 286, 288,
290: on rep ion of bers by
pebbles forming figures 11. 288: pgives
proof (no doubt Pythagorean) of incom-
mensurability of /2, 111. 2: L. 38, 45, 117,
150 n., 181, 184, 183, 187, 188, 195, 202,
203, 221, 222, 223, 226, 259, 262-3, 283,
411, 11. 2, 4, 33, 79, 113, 135, 149, 159,
1o, 165, 184, 188, 18g, 111, 4
Arithmetic, Elements of, anterior to Euclid

11. 295
Arilhmztiul calculationsin scholia to Book X.,

L 71, 74

al-Ar::il.ni, Ibn Rihawaihi 1. 86

Ashkil at-ta'sis 1. 5.

Ashraf Shamsaddin as-Samargandi, Muh. b.
1. 5n., 89

Astaroff, Ivan 1. 113

Asymptotic (non-secant) : of lines 1. 40, 161,
203: of parallel planes 11, 265

Athelhard of Bath 1. 78, 93-6

Athenaeus of Cyzicus 1. 117

Athenaeus 1. 20

August, E. F. 1. 103, II. 23, 25, 149, 238,
25b, %a, 1l 2, 48

Austin, W. 1. 103, 111, 11. 172, 188, 211, 259

Autolycus, On the moving sphere, 1. 17

Avicenna, 1. 77, 89

“ Axiom of Archimedes " 111. 15-6: already
used by Eudoxus, 111. 15, and mentioned by
Aristotle, 111. 16 : relation of, to Eucl. x.
1, 1L 15-6

Axioms, distinguished from tulates by
Aristotle 1. 118-9, by Proclus (Geminus
and *‘others”) 1. 40, 121-3: Proclus on
difficulties in distinctions 1. 1234 : distin-
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ished from hypotheses, Aristotle 1.
fuao-r. bmecl.u);pl?‘l 21-2: Rn’dcmmtuble
1. 121: attempt by Apollonius to prove I.
223-3: =““common (things)" or **common
opinions” in Aristotle 1. 120, 221: com-
mon to all sciences 1. 119, 120: called
“common notions” in Euclid 1. 121, 221:
which are genuine? 1. 221 sqq. : Proclus
recognises five 1. 222, HeruA three 1. 222:
interpolated axioms I. 224, 232: Pappus’
additions to axioms I. 25, 223, 2124, 232 :
axioms of congruence, (1) Euclid’s Common
Notion 4, I. 224-7, (2) modern systems
(Pasch, Veronese and Hilbert) 1. 228-31 :
““axiom” with Stoics = every simple
declaratory statement I. 41, 221 : axioms
tacitly assumed, in Book v., 1. 137, in
Book VIL, II. 204

Axis : of sphere 111. 261, 269 : of cone 111
261, 271: of cylinder 1m1. 262, 277

Babylonians : supposed discoverers of ‘ Aar-
monic proportion” I11. 112

Bacon, Roger 1. 94y 4'6

Baermann, G. F. 11. 213

Balbus, e mensuris 1. g1

Baltzer, R. 11. 30

Barbarin 1. 219

Barlaam, arithmetical commentary on Eucl.
., 1. 74

Barrow: on Eucl. v. Def. 3, 1. 117: on
v. Def. 5, 11. 121 : I. 103, 10§, 110, 111,
11. 56, 186, 238

Base: meaning 1. 248-9 : of cone 11l 262:
of cylinder 111. 262 i

Basel editio princeps of Eucl., 1. 100-1

Basilides of TYyre 1. 5, 6, 111. 512

Biudhdyana Sulba-Sitra 1. 360

Bayfius (Baif, Lazare) 1. 100

Becker, J. K. 1. 174

Beez 1. 176

Behd-ad-din 1. 417

Beltrami, E. 1. 219

Benjamin of Lesbos 1. 113

Bergh, P. 1. 400-1

Bernard, Edward 1. 102

Besthorn and Heiberg, edition of al Hajjaj's
translation and an-Nairizi's commentary
L a2, 27, J9mn.

Bhaskara 1. 355, 418

Hillingsley, Sir Henry, 1. 100-10, 418, 11. 56,
238, 111 48

Bimedial (straight line) : first and second,
and biquadratic equations of which they
are roots 111. 7 ; first bimedial defined 111.
845, equivalent to square root of second
binomial 111, 84, 120-3, uniquely divided
1L g4-5: second bimedial defined 1.
85-7, equivalent to square root of third
binomial 111. 84, 124-5, uniquely divided
1L 95-7

Binomial (straight line): compound ir-
rational straight line (sum of two * terms ”)
11 7: defined 111. 83, 84: connected by
Theaetetus with arithmetic mean 111. 3, 4:
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biquadratic of which binomial is a positive
root 11, 7: first, second, third, fouwrth,
Jfifth and sixth binomials, quadratics from
which arising 111. §-6, defined 111. 101-2,
and found ml';ectiuly (x. 4&-5?] 111. 102~
185, are equi t to sq of b 1
first bimedial etc. 111. 132—45: dinomial
equivalent to square root of first binomial
1. 116-20: binomial uniquely divided,
and algebraical equivalent of this fact 111,
92-4 1 cannot be g e also 111. 240-2:
different from meedial (straight line) and
from other irrationals (first bimedial etc.)
of same series with itself 111. 242 : used to
rationalise apotome with proportional terms
111, 248-53, 2§24

al-Birfini 1. go

Bjirmbo, Axel Anthon I. 17 ., 93

Boccaccio 1.

Bodleian ms. (B) 1. 37, 48

Boeckh 1. 351, 371

Boethius 1. 92, 95, 184, II. 295

Bologna Ms. (b) 1. 49

T e

i, W. 1. 174~5, 219, 32

Bk 11 165 %

Boncom, i 1. g3m., 104m.

Bonola, P.R?nl. 201, 219

Borelli, Gio(vam}li Alfasnsa 1. 106, 194, 11. 2,84

Bonmﬁw?- 1. 182, 18,

]irikenh]alm%. N 1l33

Breadth (of bers)= d di
factor 11. 288

Breitkopf, Joh. Gottlieb Immanuel I. 97

Bretschneider 1. 136 7., 137, 293, 304, 344
354, 358, 1L 439, 442

B net, Frangois 1. 100

“ Bride, Theorem of the”=Eucl. 1. 47. 1.
417-8

o r:&'s Chair,” name for Eucl. 1. 47, I

17-8

Bxi‘gg?s, Henry 1. 102, 1I. 143

Brit. Mus. palimpsest, 7th—8th c., I. 50

Bryson, 1. 8,

Buirk, A. 1. 352, 360-4

Biirklen 1. 179

Buteo ( ), Johannes I. 104

Cabasilas, Nicolaus and Theodorus 1. 72

Caiani, Angelo 1. 101

Camerarius, Joachim 1. 101

Camerer, J. G. I. 103, 293, IL. 22, 25, 18,
33, 34 49, 67, 121, 131, 189, 213, 244
amorano, Rodrigo, I. 112
amoglnus, Johannes 1. 3, 78, 94-6, 104,
106, 110, 407, 11. 28, 41, 50, go, 116, 119,
121, 146, lﬁga 241, 234, 235 353, 275

320, 322, 3
rangois de

or

) i Flussates (F
Foix, Comte de Candale) I. 3, 104, 110,
m 1
Cantor, Moritz 1. 272, 304, 318, 3120, 333,
351, 355, 357-8, 360, 401, IL. 5, 40, 97,
1L 8, 15, 438
Cardano, Hieronimo 11. 41, 1. B
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Carduchi, L. 1. 112

Carpus, on Astronomy, I. 34, 43 :
128, 177

Case, t mt:ll term I. 134 : cases interpola-
ted 1. 58, 59: Greeks did not #nfer limiting

gut proved them separately 11. 75

Cuey, J. 1. 227

Casiri, 1. 4m., I7m

Cassiodorus, Magnus Aurelius 1. g2

Catalan, 11. 426

Cataldi, Pietro Antonio, 1. 106

Cat mrl, attributed to Euclid, probably
T eonsl 17+ Catoptrica of Heron 1. 21,

Canchy 11. 2b7: prool of Eucl. x1. 4, 111
8o

2

“Cause " : consideration of, omitted by com-
mentators 1. 19, 45 : definition should state
cause (Aristotle) 1. 149: cause=middle
term (Aristotle) 1. 149: question whether
geometry should investigate cause (Gemi-
nus), I. 45, 150 7.

Censorinus 1. g1

Centre, xévrpor 1. 184=5

Ceria Aristotelica 1. 35

Cesaro, E. 11. 416

“ c oles ™ m 1

umu.'lhplu" 1. 1434

Chuluon m‘:ol’ Euclid 1. 10, 11, 14, 15

Chaucer, Dulcarnon i m. 1. 416-7, 418

Chmeu. knowledge triangle 3, 4, 5,

L. 45, 127,

¢ other,

3?' “ Chéu Pﬂ" 1. 355
| 36:

Chmteuseu ur. 8

I. 330

Chrynﬂ'“G l?r 19

Cicero 1. g1, 351

Circle : definition of, 1. 183-5: =round,
erpoyyihor (Plato), 1. 184: =we
ypappuor (Aristotle) 1. 184 : a plane figure

1. 1834 : mcph.onllly in sense of “cir-
cumference” I1. 23: centre of, 1. 1845 :
le of, 1. 185: bisected by diameter
hales) 1. 185, (Saccheri) 1. 185-6: inter-
sections with straight line 1. 237-8, 2724,
with another circle 1. 238-40, 242-3,
293~4 : definition of **equal circles * 11, 2:
mlu touching, meaning of definition,
3: circles tencctmg and touching,
d;lﬁcumen in Euclid's treatment of, 11.
o 25-7, 28-9, modern trenlmenl of, 11. 30-12

1

I

Cissoid, 1. 161, |64. 176, a

Cluml 318 s o

Clavius {Chmtoph Klau?) 1. 103, 105, 194,

1325281, 391, 407, 1L 2, 41, 42, 47, 49,

53, 50, 67’ ITIO’ 73s 130, 170, 190, 231, 238,
244, 271, I11. 273, Iy 341, 350, 359, 4

s Bl i o

Cleonides, [utroduction to Harmony, 1. 17

Cochlias or cochlion {cylindriml helix) 1. 162

Codex Leidensis 399, 1: L 22, 27 M., 79N

Coets, Hendrik, 1. 109

Commandinus 1. 4, 102, 103, 1045, 106, 110,
111, 407, 11. 47, 130, 190 : scholia includ-

531

ed in translation of Elements 1. 73 : edited
[wnth Dce] .Da a’w:m;&w L 8, 9, 110
d 1. 10: com-
n‘le‘nsunble in length, commensurable in
square, and commensurable in sguare only
defined 111. 10, 11: symbols used in notes
for these terms 111. 34
Commentators on Eucl. criticised by Proclus

1. 19, 26, 45
Common Notions: =axioms 1. 61, 120-1,
221-2 : which are genuine? 1. 221sq.:

meaning and appropriation of term 1..221:
called ** axioms” by Proclus 1. 221

Complement, wapaxhipwpa: meaning of, I.
341: ‘‘about diameter” I 347: not
necessarily parallelograms 1. 341 : use for
application of areas 1.

Compamudo (owbévry), éenotmg “‘ composi-
tion” of ratios ¢.z.: componende and
separando used relal:ively to each other
1. 168, 170

Composite, atwferos: (of lines) 1. 160: (of
surfaces) 1. nd7°: (of numbers) 11. 286:
with Eucl. and Theon of Smyrna composite
numbers may be even, but with Nicom.
and Iamblichus are a subdivision of odd 11.
286, plane and solid numbers are species
of, 11. 286

llr 28,
1L 136—1

Composition of ratio (elwfesis Abyov), de-
notp:;lby :ompnmnafgl (mﬂtﬂ?;wd}ﬂinct
from mmpoundmg ratios I1I. 134-5

Compound ratio : explanation of, 11. 132-3:
(mterpolated?} dehnition of, 11. 189-&
compounded ratios in V. 20-3, 1L 17

Conchoids 1. 160-1, 265-6, 330

Conclusion, ouuwépacua: necessary ofa

ition I. 129-30: particular con-

clusion 1mmcd|n.tel)r made general 1. 131:
definition merely stating comclusion 1. 149
Cone: definitions of, by Euclid 111. 262, 270,
Apollonius 111. 270: distinction between
right-angled, obtuse-angled and acute-
angled cones a relic of old theory of
conics I11. 270: similar cones, definition

of, 111, 262, 271

Congruence-Axioms or Postulates: Common
Notion 4 in Euclid 1. 1224-5: modern
systems of (Pasch, Veronese, Hilbert) 1.
228-31

Congruence theorems for triangles, recapitu-
lation of, 1. 305-6

Conics, of Eul:lld 1. 3, 16: of Aristaeus, I. 3,
16 : of Apollormu.sl 3, 16: fundamental
property as proved by Apollonius equi-
valent toCartesian equation1. 3445 : focus-
directrix property proved by Pappus I.
1

Con.srngwm: (“ following " terms in a pro-
portion) I1. 134, 238

Constantinus Lascaris L

Construct (owwlorasfai) contrasted with
describe on 1. 348, with apply fo 1. 343:
special connotation 1, 259, 289

to one th

»n (0[ b ’\
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Construction, rarackevi, one of formal
divisions of a proposition 1. 129 : some-
times unnecessary 1. 130: turns nominal
into real definition 1. 146: mechanical
constructions 1. 151, 387

Continuity, Principle of, 1. 234 59., 242, 272,
204

Cou%a'mm proportion (eurexhs or curquuérn
drahoyla) in three terms 11 I?I

Conversion, qcometrical: distinct from logical
1. 256: ‘‘leading” and partial vaneties
of, 1. 256-7, 337

Conversion of ratio (dvacrpogh Abyov), de-
noted by comvertende (GvaoTpéparri) II.
135 : converiendo theorem mnot established
by v. 19, Por. I1. 174-5, but Bpmved h‘y
Simson’s Prop. E. 11. 175, 111. 38: Euclid’s
roundabout substitute 111. 38

Convertendo denoting ‘“conversion” of ratios,
..

Copernicus 1. 101

Cordonis, Mattheus 1. dg:

ding itudes 11 134

Cosmic figures (= five regular solids) 1. 4134

Cossali 111. 8

Cratistus 1. 133

Crelle, on the plane 1. 172-4, 111. 263

Ctesibius 1. 20, 21, 39 .

Cube: defined 111, 262: problem of in-
scribing in sphere, Euclid’s solution 111.
478-80, Pappus’ solution 1nr. 480: dupli-
cation of cube reduced by Hippocrates of
Chios to problem of two mean propor-
tionals 1. 135, II. 133 : cube number, de-
fined 11. 291: two mean proportionals
between two cube numbers I1. 294, 364-5

Cunn, Samuel 1. 111

Curtze, Maximilian, editor of an-Nairizi
L 22, 78, 92, 94, 96, 97 ., I1. 426

Curves, classification of: see line

Cyclic, of a particular kind of square number
1L 291

Cyclomathia of Leotaud 11. 43

Cylinder : definition of, 111. 262: simil

Dee, John 1. 109, 110; discovered De
divisionibus 1. 8, ¢

Definition, in sense of *‘closer statement”
dtopuepués), one of formal divisions of a pro-
position I. 129: may be unnecessary I. 130

Definitions : Aristotle on, 1. 117, 119, 170,
143: a class of #hesis (Aristotle) I 120:
distinguished from hypotheses 1. 119, but
confused therewith Proclus 1. 121-2:
must be assumed 1. 117-9, but say nothing
about existence (except in the case of a few
primary things) 1. 119, 143: terms for,
dpos and dpuopbs 1. 143 ; real and nominal

finitions (real=nominal p/us postulate

or proof), Mill anticipated by Aristotle,
Saccheri and Leibniz 1. 143-5: Aristotle’s
requirements in, 1. 146-50, exceptions
1. 148 : should state cause or middle term
and be gemetic 1. 149-50: Aristotle on un-
scientific definitions (¢ ph wporépwr) I
148-9: Euclidls definitions agree ly
with™ Aristotle’s doctrine 1. 146 : inter-
polated definitions 1. 61, 62 : definitions
of technical terms in Aristotle and Heron,
not in Euclid 1. 150

De levi et ponderoso, tract 1. 18

Demetrius Cydonius 1. 72

Democritus1. 38: “ On difference of gnomon”
etc. (fon "alzle of contact”) 11. 40: on
parallel and infinitely near sections of cone,
11. 40, 111, 368: stated, without proving,
propositions about volumes of cone and
pyramid, 1. 40, I1I. 366: was evidently
on the track of the infinitesimal calculus
111. 368 ; treatise on irrationals (repl dAbywr
ypapuudy xal vaardr B') 1. 413, 111 4

De Morgan, A.: I 246, 260, 269, 284, 291,
298, 300, 309, 313, 314, 315, 3669. 336-
1L. 5, 7, 9~1o, 11, IS, 20, 21, 29, 56, 76-7,
83, 101, 104, 116-9, 120, 130, 139, 145,
197, 202, 217-8, 233, 233, 234, 272, 275
on definition of ratio 11, 116-7: on ex-
tension of meaning of rafio to cover
i bles 11. 118: means of ex-

cylinders defined 111. 262
Cylindrical helix 1. 161, 163, 329, 330
Czecha, Jo. 1. 113

Dasypodius (Rauchfuss) Conrad 1. 73, 102

Data of Euclid: 1. 8, 132, 141, 385'? 301:
Def. 2, 11. 248: . 8, II. 249-50:
Prop. 24, 11. 246-7: Prop. 55, 11. 254:
Props. 56 and 68, 11. 249: Prop. g8, 11.
263-5: Props. 59 and i;. 1. 266~y :
Prop. 67 assumes converse of
Simson’s Prop. B ?;;tok VL) 1L 234:
Prop. Jo, 1I. 250: Prop. 85, I1I. 264:
Prop. 87, 1. 228: Prop. 93, II. 227

Deahna 1. 174

Dechales, Claude Frangois Milliet 1. o6,
107, 108, 110, II. 259

Dedekind’'s theory of irrational numbers
corresponds exactly to Eucl. v. Def. s,
11. 124-6; Dedekind’s Postulate and
applications of, I. 235—40, 111. 16

ressing ratios between incommensurables
y approximation to any extent 11. 118-9:
defence and explanation of v. Def. g, 11.
121~4: on necessity of proof that tests
for greater and less, or greater and equal,
ratios cannot coexist II. 130-1, 157: on
compound ratio 1I. 132-3, 234 : sketch of
f of existence of fourth proportional
F::med in v. 18) 1. 171 ;a?mposed
lemma about duplicate ratios as alternative
means of proving VI. 22, 1I. 246-7: on
Book x., 111. 8
Dercyllides 11. 111
Desargues 1. 193
Describe on (dvaypdgpew dwd) contrasted with
comstruct 1. 348
De Zolt 1. 328
Diggonal (Swaydwios) 1. 185
“‘Diagonal” numbers: see *‘Side-” and
‘‘diagonal- " numbers
Diameter (3dperpos), of circle or parallelo-
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gram 1. 185: of sphere 111. 261, 269,
270: as applied to figures generally 1. 325;

““rational® and *‘irrational” diameter of
5 (Plato) 1. 399, 413, taken from Pytha-
goreans I. 400, 111 12

Dickson, L. E. 11. 426

Diels, H. 1. 412

Dihedral apgle = inclination of plane to plane,

measured by a plane angle 111. 264-5

Dimensions éf. Siaordoas), 1. 157, 158:
Aristotle’s view of, 1. 158-9, 111. 262-3,
speaks of six 111. 263

Dinostratus 1. 117, 266

Diocles 1. 164

Diodorus 1. 203

Diogenes Laertius 1. 37, 305, 317, 351, I11. 4

Dionysius, friend of Heron, I. 21

Diophantus 1. 86

Diorismus (Swopwopbs)=(a) **definition” or
“ specification,” a formal division of a
gﬂm‘posilion 1. 129: (4) condition of i-

ility I. 128, determines how far solution

possible and in how many ways I. 130-1,
243 diorismi said to have been discovered
by Leon 1. 116; revealed by amalysis
I. 142: introduced by 8¢ 34 1.293: first
instances in Elements 1. 234, 293: for
solution of quadratic 11. 259

Dippe 1. 108

Direction, as primary notion, discussed I.
179: direction-theory of lels 1. 191-2

Discrete proportion, & v or Siedevyudry

la, in four t!ﬂ"!'ll. 1. 131 :?13 !

** Dissii L b 78 GO
rm'mhw: o m«';) in Archimedes
=" perturbed proportion” 11. 136

Distance, Sidornpa: =radius 1. 199: in
Aristotle has usual general sense and
=dimension 1. 199

Dividendo (of ratios) :

Q
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by vi. 11, 11. 214: lemma on duplicate
ratio as alternative to method of VI. 22
(De Morgan and others) 1I. 242~

Duplication of cube; reduction of.‘by %‘lippo-
crates, to problem of finding lwnl mean
proportionals I. 135, II. 133: wrongly sup-
posed to be alluded to in %mnm 324, B,
I1. 294-5 M.

Egyptians 11. 112: knowledge of 3%+ 4*=35%
1. 352: view of mumber 11. 280
Eibe, Thyra 1. 113
Elefuga, name for Eucl. 1. 5, I. 416-7
Elements: pre-Euclidean Elements, by Hip-
pocrates of Chios, Leon 1. 116, Theudius
1. 117: contributions to, by Eudoxus 1. 1,
37, 1L 113, 111, 15, 365-6, iln. 441, The-
aetetus 1. 1, 37, 111. 3, 438, ermotimus of
Colophon 1. 117; Euclid's Elements, ulti-
mate aims of, 1. 2, 115-6; commgntators
on, 1. 19—45, Proclus I i?. 20—45 and
sim, Heron 1. 20-4, an-Nairizi 1. 2 sl-4.
'orph; 1. 24, Pa 1. 247, Sim-
,"Pyrl’: 28, A pPlBt’ ias) 1. 28:
Mss, of, 1. 46-51: Theon's in text
I. 54-8: means of comparing Theonine
with ante-Theonine text 1. §1-3: inter-
polations before Theon’s time 1. 58-63:
scholia 1. 64-74: external sources throw-
ing light on text, Heron, Taurus, Sextus
Empiricus, Proclus, Iamblichus 1. 62-3:
Arabic translations (1) by al-Hajjij 1.
15 ?_6: 79, 80, 83—4, (2) by Ishdq and
Thabit b. Qurra 1. 75-80, 83-4, (3) Nasirad-
din at-Tusi 1. 77-80, 84: Hebrew transla-
tion by Moses b. Tibbon or Jakob b.
Machir 1. 76: Arabian versions compared
with Greek text 1. 79-83, with one another
I 83, 84: translation by Boethius I. 92:

fee

4

separando
Division (method of), Plato’s 1. 1
Divisions (of figures), treatise
8, 9: translated by Muham al-Bagdadi
1. 8: found by Woepcke in Arabic I. g,
and Dee in Latin translation 1. 8, 9:
1. 110} Proposition from, II. §
Dodecahedron: insphere1.411: d P
tion of faces into elementary triangles 11.
: definition of, 111. 262: dodecahedra
d, apparently dating from centuries
before Pytgzgnm 111, 438, though said to
have been discovered by Pythagoreans
sbid.: problem of inscribing in sphere,
Euclid’s solution 111. 493, Pappus’ solution
1L 501-3
Dodgson, C. L. 1. 194, 254, 261, 313, 11. 48,

275
Dou, Jan Pieterszoon 1. 108
Duhamel, J. M. C. 1. 139, 328
Dulcarnon, name for Eucl, 1. 47, 1. 416, 418
Duplicate ratio 11. 133 ; &rku-‘-w.durhutc.
tinct from durAdews, double (=ratio
2 : 1), though use of terms not uniform
11. 133: “‘duplicate” of given ratio found

uclid, 1.

old lation of 1oth c. I.92; translations

by Athelhard 1. 93-6, Gherard of Cremona

1. 93-4, Campanus 1. 94-6, 97-100 etc.,

Zamberti I. g8-100, Commandinus I. 104~

5: introduction into England, 1oth c.,

translation by Billingsley I. 109-10:
texts, editio princeps 1. 100-1,

103-3, Peyrard’s 1. 103,
August’s 1. 103, Heiberg's passim: trans-
lations and editions generally 1. g5-113:
writers on Book X., 111.8-g: on the nature
of elements (Proclus) 1. 114~6, (Menaech-
mus) I. 114, (Aristotle) 1. 116: Proclus on
advantages of Euclid’s Elements 1. 115:
immediate recognition of, 1. r16: first
principles of, definitions, postulates, com-
mon notions (axioms) I. 117-24: technical
terms in connexion with, I. 125-42: no
definitions of such technical terms 1. 150:
sections of Book 1., 1. 308

Elinuam 1. 95

Engel and Stiickel 1. 219, 321

Enriques, F. 1. 113, 157, 175, 193, 195, 201,
313, I1. 30, 126

Enunciation (wpbraeis), one of formal di-
visions of a proposition I. 129-30

1.95:
Greek
Gregory’s 1.
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Epi , objection to Euel. 1. 20, L. 41,
%87: Savile ‘on, 1. 387 2
Equality, in sense different from that of
congruence (="‘‘equivalent,” ) 1.

327-8: two senses of equal (1) "dmslbly-
exu.l i Sl-lllberl} or eqnwl.lent by sum '’
(Amaldi), (2) “equal in content” (Hilbert)
or dif » (Amaldi)
1. 3':8 modern definition of, 1. 228
Equimultiples: “‘any eqmmuluples what-
ever,” lodais wolawhdoa xad' o

GENERAL INDEX

Even (number): definitions by Pythagoreans
and in Nicomachus 11. 281 : definitions of
odd and even by one another unscientific
&1 ristotle) 1. 14 1. 281: Nicom.

ivides even into classes (1) even-
times even and (2) evem-times odd as ex-
tremes, and (3) odd-times even as interme-
diate 11. 282-3

Even-times even : Euclid’s use differs from

by Nmomnc’t'!ns. Theon of Smyrna and

1 -2

woMawrhaciaoubéy I1I. 120: stereotyped
“other, chance, equimyltiples’ »
I1. 143-4: should include once each magni-
tude 11. 145
Eratosthenes: 1. 1: contemporary with Ar-
chimedes 1. 1, 2: Archimedes' ** Method "
addressed to, 111. 366: measurement of
obliquity of ecliptic (23° g1’ 20") II. 111
, Jean, de le- 1. 108
Erycmua 1. 27, 290, 3
Escribed circles gotrmnggle 11. 8s, 86-7
Euclid: account of, in Proclus’ summary 1. 1:
date 1. 1-2: allusions to, in Archimedes
. I: (according to Proclus) a Platonist
1. a2 taughtl.tA]uandml 2: Pa
on personality of, I. story o I'PP“ (in
Stobnensjl ?] not “‘of M " 13, 48
ave been bom at Gela 1. 4:
Arn tndmonsabout.: 4152 “of Tyre”
L 4-6: “of Tas” 1. 4, 5m: Arabian
derivation of name (“key of geometry ")
1.6: Elements, ultimate aim of, 1. 2, 115—6
other works, Comics 1. 16, fa 1. 7,
Data 1. B 131. 141, 85. 391, On divisions
(of ms 1. 10-15, Sur-
Jace- :’ 1. 15, 12 Phaenomena 1. 16, 17,
?ﬂa L. 1, E."cmk of Music or Sa:tia
anomis 1. 17, 1. 305: on *‘three- and
four-line locus™ 1. 3: bian list of works
L 17, 18: hibliognph 1-113
Eudemus 1. 29: On the . ngle 1. 34, 38,
177-8: History of Geometry 1. 34, 35-8,
278, 295, 304, 317, 320, 387, 412, IL. 99,
1in, Tl 3, 366
Eudoxus I. 1, 37, 74 116, 11. 40, 99, 280, 295:
ducovem o tbeury of propomcm cuvering
bles as exg
in Bks.v Vi, L 137, 35:, Il 112: on thc
golden section 1. 137: discoverer of method
of exhaustion 1. 234, 111 ;,65-6 374 used
“Axiom of Archimedes” 111. 15: first to
rove theorems about volume of pyramid
r Eucl. x11. 7 Por.) ard cone (Eucl. X11. 10),
theorem of Eucl. XxI11. 2, 1L 15:
theorems of Eucl. XI1I. 1-5 probably due
to, I1l. 441: inventor of a certain curve,
the Asppopede, horse-fetter 1. 163 : possibly
wrote Sphaerica 1. 17: 111. 442
Euler, Leonhard 1. 401, 11. 426
Eutocius: 1. 25, 35, 39, 142, 161, 164. ,259,
317, 329- 330. a?a on *“vi. Def. 5" and

rl: -&rmll nﬁ 133, :B%?o

Em-nm: odd in Euclid different from even-
odd of Nicomachus and the rest 11. 282—4
Ex acquali, of ratios, 11.136: ex aegualf pro-

ﬁ:‘:ld(v. 20, 21), lud ex aeguali ‘;i—;
pertui proportion” (V. a1, 23) I1. 17
Exhaustion, method of: discovered by

Eudoxus 1. 234, I11. 365-6: evidence of
Archimedes 111. 365- DL 3741
Exterior and fnterior (of angles) 1. 2 3. 280
Extreme and mean nuo (line cut in): defined,
11. 188: known to Pythagoreans 1. 403,
1. 99, I1L 19 : irrationality of segments of
(apolomes) 111. 19, 449-51
Extremitly, wépas, 1. 183, 183

Faifofer 11. 126
Falk, H. 1. 113
al-Faradi 1. 8m.,
Fauquembergue, l‘:)‘.o 11, 436
Fermat 11. 425, 426
Figure, as viewed by Plato 1. 182, by Aris-
&otlel :81—3. by ucltdl :B_:, according
i is dary only 1.
ﬁl 133 ﬁg'usubounded%ytwnlmesdam
ed 1. 187 : angle-less(dydviov) figure 1. 187
Figures, printing of, 1. 97
fhrist 1. 4 m., §m., 17, 21, 24, 25, 27; list
of Euclid's works in, 1. 17, 18
Finaeus, Orontius (Oronce Fine) I. 101, 104
Flauti, Vincenzo 1 107
Florence ms. Laurent. xxvir 3 (F) 1. 47
Flussates, se¢ Candalla
Forcadel, Pierre 1. 108
Faurier: definition of plane based on Eucl.
XI. 4, I. 1734, 111. 263
Fourth proportional: assumption of existence
of, in v. 18, and alternative methods for
avoiding (Saucheri. De M Simson,
Smith and Bryant) 11. 170~4: Clavius made
the assumption an axiom 11. 170: sketch of
proof of assumption by De Morgan 11. 171:
condition for existence of number which
is a fourth proportional to three numbers
11. 40911
Francisci tunica, ** Franciscan's cowl,” name
for Eucl. 1. 47, 1. 418
Frankland, W. B. 1. 173, 199
Frischauf, J. 1. 174

Galileo Galilei: on amgle of contact 11. 42

G:ms I. 172, 193, 194, 101, ug. 3¢|
: name I.Ahgrf’or Greek

E'l
Loci 1. 198-300

Gartz 1. 17
E—gy

lllle of work (pehoxahia) quoled I'
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Proclus 1. 39, and by Schol., 1. 74 : elements
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Greatest common measure : Euclid’s method

Bnd:

of astronomy I. 318: comm. on F
1. 39: Proclus’ obligations to, 1. 39—42: on
s Istumduiowlf::. 131-3; oral?l:eurems
and problems 1. 128 : two classifications of
lines (or curves) 1. 160—2: on homoeomeric
uniform) lines 1. 162: on “‘mixed” lines
curves) and surfaces 1. 162: classification
of surfaces 1. 170, of angles 1. 178-9: on
parallels 1. 191: on Postulate 4, 1. 200: on
stages of proof of theorem of 1. 32, I. 317-
201 1.27-8, 37, 441 45, 74, 133 M., 203,

65, 330
Geometrical algebra 1. 372-4: Euclid’s me-
thed in Bncﬁ: 11. evidently the classical
method 1. 373: preferable to semi-alge-
y braical method 1. ;r;—B

ical

prog 11. 346 sqq.: sum-
mation of # terms of (1X. 35) 11. 420-1

Geometric means I1. 357 sqq.: one mean
between square numbers 11. 294, 363 ,0r be-
tween similar plane numbers 11. 371-2: two
means betweencube numbers11. 294, 364-3,
or between similar solid numbers 11. 373-5

Georgius Pachymeres 1. 417

Gherard of Cremona, translator of Elements
1. 93-4 : of an-Nairizi's commentary 1. 22,
27M., Q4 11. 47 : of tract De divisionibus
1. g, 10 1.

Gi o, Vitale 1. 106, 176

Given, dedopéros, different senses, I. 132-3

of g corresponds exactly to ours II.
118, 299, 111 18, 21-2: Nicomachus gives
the same method 11. 300 : method used to
prove incommensurability r11. 18-9; for
this purpose often unnecessary to carry it
far (cases of extreme and mean ratio and

I'.{:] . r

Greenhill, Sir George, 1. 415, 418
Gregory, David 1. 102-3, 1L 116, 143, I1II. 32
Gregory of St Vincent 1. 401, 404
Gromatici 1. Qi m., 9§

Grynaeus I. 100-1

Hiibler, Th. 11. 294 .

al-Haitham 1. 88, 89

al-Hajjaj b. Yisuf b. Matar, translator of the
Elements 1. 22, 75, 76, 79, 8o, 83, 84

Halifax, William 1. 108, rio

Halliwell (-Phillips) 1. g5n.

Hankel, H. 1. 139, 141, 232, 234, 3441 354,
1. 116, 117, 111. 8

Harmonica of Ptolemy, Comm. on, I. 17

Harmony, Introduction to, not by Euclid, 1.

17

Hariin ar-Rashid 1. 75

al-Hasan b. 'Ubaidallih b. Sulaimin b.
Wahb 1. 87

Hauber, C. F. 11. 244

Hauff, J. K. F. 1. 108

» I-.Ifmq' and Light,” tract on, 1. 18

Gmomon : literally ** that enabling (; g)
to be &nown’ 1. 64, 370: successive senses
of, (1) upright marker of sundial, 1. 181,
185, 271-2, introduced into Greece by
Anaximander 1. 370, (2) carpenter’s square
for drawing right angles 1. 371, (3) figure
placed round :luare to make larger square
1. 351, 371, Indian use of gnomon in this
sense 1. 362, (4) use extended b{lEuclid to

rallelograms 1. 371, (5) by Heron and
?hcon to any res 1. 371-2: Euclid's
method of denoting in figure 1. 383 : arith-
metical use of, 1. 358-60, 371, 11. 289

“ Gnomon-wise” (xard@ yrwpora), old name
for perpendicular (xdferos) 1. 36, 181, 272

Gorland, A. 1. 233, 234

Golden section (section in extreme and mean
ratio), discovered by Pythagoreans 1. 137,
403, 11. 99 : connexion with theory of irra-
tionals 1. 137, 111. 19 theory carried further

Plato and Eudoxus 11. %) : theorems of
ucl. X111, 1-5 on, probably due to Eu-
doxus 111. 441

“ Goose’s foot " (pes anseris), name for Eucl.
L 7, 1. 99, 418

Gow, James I. 135 7.

Gracilis, Stephanus 1. 101-3

Grandi, Guido 1. 10’

Greater ratio : Euclid’s criterion not the only
one 11. 130 : arguments from greater to less
ratios etc. unsafe unless they go back to

iginal definitions (Simson on V. 10) 11.
150-7 : test for, cannot coexist with test
for equal or less ratio I11. 130-1

H g J. L. passim
Helix, cylindrical 1. 161, 162, 329, 330
Helmholtz 1. 226, 227
Henrici and Treutlein 1. 313, 404, II. 30
Henrion, Denis 1. 108
Hérigone, Pierre 1. 108
Herlin, Christian 1. 100
Hermotimus of Colophon 1. 1, 117
Herodotus 1. 37m., 370
“ Heromides"” 1. 158
Heron of Alexandria, mechamicus, date of,
1. 201 : Heron and Vitruvius 1. 20-1;
e tary on Euclid’s Elements 1. 20~4:
direct proof of 1. 25, I. 301 : comparison
of areas of triangles in 1. 24, I. 334-5:
addition to I. 47, 1. 366-8: apparently
originated semi-algebraical mﬂfl:'] of
Emving theorems of Book 11., 1. 373, 378 :
ucl. 11, 12 interpolated from, i1. 28:
extends I11. 20, 21 to angles in segments
less than semicircles 11. 47-8 : does not
gni glesequal toor g than two
right angles 11. 47-8 : proof of formula for

area of triangle, A =v/s (s ~a) (s vgj (s=eh
1. 87-8: 1. 1371, 153. 163, 168, 170;
171-2, 176, 183, 184, 183, |B%. 189, 222,
223, 343, 253, 285, 287, 299, 351, 369,
371, 405, 407, 408, 11. 5, 16~7, 24, 18,
33, 36, 44, 47, 48, 116, 189, 302, 320,
383, 395, 111. 24, 263, 265, 207, 268, 269,
270y 300, 404, 442

Heron, Proclus’ instructor 1. 29

“Herundes” 1. 156

Hieronymus of Rhodes 1. 303
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Hilbert, D. 1. 157, 193, 201, 228-31, 240,
313, 328

Hipparchus 1. 4., 20, 307., 74

Hippasus 1. 411, 11 97, 111. 438

Hippias of Elis 1. 42, 265-6, 413

Hippocrates of Chios 1. 8 »., 29, 35, 38, 110,
135, 136 m., 386-7, 413, 1L 133: first
proved that circles (and similar segments of
circles) are to one another as the squares

on their diameters 111, 366, 374

Hi; (fwrwov wédy), a certain curve used

udoxus I. 162-3, 176

H , Heinrich I. 107

Hoffmann, Joh. Jos. Ign. 1. 108, 365

Holgate, T. F. 111, 153E 303, 331

Holtzmann, Wilhelm (Xylander) 1. 107

Homoeomeric (uniform) lines 1. 40, 161, 162

Hornlike angle (xepatoeidhs ywria) 1. 177,
178, 183, 265, 1. 4, 30, 40: Aornlike angle
and angle of semicircle, controversies on,
11. 39-43 : Proclus on, 117 ﬂo: Demo-
critus may have written on like angle
1I. 40 : view of Campanus (*‘not angles in
same sense”) 11. 41 : of Cardano(guantities
of different orders or kinds): of Peletier
(hornlike angle no angle, no quantity,
nothing ; angles of a/l semicircles right
cn{umd equal) 11. 41 : of Clavius I1. 42:
of Vieta and Galileo (“angle of contact no
angle”) 11. 43 : of Wallis (angle of contact
not fnelination at all but degree of curvature)

I1. 42
Horsley, Samuel 1. 106
Hoiiel, J. 1. 219
Hudson, John 1. 102

Hultsch, F. 1. 17n., 74, 329, 400, II. 133,
190, 1L 4 '

Hunain b. Ishiq al-‘Ibddi 1.

Hypotheses, in Plato I. 122: in Aristotle

1. 118-20: confused by Proclus with
definitions 1. 121-2: meter's hypo-
theses not false (Aristotle) 1. 119
Hypothetical construction 1. 199
Hypsicles 1. 5: author of Book X1v. 1. §, 6,
111. 4389, 513

Iamblichus 1. 63, 83, 417, 11. 97, 116, 279,

280, 281, 283, 284, 285, 286, 387.6 , 289,
Iy 202, 293, 419, 425, 42

Ibnm;l-rxm!dgl. 86 2

Ibn al-Haitham 1. 88, 89

Ibn al-Lubiidi 1. go

Ibn Rihawaihi al-Arjani 1. 86

Ibn Sind (Avicenna) 1. 77, 89

Icosahedron 11. 98: defined 11, 262: dis-
covery of, attributed to Theaetetus 111
438: problem of inscribing in sphere,
Euclid’s solution 111. 431-&, Pappus’ solu-
tion 111. 489-g1: Mr H. M. Tayl;gr’s con-
struction III. 491-2

‘“Iflaton™ 1. 88

Inclination (xMgs) of straight line to plane,
defined 111. 260, 263-4 : of plane to plane
(=dihedral angle) 111. 260, 264

Incommensurables : discovered by Pytha-

INDEX

goreans 11l I, 3, 3, and with reference
to /2, 1. 351, IIL. 1, 3, 19 : incommensur-
able a maturalkind, unlike frrational which
A A on . -

or assumption
({ ) 111, 1: proof of incommen-
surability of 4/2 no doubt Pythagorean 111,

2, proof in Chrystal’s Algebra 111. 19~30 :
incommensurable in 4 and incommen-
surable in spuare ned III. 10, II:
symbols for, used in notes 111. 34: method
of testing incommensurability (process of
finding G.c.M.) IL 118, IIl. 18-9: means
of expression consist in power of approxi-
mation without limit (De Morgan) 11. ::3"
approximations to /2 by means of i
and diagonal-numbers 1. 309401, II. 119,
by means of sexagesimal fractions 1. 74 7.,
to af3, 1. 74m., IL 119: to /3500 by
means of sexagesimal fractions 1I. 119 : to
m, 1L 11
Incomposilge: (of lines) 1. 160-1, (of surfaces)
1. 170 : (of number) =prime 11. 284
Indivisible lines (drouot ypapual), theory of,
rebutted 1. 268
Infinite, Aristotle on the, 1. 233-4 : infinite
division not assumed, but proved, by geo-
meters 1. 268
Infinity, parallels meeting at, 1. 192-3
Ingrami, G. 1. 175, 193, 195, 301, 227-8,
1. 30, 126
Integral calculus, in new fragment of Archi-
medes 111, 366-7
Interior and exterior (of angles) 1. 263, 280:
inlerior and oppoesite angle 1. 280
Interpolations in the Elements before Theon’s
time 1. 58-63 : by Theon 1. 46, 55-6 : Eucl.
1. 40 interpolated 1. 338 : other proposi-
tions interpolated, (1. 12) 11. 28, (propo-
sition after x1. 37) 1L 360, (x111. 6) 111
449-51: cases in XI. 23, IIL. 31g-31:
defs. of analysis and synthesis, proofs
of x111. 1-5 by, 111. 443-3
Inverse (ratio), inversely (drdwalw) 11, 134:
inversion is subject of v. 4, Por. (Theon)
11. 144, and of v. 7, Por. 11. 149, but is
not prol)erly put in either place II. 149 :
Simson’s Prop. B on, directly deducible
from v. Def. 5, 11. 144
Irrational : discovered by Pythagoreans 1.
351, 411, 412-3, 1IL 1-2, 3, and with
reference to 4/3, I. 351, HI. 1, 2, 19: de-
pends on assumption or convention, unlike
incommensurable which is a natural kind
(Pythagoreans) 111. 1: claim of India to
R:otity of discovery 1. 363-4; ‘‘irrational
iameter of 5” (Pythagoreans and Plato)
] 400, 413, II1. 12: a] ximation to
Jg%g):mean“s if “side-" ll:s?' di 1"
numbers I. 399—401, I1..119, to 4/2 and
&3 in sexagesimal fractions 1. 74#.: In-
dian approximation to /3, I. 361, 363-4:
ed irrationals (Apollonius) 1. 43,
1, 1L 3, 10, 246, 255-9: irrational
ratio (Appnros Aéyos) 1. l?? : an irrational
straight line is so relatively to any siraigh’



GENERAL INDEX

line taken as rational 111, vo, 11 irrational
area incommensurable with rational area
or square on rational straight line 111. 10,
12 : Euclid’s irrationals, object of classifi-
cation of, 111. 4, 5: Book X. a it
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Legendre, Adrien Marie 1. 112, 169, 213-9,
il. 30, Iil. 263, 264, 265, 266, 267, 268,
273, 275, 298, 309, 356, 436 : proves VL. 1
and similar propositions in two parts (1) for

ables, (2) for incommensurables

L  J
of results of solution of different types of
quadratic and biquadratic equations 111. 5 :
types of equations of which Euclid’s irra-
‘tionals are positive roots 111. §-7 : actual
use of Euclid’s irrationals in Greek geo-
metry 111. 9-10: compound irrationals in

- Ml\’&' al?diﬁemnt 111. 242-3

saacus Monachus (or A us) I. "
hiq b. Hunain {b. Il'_!?hi): n}-'lgdsljlf il.;f}:
Yn‘gﬁb, translation of Elements by, 1. 75—
8o, 834

Isidorus of Miletus 111. §3a

Isma'il b. Bul(bul 1. 88 ) fig i

Tsoperimetric (or isometric) figures : Pappus
and Zenodorus on, 1. 26, 27, 333 g

fsosceles (loooxeis) 1. 187 : of numbers (=
even) 1. 188: isosceles right-angled tri-
angle 1. 352 : isosceles triangle of 1v. 10,
construction of, due to Pythagoreans I.

414 11 97-9

}ambi. C. F. A. 11. 188
akob b. Machir 1. 76
Jan, C. 1. :Z
al-}anhnrl, ~Abbas b. Sa'id 1. 85
al-Jayyini 1. go

Pediasi L. 72-3

Johannes of Palermo 111. 8

Junge, G., on attribution of theorem of 1. 47
and discovery of irrationals to Pythagoras
L 351, 411, 413

Kiistner, A. G. 1, 78, 97, 101
al-Karibisi 1. 85

Katyayana Sulba-Sitra 1. 360
Keill, John 1. 10§, 110-11

ler 1. :9{
al-Khazin, Abd Ja'far 1. 77, 85
Killing, W. 1. 194, 219, 225-6, 235, 241,
273, 111, 276
ll-lzmd' il gm, 86
Klamroth, M. 1. 75-8
Klau (2), Chrismph:C‘Lvius 7.7
Kliigel, G. S. 1. 212
Kluge 111. 530
Knesa, Jakob 1. 112
Knoche 1. 33m., 33%., 73
Kroll, W. 1. 399-400
al-Kihi 1. 88

Lachlan, R. 11. 226, 227, 245-6, 247, 250, 272
Lambert, J. H. 1. 1:2—345 g
Lardner, Dionysius 1. 113, 246, 1250, 208,
404, 11. 58, 259, 271
is, Constantinus 3
Leading theorems (as distinct from converse) 1.
157 : leading variety of conversion 1. 2567
Least common multiple 11, 336-41
Leeke, John 1. 110
Lefévre, Jacques I. 100

1. 193-4: proof of Eucl. X1. 4, 111. 280,
of X1 6, 8, 111. 284, 289, of XI. 15, 1II.
299, of XI. 19, 1L 3o05: definition of
p?a?nu at right angles 111. 303 : alternative
proofs of theorems relating to prisms I1I.
331-3: on equivalent parallelepipeds 111.
335-0 : proof of Eucl. X1I. 3, 111. 377-8:
propositions on volumes of pyramids 11l
389-91, of cylinders and cones 111. 422-3

Leibniz 1. 145, 169, 176, 1214

Leiden Ms. 399, 1 of al-Hajjaj and an-
Nairizi 1. 23, 27 n., 79 n.

Lemma 1. 114 ing ption) I.
133-4: lemmas interpolated 1. s59-6o,
especially from Pappus 1. 67: lemma
assumed in VI. 23, 1I. 242-3: alternative
propositions on duplicate ratios and ratios
of which they are duplicate (De Morgan
and others) II. 242-7 : lemmas interpo-
lated, (after X. g) 11L 301, (after X. 59) IIL
97, 131-2: lemmas suspected, (those added
to X. 18, 23) 111. 48, (that after xIL 1)
111 375, (that after x111. 2) 111, 44475

Length, uiixos (of bers in one )
11. 287 : Plato restricts r.ums to side of
in! uare number II. 287

Leodt:g.las ﬁ Thasos 1. 36, 134

Leon 1. 116

Leonardo of Pisa L. g m., 10, 111 8

Leotaud, Vincent iI. 42

Leucippus I. 41

Linderup, H. C. 1. 113 smid

Line : Platonic definition 1. 158 : objection
of Aristotle 1. 158: * magnitude extended
one way” (Aristotle, ‘* Heromides™) I.
158 : **divisible or continuous one way 4
(Aristotle) 1. 158-9: * flux of point” I
159: Apollonius on, 1. 159 : classification
of lines, Plato and Aristotle 1. 159-6o,
Heron 1. 159-6o, Geminus, first classifica-
tion 1. 160-1, second I. 161: straight
(edOeia), curved (kapwily), circular (wepigpe-
pis), spiral-shaped (éhoetdns), hent (kexau-
pérn), broken (xexhaouévm), round (rd
arpoyyihor) 1. 159, composite (adrferos),
incomposite (doivferos), forming a figure
(oxmuarorowisa), determinate (wpuruérn),
indeterminate (dépwros) 1. 160: * asym-
ptotic” or non-secant (deturrwros), secant
(cupmrrwrés) 1. 161: simple, * mixed” I.
161-2: homoeomeric (uniform) 1, 161-3:
Procluson lines without extremities 1. 165:
loci on lines 1. 329, 330

Linear, loci 1. 330: problems 1. 330: num-
bers=(1) in one dimension 11. 287, (2)
prime 11. 285

Lionardo da Vinci, proof of 1. 47, 1. 365-6

Lippert 1. 88 n.

Lobachewsky, N. L. 1. 174-5, 213, 219

Locus-theorems (romixds Oewphpara) and locd
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(réwoi) : locus defined by Proclus 1. 329:
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ﬂehler,L F. G. 1. 404, 111. 268, 284-5

loci likened by Chryxig\pus to Plat
ideas 1. 330~i: locus-theorems and loci
(1) on lines (a) plane loci (straight lines and
circles) (b) solid loci (conics), (2) on sur-
faces 1. 329 : corresponding distinction be-
tween plane and solid problems, to which
Pappus adds /inear problems 1. 330: fur-
ther distinction in Pappus between (1)
épexricol (2) Sekodixol (3) dracrpogirol
Téwoe 1. 330: Proclus regards locus in
1. 35, 111, 21, 31 as an area which is locus
of area (parallelogram or triangle) 1. 330

Logim%conversion. distinct from geometrical
1.2

Logicsfl deductions 1. 256, 284-3, jo0: not
made by Euclid 11. 22, 29 : logical equi-
valents I. 309, 314-5

Lorenz, J. F. 1. 107-8, 1'l. 34

Loria, Gino 1. 7n., 108, 118, 12, 1.
4125, 1L B, g

Luca Paciuolo 1. 98-9, 100, 418, 111. 8

Lucas, E. 1. 418, 11. 426

Lucian 11

Lundgren, g? A. A 1. 113

Machir, Jakob b. 1. 56

Magni, menico 1. 106

Magnitude : common definition vicious 1. 148

al-Mihéni 1. 85

Major (irrational) straight line : biquadratic
of which it is positive root 111. 7: defined
1L 87-8: equivalent to square root of
fourth binomial 111. 84, 125-7: uniquely
divided 111. 98 : extension of meaning to
irrational straight line of #ree terms 111, 258

al-Ma’'min, Caliph 1. 75

Manitivs, C. 1. 38

Mansion, P. 1. 219

al-Mangir, Caliph 1. 75

Manuscripts of Elements 1. 46-51

* Marriage, Figure of” (Plutarch), name for
Pythagorean triangle (3, 4, 5), 1. 417

Martianus Capella 1. g1, 155

Martin, T. H. 1. 20, 29n., 30n.

Mas'iid b. al-Qass al-Bagdadi 1. go

Maximus Planudes, scholia and lectures on
Elements 1. 72

Means: three kinds, arithmetic, geometric
and harmonic 11, 292-3: geometric mean
is “proportion par exeellence™ (xvplws) 11.
2g2-3 : one geometric mean between two
square numbers, two between two cube
numbers (Plato) 11. 294, 363-5: one geo-
metric mean between similar plane num-
bers, two between similar solid numbers
11. 371-5: no numerical geometric mean
between s and 2 + 1 (Archytas and Euclid)
1. 295

M:a‘iafg[stmight line) : connected by Theae-
tetus with geomretric mean 111. 3, 4 : defined
111, 49, 50 : medial area 111. 54-5: an un-
limited number of irrationals can be de-
rived from medial straight line, 111. 254-5

Megruar=axis 1. 93

: story of M. and Alexander 1.
1:0n elements 1. 11431, 117, 125, 133 7.
Menelaus 1. 21,23: direct proofof 1. 25, I. 300

Menge, H. 1. 16m., 17

Middle term, or cause, in geometry, illus-
trated by Eucl. 1L 31, 1. 149

Mill, J. S. 1. 144

Minor (irrational) straight line : biquadratic
of which it is root 111. 7: defined 111
163~4 : uniquely formed 111. 172-3: equi-
valent to square root of fourth apotome
1. ao;,—é

“ Mixed " (lines) 1. 161-2 : (surfaces) 1. 163,
170: different meanings of * mixed” I. 162

Mocenigo, Prince 1. 97-8

Moderatus, a Pythagorean 11. 280

Mollweide, C. l’:’» 1. 108

Mondoré (Montaureus)

Muses b. Tibbon 1. 76

Motion, in mathematics 1. 226: motion with-
ot deformation considered by Helmholtz
necessary to geometry 1. 226-7, but shown
by Veronese to be petitio principii 1. 226-7

Miiller, J. H. T. 1. 189

Miiller, J. W. 1. 365

Muhammad (b." Abdalbaqi)al- Bagdadi, trans-
lator of De divisionibus 1. 8n., go, 110

Muh. b. Ahmad Abi 'r-Raihan al-Birini 1. go

Muh. b. Ashraf Sh ddin as-S qandi
1. 8

Muh. g 'Isi Abii'Abdalliah al-Mahini 1. 85

Multinomial (straight line) : an extension
from bdinomial, probably investigated by
Apollonius, 111, 256

Multiplication, definition of, 11. 287

Munich Ms. of enunciations (R) 1. g4-5

Miisi b. Muh. b. Mahmid Qédizide ar-Rimi

Pierre 1. 102

1. 7.,
Musie, Er;uml: of (Sectioc Canonis), attri-
buted to Euclid, 1. 17, 1I. 295, 1IL. 33
al-Musta’sim, Caliph 1. go
al-Mutawakkil, Caliph 1. 75

an-Nairizi, Abii'l'Abbis al-Fadl b. ITdtim,
1. 21—4, 8¢, 184, 190, 191, 195, 223, 232,
258, 270, 285, 299, 303, 316, 364, 367,
369, 373, 405, 408, 11. 5, 16, 28, 34, 36,
44, 47, 392, 330, 383

Napoleon 1. 103

Nagiraddin at-Tasi 1. 4, 57., 77, 84, 89,

Nw?;ro{ 1. alir ) al-Q i
azif b, Yumn (Yaman) al-Qass 1. 76, 77, 8

Neide, J. G. C. 1. 103 Phllont

Nesselmann, G. H. F. 11. 287, 293, 111, 8

Nicomachus 1. 92, 417, II. 116, 119, 131,
279, 280, 281, 282, 283, 284, 285, 286,
287, 288, 289, 290, 291, 292, 293, 194,
300, 363, 415

Nicomedes 1. 42, 160-1, 265-6

Nipsus, Marcus Junius 1. 305

Nixon, R. C, J. 11. 16

Nominal and real definitions: see Definitions

Number: defined by Thales, Eudoxus,
Moderatus, Aristotle, Euclid 1. 280:
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Nicomachus and Iamblichus on, 11. 280:
represented by lines 11. 287, and by points
or dots II. 2

“Nuptial Number” = Plato’s Geometrical
Number in Republic, 1. 417

Objection (fvatasis), technical term, in geo-
metry 1. 135, 257, 260, 2065: in logic
(Aristotle) 1. 135

Oblong : (of geometrical figure) 1. 62, 151,
188 : (of number) in Plato either mpopfins
or érepopfkns 1. 288: but these terms
denote two distinct divisions of plane num-
bers in Nicomachus, Theon of Smyrna and
Iamblichus 11, 2

Octahedron 11. 98 : definition of, 111. 262 :
discovery of, attributed to Theaetetus 111.
438: ]Jroblem of inscribing in sPhere.
Euclid’s solution 111. 474-7, Pappus’ solu-
tion 111. 477

Odd (number) : defs. of in Nicomachus I1.
281 : Pythagorean definition 11. 281 : def.
of odd and even by one another unscientific
(Aristotle) 1. 148-g, 11. 281 : Nicom. and
Iambl. distinguish three classes of odd
numbers (1) prime and incomposite,
(2) dary and posite, as extremes,
(3) secondary and composite in themselves
but prime and incomposite to one another,
which is intermediate 11. 287

Odd-times even (number): definition in Eucl.
spurious I1. 283~4, and differs from defi-
nitions by Nicomachus etc. 16/d.

Odd-times odd (number): defined in Eucl.
but not in Nicom. and Iambl. 11. 284:
Theon of Smyrna applies term to prime
numbers 11. 284

Oenopides of Chios 1. 34, 36, 126, 271, 295,
371, 414, 1L 111

Ofterdinger, L. F. 1. g

8lym iodorus 1. 29
permann 1. 151

Oglr'r: of Euclid 1, 17

*“Ordered” proportion (rerayuéry dvaloyla),
interpolated definition of, 11. 137

Oresme, N. I. g7

Orontius Finaeus (Oronce Fine) 1. 101, 104

Ozanam, Jaques 1. 107, 108

Paciuolo, Luca 1. 98-9, 100, 418, 1IL. 8
Pamphile 1. 317, 31%
Pappus: contrasts Euclid and Apollonius
1. 3: on Euclid’s Porisms 1. 10~14, Surface-
loci 1. 15, 16, Data 1. 8: on Treasury of
Analysis 1. 8, 10, 11, 138: commentary
on Elements 1, 24-7, partly preserved in
holia 1. 66: evid of scholia as to
Pappus’ text 1. 66-7: commentary on
Book Xx. survives in Arabic 111. 3: quo-
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semi-algebraical methods in, 1. 373, 378:
on loci 1. 329, 330: on conchoids 1. 161,
266: on quadratrix 1. 266: on isoperi-
metric figures 1. 26, 27, 333: on paradoxes
of Erycinus 1. 27, 2go: lemma on Apolio-
nius’ Plane vedoeis 11. 64-5: problem from
same work 11, B1: assumes case of V1. 3
where external angle bisected (Simson’s
vi. Prop. A) 11. 197: theorem from Apol-
lonius® Plane Loci 11. 198: theorem that
ratio compounded of ratios of sides (of
equiangular parallelograms) is equal to
ratio of rectangles contained by sides 11.
250: use of Euclid’s irrationals 111. 9, 10:
methods of inscribing regular solids in
sphere, tetrahedron 111. 472-3, octahedron
11. 477, cube 111. 480, icosahedron 111.
489—gr, dodecahedron 111. §o1-3: I. 20,
39, 133 7., 137, 151, 2125, 388, 301, 4o01:
II. 4, 27, 20, 6?! 79 81, 113, 133, 211,
250, 251, 202
Papyrus, Herculanensis No. 1061, 1. 50,
184: Oxyrhynchus 1. s0: Fayim 1. 51,
337, 338: Rhind I. 304, 352
Paradoxes, in geometry 1. 188: of Erycinus
1. 27, 290, 329: an ancient ‘‘Budget of
Paradoxes” 1. 329
“ Parallelepipedal ” = with parallel planes or
faces: **parallelepipedal solid” (not **solid
parallelepiped “})l or * parallelepiped ” 111.
326: generall{ as six faces Lut sometimes
more (* llelepipedal prism") 111. 401,
404 : “?arr:]Iel:gi;;P:dal” (solid) numbers
in Nicomachus have two of sides differing
by unity 11. 290

gram (=p g ic area), first

introduced 1. 325: rectangular parallelo-
gram I. 370

Parallels: Aristotle, on I. 190, 191-2: defi-
nitions, by ‘‘ Aganis"” 1. 191, Geminus I.
191, Posidonius 1. 1go, Simplicius 1. 190:
as equi-distants I. 19o—1, 194: direction-
theory of, 1. 191—2, 194: definitions
classified 1. 192—4: Veronese’s definition
and postulate 1. 194: Parallel Postulate,
see Postulate 5: Legendre’s attempt to
establish theory of, 1. 213-9: parallel
planes, definition of, 111. 260, 265

Paris Mss. of Elements, (p) 1. 49, (q) 1. 50

Pasch, M. 1. 157, 228, 250

** Peacock’s tail,” name for Eucl. 111. 8, 1. 99,
18

PB:liasimus, Joannes 1. 72-3

Peet, T. Eric 1. 352

Peithon 1. 203

Peletarius (Jacques Peletier) 1. 103, 104, 249,
407, 11. 47, 56, B4, 146, 190: on angle of
contact and angle of semicircle 11. 41

Pena 1. 104

tations from it, 111. 3-4, 255-9: |
in Book X. interpolated from, 1. 67: on
Analysis and Synthesis 1. 138-9, 141-2:
additional axioms by, 1. 25, 223, 224, 232:
on converse of Post. 4, 1. 25, 201: proof
of 1. 5 by, 1. 254: extension of I. 47, 1. 366:

g position of regular pentagon
into 30 elementary triangles 11. g8: relation
to pentagram 11. 99

Pentagonal numbers 11. 289

“Pertect” (of a class of numbers) 11. 293—4,
421-6: Pythagoreans applied term to 10,
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11. 204 3 also called * perfect” 1. 417, 11.

2

Pugndicnlar (xd@eros) : definition 1. 181:
‘“plane” and *“solid"” 1. 272: perpendi-
cular and obliques 1. 291: perpendicular to
plane, 111. 260, 263: perpendicular to two
straight lines not in one plane 111. 306-7

Perseus 1. 42, 162-3

Perturbed mgrfion (rerapayuérn drakoyla)
11. 136, 176-7

Pesch, |. G. van, De Procli fontibus 1. 235qq.,

29 7.

I'eh?us Montaureus (Pierre Mondoré) 1. 102,

Peyrard and Vatican Ms. 190 (P) 1. 46, 47,
103: 1. 108

Pfleiderer, C. F. 1. 168, 298, 11. 2 ~

Phaenomena of Euclid 1. 16, 17

Philippus of Medma 1. 1, 116

Phillips, George 1. 112

Philo g:f Byzantium 1. 20, 23: proof of I. 8,
1. 2034

Philolaus 1. 34, 351, 371, 399, 411

Philoponus 1. 45, 191-2, I1. 234, 282

Pirckenstein, A. E. Burkh. von, 1. 107

Plane (or plane surface) : Plato’s definition
of, 1. 171, 111 272-3: Proclus’ and Sim-
plicius’ interpretation of Euclid’s def. 1.
1712 ible origin of Euclid’s def. 1. 171:
Archimedes’ assumption I. 171, 172: other
ancient definitions of, in Proclus, Heron,
Theon of Smyrna, an-Nairizi 1. 171-2:
Y Simson’s” definition (* axiom of the
plane”) 1. 172-3, 11I. 273, and Gauss
on, 1. 172-3: Crelle's tract on, I. 172-4:
other definitions by Fourier 1. 173, Deahna
1. 174, J. K. Becker 1. 174, Leibniz 1. 176,
Beez 1. 176: evolution of, by Bolyai and
Lobachewsky 1. 174-5: Eyn iques and
Amaldi, Ingrami, Veronese Hilbert
on, 1. 175% e at right an%l:s to plane,
Euclid’s definition of, 111. 260, 263, and
alternative definition making it a particular
case of *‘inclination” 111. 303-4 : parallel
lanes defined 111. 260, 265

“Plane loci” 1..329~30: Plane Loct of Apol-
lonius 1. 14, 259, 330, 11. 198-200

Plane numbers, product of two factors
(“sides” or *‘length” and * breadth”) 11.
287-8: in Plato either square or oblong
11. 287-8: similar plane numbers 11. 293:
one mean proportional between similar

lane numbers II. 371-2

"IBIane problems” I. 329

Planudes, Maximus 1. 72

Plato: I. 1, 3, 3, 137, 155-6, 159, 184, 187,
203, 221, 411, 417, L. 1, 3; supposed
im?:ntion of Analysis by, 1. 134: l1::'Iel’. of
straight line 1. 165-6: def. of plane surface
L 171: on golden section 11. 99: on art of
stereomelry (length, breadth, and depth)
as one of three pafjuara, next to geometry
but commonly put after astronomy because
little advanced 111, 262: generation of
cosmic figures by putting together triangles,
1. 226, 413-4, 11. 97-8, 111. 267: rule for
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rational right-angled triangles 1. 356, 357,
359, 3060, 385: ‘*‘rational diameter of 5"
I. 309, 413, gives 7[5 as approximation
to 4/2, 1L 119 of Theaetetus on
Suvdpes (square roots or surds) 1. 411, 412-3,
11. 288, 290, 111. 1-3: on square and oblong
numbers 11. 288, 290: theorem that between
square numbers one mean suffices, between
cube numbers two means are necessary 11

204, 304

“Pmogic" figures 1. 2, 413-4: scholium on,
111. 438

Pla fair? John 1. 103, 111: ** Playfair's”

xiom I. 220: to prove Eucl. 1. 29,

1. 312,and Eucl. Post. 5,1. 313 comparison
of Axiom with Post. 5, I. 313—4: 11. 2

Pliny 1. 333

Plutarch 1. 20,37 177, 343, 351, 417, 1. 98,
254, 111. 368

Point: Pythagorean definition of, 1. 155¢ in-
terpretation of Euclid's definition 1. 155:
Plato’s view of, and Aristotle’s criticism
1. 155-6: attributes of, according to Aris-
totle 1. 156: terms for (oreyu), onueior)
1. 156: other definitions by ** Herundes,”
Posidonius 1. 156, Simplicius I. 157: ne-
gative character of Euclid's def. 1. 156: is
it sufficient? 1. 156: motion of, produces
line 1. 157: an-Nairizi on, 1. 157: modern

1, 2 het ‘iﬂ!l 1. 15?

ions hy

Poly[ﬁus I 331
Polygon: sum of interior angles (Proclus’
roof) 1. 322: sum of exterior angles I. 322

Pol | numbers 11. 289
Polyhedral angles, extension of XI1. 21 to,
111 3101

“Pons Asinorum” 1. 415-6: Pont aux dnes,
Porism: two senses 1. 13: (1)=corollary L.
134, 278-9: as corollary to ?roposilion
recedes " Q.E.D.” or " Q.E.F." II. 8, 64:
orism to IV. 15 mentioned by Proclus
11. 109: Porism to VI. 19, 1I. 234 inter-
lated Porisms (corollaries) 1. 1, 381:
1) as used in Porisms of Euclid, distin-
guished from theorems and problems 1.
10, 11: account of the Porisms given by
Pappus 1. 10-13: modern restorations
by Simson and Chasles 1. 14: views of
eiberg L 11, 14, and of Zeuthen 1. 15
Porphyry 1. 17: commentary on Euclid 1. 24:
ymmikia . 24, 34, 44: 1.136,277, 283, 287
Poselger 111, 8
Posidonius, the Stoic 1. 20, 27, 28 n., 39, 189,
197 : book directed against the Epicurean
Zeno 1. 34, 43: on parallels I. 40, 190:
definition of figure 1. 41, 183
Postulate, distinguished from asiom, by
Aristotle 1. 118-g, by Proclus (Geminus
and * others") 1. 121=3: from hypothesis,
by Aristotle 1. 120-1, by Proclus 1. 121-2:
ulates in Archimedes 1. 120, 123:
uclid's view of, reconcileable with Aris-
totle’s 1. 11920, 124: postulates do not
confine us to ruler and compasses 1. 124:
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Postulates 1, 2, siqniﬁcance of, 1. 195-6:
famous *“ Postulate™ or *‘ Axiom of Archi-
medes” 1. 234, 111 15-6
Postulate 4: significance of, 1. 200: proofs
of, resting on other postulates 1. 200-1,
231: converse true only when angles recti-
lineal (Pappus) I. 201
Postulate 5: probably due to Euclid himself
1. 202: Proclus on, 1. 202-3: attempts to
rove, Ptolemy 1. 204-6, Proclus 1. 206-8,
agiraddin at-Tisi 1. 208-10, Wallis 1.
210~1, Saccheri I. 211-2, Lambert 1. 212~
E: substitutes for, ** Playfair's" axiom (in
us) 1. 220, others by Proclus 1. 207,
210, Posidonius and Gemi 1. 220, Le-
%:I:n:e‘ 1. 213, 214, 220, Wallis 1. 220,
» Laplace, Lorenz, W. Bolyai, Gauss,
Worpitzky, Clairaut, Veronese, Ingrami 1.
220: Post. 5 proved from, and compared
with, “ Playfair's " Axiom I. 313-4: I. 30
is logical equivalent of, 1. 220
Potts, Robert 1. 112, 246
Powers, R. E. 11. 426
Prestet, Jean I1. 426
Prime (number): definitions of, 11. 284-5:
Aristotle on two senses of ““prime” 1. 146,
11. 285: 2 admitted as prime ll:ty Eucl. and
Aristotle, but excluded by Nicomachus,
Theon of Smyma and lamblichus, who
make prime a subdivision of odd 11. 284-5:
‘“prime and incomposite (dotwferos)” 1.
284: different names for prime, *‘odd-
times odd " (Theon), *‘linear” (Theon),
“ rectilinear” (Thymaridas), *‘euthyme-
tric” (lamblichus) 11. 285: prime abso-
lutely or in themselves as distinct from
prime to one another (Theon) 11, 285: defi-
8 pit.i_ol:: of ; ime to one another” 11. 285-6
rinciples, First, 1. 117~
Prism, definition of, Ify l‘!‘.uclid IW. 261,
by others 111. 268-9: * parallelepipedal
prisms " 111, 404
Problem, distinguished from theorem 1. 124~
8 : problems classified according to number
of solutions (@) one solution, ordered (re-
rayuéra) (8) a definite number, inserme-
diate (uéoa) () an infinite number of solu-
tions, unordered (@raxra) 1. 128: in widest
sense anything propounded (possible or
not) but generally a comstruction which is
possible 1. 128~9: another classification
(1) problem in £xcess (wheovd{ov), asking
too much 1. 129, (2) deficient problem (é\A-
wés wpbfSinua), giving too little 1. 129
Proclus : details of career 1. 29-30 : remarks
on earlier commentators 1. 19, 33, 45:
commentary on Eucl. 1, sources of, I. 29—
45 object and character of, 1. 31-2 : com-
mentary pmbably not continued, though
continuation intended 1. 32-3: bool
quoted by name in, 1. 34: ous ““sum-
mary” 1. 37-8: list i} writers quoted
L 44: his own contributions I. 44-5:
character of Ms. used by, 1. 63, 63: on
the nature of e/ements and things elemen-
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tary 1. 114-6 : on advantages of Euclid’s
Elements, and their object 1. 115-6: on
first principles, hypotheses, postulates,
axioms 1. 121—4: on difficulties in three
distinctions between postulates and axioms
1. 123 : on theorems and problems I. 124-9:
on: formal divisions of proposition I. 129-
31, 1. 100 altempt to prove Postulate 5,
1. 206-8 : commentary on Plato's Republic,
allusion in, to ““side-” and “di =t
numbers in connexion with Eucl. 11. 9, 10,
1. 399—400: on use of *‘quindecagon” for
astronomy I1. 1113 I, 412, 11. 4, 30, 40, 193,
247, 269, I11. 10, 264, 267, 273, 310, 441
Proof (d i5), necessary part of proposi-
tion I. 129~30
Proportion :  complete theory applicable to
incommensurables as well as commensur-
ables is due to Eudoxus1. 137,351, 11. 112:
old (P orean) theory tically repre-
sented,ll)};r‘frithmetical thegrr;c of Eucl. vir.,
I 113: in giving older theory as well
Euclid simply followed tradition 11, 113:
Aristotle on general proof (new in his
time) of theorem (alternando) in proportion
IL. 113: X. § as connecting two theories
1. 113: De Morgan on extension of mean-
ing of ratio to cover incommensurables 11.
118 power of expressing i ble
ratio is power of approximation without
limit 11. 119: interpolated definitions of
proportion as *‘ sameness " or ** similarity
of ratios™ I1. 119: definition in v. Def. 5
substituted for that of viI. Def. 20 because
latter found inadequate, not wice versa II.
121 : De Morgan’s defence of v. Del. 5 as
necessary and sufficient 1I. 122-4: V. Def.
5 cor p A tO “! -] + . ‘n
of number in general and to Dedekind’s
theory of irrationals II. 124—6: alternatives
for v. Def. 5 by a geometer-friend of Sac-
cheri, by Faifofer, Ingrami, Veronese,
Enriques and Amaldi I11. 146: propor-
ti of vii. Def. 20 (numbeng a par-
5 (Simson’s

ticular case of those of v. Def,
Props. C, D and notes) IL. 126-9, III. 35 :
rtion in three terms (Aristotle makes
it four) the ““least” I1. 131 : *“‘continuous "
pr ion (cwvexds or ouwnuuéen dradoyla,
in Euclid é&#s dedhoyor) II. 131, 293
three * proportions” 11. 292, but propor-
tion par excellence or primary is continuous

or geometric 11. 292-3: * discrete” or
e aiSjotmed” (Buppnudom, heFevyuér) 11 131,
293: “ordered” proportion (rerayuérn),
interpolated definition of, 1. 137: “per-
turbed” proportion (m:‘wmbul 1. 136,
gG—L: extensive use proportions in
reek geometry11. 187:

ions enable
any quadratic equation wil roots to
be solved 11. 187 : suppgsed use of pro-

positions of Book V. in arithmetical Books

11. 314, 330
Proposition, formal divisions of, 1. 129-31
Protarchus 1. 5, I1l. 512



542 GENERAL INDEX

Psellus, Michael, scholia by, 1. 70, 71, 11. 234

Pseudaria of Euclid 1. 7: Preudographemata
1. 70

Psendoboethius 1. g2

Ptolemy I.: 1. 1, 2: story of Euclid and
Ptolemy 1. 1

Ptolemy II. Philadelphus 1. 20

Ptolemy VII. (Euergetes I1.), Physcon, 1. 20

Ptolemy, Claudius1. 21, 30 #.: Harmonica of,
and commentary on, I. 17: on Parallel-
Postulate 1. 28n., 34, 43, 45 attempl to
prove it 1. 204-6: lemma about quadri-
lateral in circle (Simson's vi. Prop. D)
1. 225=7 : IL 11T, L1, 119

Punch on Pons Asinorum 1. 416

Pyramid, definitions of, by Euclid 111, 261,
by others 111, 268

Pyramidal numbers II. 290 : pyramids trun-
cated, twice-truncated etc. I1. 291

Pythagoras 1. 4»., 36 : supposed cascavemr
of the irrational 1. 351, 411, 413, of appli-
cation of areas 1. 343—4, of theorem of
1. 47, 1. 343—4, 350—4, 411, 412, of con-
struction of five regular solids I. 4134, 11.

7: story of sacrifice 1. 37, 343, 350: pro-
ble method ofdisoowyﬁ lilﬂ t:.cn}? pr;ol‘

of, 1. 352-5; suggestions retschneider
and I-fankel 1. 354, by Zeu{heu I. 3?5—6:
rule for forming right-angled triangles in
rational numbers 1. 351, 356-9, 385: con-
struction of figure equal to one and similar
to another rectilineal figure 11. 254: intro-
duced ‘‘the most ect proportion in
four terms and specially called ‘harmonic’”
into Greece 11. Inl6 %

P reans 1. 19, 36, 155, 188, 279, 411-4:
ytt:ratﬁo for mq’srg xpﬂgi'}l 169:72'ngl¢s :}f
triangle equal to two right an%’les. theorem
and proof 1. 317-20: three polygons which
in contact fill space round point 1. 318, 11.
98 : method of application of areas (includ-
ing exceeding and falling-short) 1.66343,
384, 403, 1L 187, 258-60, 263-5, 266-7 :
gnomon Pythagorear 1. 351: *rational”
and ““irratiopal diameter of 5" 1. 399-400,
41 ]1: story of Pythagorean who, having di-
vulged the irrational, perished by shipwreck
1. 411, 111. 1: 7[5 as approximation to /2,
1. 119: approximation to »/2 by ““side-"
and “diagonal-"" numbers1. 398-400, 111.
2, 20: proof of incommensurability of ,/2,
11L. 2: construction of isosceles triangle of
Eucl. 1v. 10, and of regular pentagon, I.
414, 11. g7-8: possible method of discovery
nt’talter 11. 97—9: distinguished three sorts
of means, arithmetic, geometric and har-
monic 11. 112 : had theory of proportion
applicable to co ables only 11. 112:
construction of dodecahedron in sphere 11.
97, and of other regular solids 1. 413-4, 111.
438: definitions of unit 11. 279, of even
and odd 11. 281 : called 10 ' perfect” 11. 294

Qadizide ar-Rimi 1. 5., go
Q.E.D. (or ¥.) I. 57

al-Qifti 1. 4., 04

Quadratic equations : solution assumed by
Hippocrates 1. 386-7: geometrical solu-
tion of particular quadratics 1. 383-5,
386-8: solution of general quadratic by
means of proportions11. 187, 263-5, 266-7:
Siopuapds or condition of possibility of solv-
in$ equation of Eucl. vI1. 28, 11. 259 : one
solution only given, for obvious reasons
1. 260, 264, 267: but method gives both
roots if real 11, 258 : exact correspondence
of geometrical to algebraical solution, 11.
263-4, 266-7: ind%ﬁcatiun that Greeks
solved them numerically 111. 43-4

Quadratrix 1. 265-6, 330, 413

Quadrature (rerpaywricuss), definitions of,
I 14

Quadrilzural: varieties of, 1. 188-go: in-
scribing in circle of quadrilateral equi-
angular to another 11. g1-2: condition for
inscribing circle in, 1I. 93, 95: quadri-
lateralin circle, Ptolemy's ?ernmn (Simson's
vi. Prop. D) 11. 225-7 : quadrilateral not
a “polygon™ 1L 23

Quadrinomial (straight line), compound ir-
rational (extension from &imomial) 111. 256

“ Quindecagon” (fifteen-angled figure) : use-
ful for astronomy 11. 111

Quintilian 1. 333

Qustda b. Liiga al-Ba'labakki, translator of
““Books x1v, xv" 1. 76, By, 88

Radius, no Greek word for, 1. 199, 1I. 2

Ramus, Petrus (Pierre de la Ramée) 1. 104,
1L 121

Ratdolt, Erhard 1. 78, 97

Ratio: definition of, 11. 116-9, no sufficient
E:mnd for regarding it as spurious I1. 117,

rrow’s defence of it 11. 117 : method of

transition from arithmetical to more general
sense covering incommensurables 11, 118:
means of expressing ratio of incommen-
surables is by approximation to any degree
of accuracy 11. 119: def. of greater ratio
only ewme criterion (there are others) 11.
130: tests for greater, equal and less ratios
mutually exclusive 11. 130-1: test for
greater ratio easier to apply than that for
equal ratio 11. 129-30: arguments about
greater and less ratios unsafe unless they
go back to original definitions (Simson on
V. 10) 1L 156-7: compound ratio 11. 132-3,
189—go, 234 : operation of compounding
ratios 11. 234 : ““ratio compounded of their
sides”™ (careless expression) 11. 248 : dupli-
cate, triplicate etc. ratio as distinct from
double, tripie etc. 11. 133: alternate ratio,
alternando 11. 134 inverse ratio, inversely
1. 134 iposition of ratio, A do,
different from compounding ratios11. 134-5:
separation of ratio, separande (commonly
dividends) 11. 135: conversion of ratio,
convertendo 11. 1351 ra:&i:“.u aeguali 11.
136, ex aeguali in " portion 11.
|§6: d;’::fﬂ'w of ‘:;:ilos usedﬁ;’n Data as
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g I method alternative to compounding
1. 349-50: names for particular arith-
metical ratios 11. 292

Rational (purds): (of ratios) 1. 137: “*rational
diameterof 5 1. 399400, 413: rational ri%hl-
angled triangles, see right-angled triangles:
any straight line may be taken as rational
and the ¢rrational is irrational in relation
thereto 111. 10: rational straight line is
still rational if ble with rational
straight line #n square only (extension of
meaning by Euclid) 111. 10, 11-12

Rationalisation of fractions with denominator
of form a4/ B or J A £ 8, 111. 243-52

Rauchfuss, see Dasypodius

Rausenberger, O. 1. 157, 175, 313, 111. 307,

3

lr-lgigzl, Abit Yisuf Ya'qib b. Muh. 1. 86

Reciprocal or reciprocally-related figures: de-
finition spurious 11. 189

Rectangle : =rectangular parallelogram 1.
370 : “‘rectangle contained by " 1. 370

Rectilineal angle: definitions classified 1.
179-81 : rectilineal figure 1. 187 : *‘recti-
lineal ent” 1. 196

Reductio ad absurdum 1. 134 described by
Aristotle and Proclus 1. 136: synonyms
for, in Aristotle 1. 136: a variety of Analy-
sis 1. 140: by exhaustion 1. 285, 293:
nominal avoidance of, 1. 369: the only
possible method of proving Eucl. 111, 1,
1. 8

Reduction (dwaywyh), technical term, ex-
lained by Aristotle and Proclus 1. 135:
rst ““reduction” of a difficult construction

due to Hippocrates 1. 135, 11. lal;

Region;ontanu:;é[ohnnnes Miiller of Konigs-

1. 93, 90, 100

Ret;:hrcgr. Sagmuel 1. 107

Rhaeticus 1. 101

Rhind Papyrus 1. 304, 352

Rhomboid 1. 62, 151, 189

Rhombus 1. 62, 151, meaning and derivation

1
Riccardi, P. 1. 96, 112, 202
Riemann, B. 1. 219, 273, 274, 280
Right angle: definition 1. 181: drawing
straight line at right angles to another,
Apollonius' construction for, 1. 270 : con-
struction when drawn at extremity of second
line (Heron) 1. 270
Right-angled triangles, rational: rule for
nding, by Pythagoras 1. 356-9, by Plato
1. 356, 357, 359, 360, 385, by Euclid 1.
3-4: discovery of rules by means of
gnomons 1. 3§ : connexion of rules
with Eucl. 11. 4, 8, 1. 360: rational right-

g gles in Aj ba 1. 361, 363
Riéth 1. 357-8

Rouché and de Comberousse 1. 313

Rudd, . Thos. 1. 110

Ruellivs, joan. (Jean Ruel) 1. 100

“ Rule of three ’: Eucl. V1. 12 equivalent to,
11. 215

Russell, Bertrand 1. 227, 249
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Saccheri, Gerolamo 1. 106, 144-5, 167-8,
185-6, 194, 197-8, 200-1, 1. 126, 130:
roof of exist of fourth proportional by
fucl. vI. 1, 2 and 12, 11. 170

g:'td b. Masid b. al-Qass 1. go
thapatha-Brihmana 1. 362

Savile, Henry 1. 105, 166, 245, 250, 263, 11. 190

Scalene (oxalqwds or oxaknwds) 1. 187-8: of
numbers ( = odd) 1. 188: a class of solid
numbers I1. 290: of cone (Apollonius) 1. 188

Schessler, Chr. 1. 107

Scheubel, Joan. 1. 101, 107

Schiaparelli, G. V. 1. 163

Schmidt, Max C. P. 1. 304, 3‘;‘9

Scholia to Elements and Mss. of, 1. 64-74:
historical information in, 1. 64: evidence
in, as to text I. 645, 66-7 : sometimes in-
terpolated in text.1. 67 : classes of, ** Schol.
Vat.” 1, 65-9, ** Schol. Vind."” 1. 69-70,
miscellaneousI. 71-4: **Schol. Vat.” partly
derived from Pappus’ commentary 1. 66:
many scholia partly extracted from Proclus
on Bk. 1., 1. 66, 69, 72 : many from Geminus
solely 1. 74: numerical illustrations in,
in Greek and Arabic numerals 1. 71,
74 m.: scholia by Psellus 1, jo-1, by
Maximus Planudes 1. 72, Joannes Pediasi-
mus 1. 72-3 : scholia in Latin published by
G. Valla, Commandinus, Conrad Dasypo-
dius 1. 73: scholia on Eucl. 11 13, 1. 407:
Scholium iv. No. 2 ascribes Book 1v. to
P;,rlhagnrﬂns 1. 414, 11. 97: Scholium v.
No. 1 attributes Book v. to Eudoxus Ll. 1123
Scholium X. No. 1 attributes discovery of
irrational and incommensurable to Pytha-

reans 111. 1: scholium published later
by Heiberg attributes Scholium X. No. 62
to Proclus 1. 32 n.

Scholiast to Cloudls of Aristophanes 11. g9

Schooten, Franz van 1. 108

Schopenhauer 1. 227, 354

Schotten, H. 1. 167, 174, 17

Schultze, A. and Sevenoak,
03, 331

Schumacher 1. 321

Schur, F. 1. 328

Schweikart, F. K. I. 219

Scipio Vegius 1. g9

Sectio Canonis attributed to Euclid 1. 17,
1. 295, I 33

Section (rous#):=peint of section 1. 150, 171,
383 : ““ the section ” = “ golden section” g.2.

Sector (of circle): explanation of name: two
kinds (1) with vertex at centre, (2) with
vertex at circumference 11. §

Sector-like (figure) 11. 5: bisection of such a
figure by straight line 11, 5

goeﬁ;oiﬁ 1‘} llr.cl.nﬁ le of,

ent of circle: angle of, 1. 253, 1. 4:
eﬁ’:’ffaf segments 1. %: legrnents]iss than
semicircle called ayis 1. 187

Semicircle: 1. 186: centre of, I. 186: angle
ofy 1. 182, 253, 1. 4, 39-41 (see Angle):
angle in semicircle a right angle, pre-
Euclidean proof 11. 63

192-3, 202
. L. 111, 284,
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Separation of ratio, Sialpeois Adyov, and
separando (Suehbvre) 11. 1351 separande and
componendo used relatively to one another,
not to original ratio 11. 168, 170

Segt 1. 304

Serenus of Antinoeia 1. 203

Serle, George 1. 110

Servais, C. 11. 426

Setting-out (Exfeos), one of formal divisions
of a proposition 1. 129 : may be omitted 1.

130
Sexagesimal fractions in scholia 1. 74
Sextus Empiricus 1. 63, 63, 184
Shamsaddin as-Samarqandi 1. 5., 89
* Side-" and ** diagonal-" numbers, described
1. 398-400: due to Pyt reans 1. 400,
111. 2, 20 : connexion with Eucl. 11. g, 10,
1. 398-400: use for approximation to /2,

1.

% Sidaeggf 2 medial minus a medial area"” (in
Euclid “that which produces with a medial
area a medial whole’’), a compound ir-
rational straight line : biquadratic of which
it is a root 111. 7: defined 111. 165-6:
uniquely formed IIL. 174-7: equivalenc to

uare root of sixth apotome 111. 209-11

“‘Side of a medial minus a rational area” (in
Euclid *‘that which produces with a rational
area a medial whole”), a compound ir-
rational straight line : biquadratic of which
it is a root 11I. 7: defined 11L. 164:
uniquely formed 111. 173-4: equivalent to
square root of fif?h apotome 111. 206-8

“Side of a rational plus a medial area,” a
compound irrational straight line : biquad-
ratic equation of which it is a root 111. 7:
deﬁnﬂ 111. 88-9 : uniquely divided 111. 99
equivalent to square root of £ifth binomial
111. 84, 128—9

“ Side of the sum of two medial argas,:da
compound irrational straight line: biquad-
nticp?:lf which it is a root 11 7: dgﬁned
111. 89-g1 : uniquely divided 111. gg-to1:
equivalent to square root of sixth binomial
111, 84, 130-1

#Side" used in translation of Book X. for #
Swvauévy (To xwplor), ‘‘side of a square
equal to (the area)” 11 13, 119

Sides of plane and solid numbers, 11. 287-8

Sigboto 1. 94

“Similar” {=equal) angles 1. 183, 252

“ Similarly inclined ” (of planes) 111. 260, 265

Similar plane and solid numbers 1. 357, 11.
293: one mean between two similar plane
numbers 11. 204, 3712, two means between
two similar solid numbers 11. 204, 373-5

Similar rectilineal figures: def. of, given in
Aristotle 11. 188: def. gives at once too
little and too much 11. 188 : similar figures
on straight lines which are gmportmml
are themselves proportional and conversely
(v1. 22), alternatives for proposition 11

242-7
Similar ents of circles I1. §
Similar solids: definitions of, 111, 261, 265-7

GENERAL INDEX

Simon, Max 1. 108, 155, 157-8, 167, 209,
328, 11. 134, 134
Simplicius: commentary on Euclid 1. 27-8:
on lunes of Hippoerates 1. 29, 35, 386-7 :
on Eudemus’ style 1. 35, 38 : on parallels
1. 1901 : 1. 23, 167, 171, 184, 185, 197,
203, 223, 124, 413, 1L 366
Simpson, Thomas, 11. 121, IIl. 274
Simson, Robert: on Euclid's Porisms 1. 14:
on “‘vitiations” in Elemtents due to Theon
1. 46, 103, 104, 106, 111, 148: definition
of plane 1. 172-3: Props. C, D (Bk. v.)
connecting proportionals of vi1. Def. 70as
particular case with those of v. Def. s, 11.
126-9, 111. 25: Axioms to Bk. v., 11. 137:
Prop. B (inversion) 11. 144 : Prop. E (con-
verlendo) 11. 175 : shortens v. 8 by com-
pressing two cases into one I1. 152-3:
important note showing flaw in V. 10 and
iving alternative 11. 156-7: Bk. v
rop. A extending VI. 3 to case where
external angle bisected 11. 197 : Props. B,
C, D 11. 222-7: remarks on VI. 27-9, IL
258-g: Prop. f,' Book x1., 111. 345: 1. 185,
186, 255, 259, 187, 293, 296, 322, 328,
384, 387, 403, 11. 2, 3, 8, 23, 23, 33, 34
37 43) 49) 53 70, 13, 79, 99, 117, 131,
132, 140, 1434, 145, 140, 148, 154, 101,
102, 163, 105, 170-12, 177, 179, 180, 183,
183, 184, 185, 186, 189, 193, 195, 209, 211,
2113, 230-1, 238, 152, 2?. 170, 372-3, III.
165, 206, 273~4, 275, 276, 286-7, 289, 295,
300, 300, 314 31, 34 327, 331, 334
y 341, 349, 351, 35 2, 375+ v 434
Sind b 1AL Aba - Tagyib 1. 86
Size, proper translation of wnphwérns in V.
Def. 3, 11, 11

, 189—90

Smithand Brynntﬁ.jtematiu proofs of v. 16.
17, 18 by means of V1. 1, where magnitudes
are straight lines or rectilineal areas II.
165-6, 169, 173-4: 1. 404, III. 268, 275,
284, 303, 307

Smith, 1333. 1. 362, 417

Solid : definition of, 111, 260, 262-3 : similar
solids, definitions of, 111. 261, 265-7:
equal and similar solids, #id.

Solid lngle : definitions of, 111, 261, 267-8:
solid “‘angle” of ‘“quarter of sphere,” of
cone, or of half-cone 111. 268

“Solid loci” 1. 319, 330: Sokid Loci of
Aristaeus 1. 16, 319

Solid numbers, three varieties according to
relative lengths of sides 11. 290-1

‘“Solid problems” 1. 329, 330

Speusippus 1. 125

mrl?ﬂ', early treatise on, 1. 17

Sphere: definitions of, by Euclid 111. 261,
169, others 111. 269

Spherical number, a particular species of cube
number 11. 291

Spiral, * single-turn,” 1. 122-3 %., 164~5: in
Pn.qpua:cylindriml helix 1. 165

Spiral of Archimedes 1. 26, 267

Spire (tore) or Spiric surface 1. 163, 170;
varieties of, 1. 163
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Spiric curves or sections, discovered by
Perseus 1. 161, 162-4

Square number, product of equal numbers
11. 289, 291: one mean between square
numbers 11. 294, 363-4

Staudt, Ch. von 111. 256

Steenstra, Pybo 1. 109

Steiner, Jakob 1. 193

Steinmetz, Moritz I. 101

Steinschneider, M. 1. 8., 765qq.

Stephanus Gracilis 1. 101-2

Stephen Clericus 1. 47

Stevin, Simon 111, 8

Stifel, Michael 11, 8

Stobaeus 1. 3, 11. 280

Stoic " axioms” 1. 41,221 sllustrations (Sely-
para) 1. 329

Stolz, O. 1. 328, 11 16

Stone, E. 1. 10§

Stmight line: pre-Euclidean (Platonic) de-
finition 1. 165-6: Archimedes’ ipti
respecting, 1. 166: Euclid’s definition, inter-

reted by Proclus and Simplicius 1. 166-7:
ﬁ\ age and construction of, 1. 167, and
conjecture as to origin 1. 168 : other defi-
nitions I. 168-g, in Heron 1. 168, by Leib-
niz 1. 169, by lafmdu 1. 169 : two straight
lines cannot enclose a space 1. 195-6, can-
not have a common segment I. 196-9, 111,
273: one or two cannot make a figure 1.
:gg. 183: division of straight line into any
number of equal parts (an-Nairizi) 1. 326:
straight line at right angles to plane, defi-
nition of, 111. 260, alternative constructions
for, 111. 293-4

Strémer, ten I. 113

gm%emnnd. g L. ganm.

t Vincent, of, 1. 401, 40

Subduplicate o?eag:;y ratio fo::d by éuci. VI
13, 11, 216

meaning and construction 1. 249,

suidas %5 60, 438

. 370, 413, 111. 300, 43
Sulaimin b.‘Usma (or "Uqba) 1. 85, go
Superposition: Euclid’s dislike of method

545

Surface-loci of Euclid 1. 15, 16, 330: Pappus’
lemmas on, 1. 15, 16

Suter, H. 1. 8., 17 ., 18 0., 25 ., 78 1.,
85 y 1L

Suvo'rz%. Pr. ?I' 13

Swinden, J. H. van L 169, 11. 188

Sylvester, J. 11. 426

Synthesis, se¢ Analysis and Synthesis

Syrianus 1. 30, 44, 176, 178

Tacquet, André I. 103, 105, 111, 11. 121, 238

Taittiriya-Samhita 1. 36%

Tannery, P. L. 7., 37-40, 44, 160, 163, 221,
323, 224, 225, 232, 305, 353, 412 417, 1L
112, 113, L. I, §

Ta'-rikh al-Hukamd 1. 4n.

Tartaglia, Niccold I. 3, 103, 106, I 2, 47

Taurinus, F. A. L. 219

Taurus 1. 62, 184

Taylor, H. M. 1. 248, 377-8, 404, 11. 16, 23,
29, 56, 75, 102, 227, 244, 247, 272, 1L
268, 275, 303, 491-2, 498

Taylor, Th. 1. 259

Tetrahedron, regular: 11. g8: problem of in-
scribing in given sphere, Euclid’s solution
111. 467-72, Pappus’ solution I11. 472-3

Thabit b. Qurra, translator of Elements 1. 41,
75-80, .82, 84, 87, 94: proof of L. 47,

1. 364-5

Tmi 1. 36, 37, 185, 253, 353, 278, 317,
18, 319, I1. 111, 280: on distance of ship
rom shore 1. 304-5§

Theaetetus I. 1, 37: contributions to theory
of incommensurables 111. 3: Eucl X. g
attributed to, 111. 3, 30: supposed to have
discovered octahedron and icosahedron 111.
438: was the first to write a treatise on
regular solids 111. 438: I1I. 442

Theodorus Antiochita 1. 71

Theodorus Cabasilas 1. 72

Theodorus of Cyrene: proved incommen-
surability of »/3, #/5 etc. up to /17, I 411,
412-3, 111. 1, 3

Theodorus Metochita, I.

Theodosius 11. 37, 1II. :é. 366, 472

of, 1. 225, 149: apparently by
Aristotle as legitimate 1. 226: used by
Archimedes 1. 225: objected to by Pele-
tarius 1. 249: no use theoretically, but
merely furnishes practical test of equality
I. 227: Bertrand Russell on, 1. 217,
2
Si 4 : Pythagorean term for, xpoid (=co-
69: terms for, in Plato
: dwu wa in Euclid
(not éxlredor) 1. 169: n!tmve definition
of, in Aristotle 1. 170: produced by motion
of line 1. 170: divisions or sections of solids
are surfaces 1. 170, 171; classifications of
surfaces by Heron and Geminus I. 170:
composite, incomposite, simple, mixed 1.
170: spiric surfaces 1. 163, 170: Aomoco-
mieric (uniform) surfaces 1. 170: spheroid
1. 170: plane surface, see plane: loci on
surfaces 1. 339, 330

Theognis 1. 371

Theon of Alexandria: edition of Elements
1. 46: changes made by, I. 46: Simson

on * vitiations™ by, 1. 46: principles for
detecting his alterations, by comparison
of P, ancient papyri and * Theonine” Mss.
1. 51-3: character of cha by, 1. 54-8:
interpolation in v. 13 and Porism 11, 144:
interpolated Porism to V1. 20, 11. 239: ad-
ditions to V1. 33 (about secfors) 11, 274-6:
11, 43, 109, 117, 119, 149, 152, 161, 186,
190, 234, 235, 240, 247, 256, 262, 311,
322, 412

Theon of Smyma: 1. 172, 357, 358, 371,
3908, 11 111, 119, 279, 280, 281, 284, 285,
286, 288, 289, 290, 291, 292, 293, 294,
415, 111 2, 263, 273

eorem and problem, distinguished by
Speusippus 1. 125, Amphinomus 1. 125,
128, h 1. 135, Zenodotus, Posi-
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donius 1. 126, Euclid 1. 126, Carpus 1. 127,
128: views of Proclu.s I. n';-—s. and of
Geminus 1. 128: eneral” and ** not-
general” (or pamal theorems (Proclus)

5
Theu‘?ims of Magnesia I. 117
Thibaut, B. F. I., 321
Thibaaut, C.: On Sulvasitras 1. 360, 363-4
Thompson, Thomas Perronet I 112
Thrasyllus 11. 292
Thucydides 1. 333
Thymaridas 11. 179, 285
Tibbon, Moses b. 1. 76
Tu;ccw of Plato t 4.: 3~4 1. 97-8, 294-5,
263
Tiraboschi 1. g4 .
Tittel, K. 1..38, 39
Todhunter, L 1 11z, 189, 246, 258, 277,
283, 293, 298, 307, 1L 3, 7, 22, 49, 51, 52,
67, 73, 99, 99, 173, 195, 202, 204, 208,
259, a;:. 171, 300
Tonstall, bert 1. 100
Tore 1. 16
Tmnsformauon of areas 1. 346-7, 410
Tm m: Euclid’s definition his own 1.
further division into trapezia and
ids (Posidonius, Heron) I. 189-go:
on area of parallel-trapezium I.
33 :name applied to truncated pyramidal

num (Theon of Smyrna) 11. 291
Treasury of .gmbu'u (dvadvbuevos rbwos) 1. 8,
10, 11, I3

enburg, F. A. L. 146 ., 148, 149

Treatlein, P. 1. 358-60

Triangle: seven species of, 1. 188: *‘four-
sided " triangle, called also “barb-like ”
(dxidoeidés) and (by Zenodorus) kothoyiwior
I. 27, 188: construction of isosceles and
scalene triangles 1. 243: Heron's proof
of expression for area in terms of sides,
Ns{s=a) (s=8) (s=c), 1. 87-8: right-
angled triangle which is half of equilateral
triangle for construction of tetrahe-
dron, octahedron and icosahedron (7¥masus
ofPlato) 11. g8
Tibetoel angloss conditiope of equali

lh.omi uality 111,

311-2: symmetrical trihed eqmg’uy 1I.

?}?mca‘ml (straight line), first and second,
to bimedial 111. 257-8
?Hmsmﬂ‘ (¢ t line), extension from bi-
nomial I1I. 25

Triplicate, distinct from friple, ratio 11. 1
Trisection of an mc 1. 1§?—-7 &
at-Tisl, see Nagh

Unger, E. S. 1. 108,

Unit: definitions of, by?hymandu “‘some
Pythagoreans,” Chryn?pu, Aristotle and
others 11. 279: Euclid’s definition that of
the ** more recent” writers I11. 279: wowds
connected etymologically by eon of

GENERAL INDEX

Smyrna and Nicomachus with péves (soli-
tary) or mow (rest) 1. 279
Vacca, Giovanni I, 113
Vachtchenko-Zakhartchenko 1. 113
Vailati, G. 1. 144 #., 145
Valerius Maximus 1. 3
Vn.lln G., De expetendis et fugiendis rebus

Van gwmden, H. 1 :69. 11. 188

Vatican Ms. 1(?0 (P) 1. 46, 47

Vaux, Carra de, I. 20

Verona palimpsest 1. g1

Vemmer:aG les;s','. ?63 175, 180, 193-4,
198, 201, :16»1. 2128, 249, 328, IL 30, 136

Vertical (angles) 1. 278

Vettius Valens 111. 3

Viennese Ms. (V) L 48, 49

Vieta: on an, fes{mﬂaﬂ 1. 42

Vinci, Lioj 1. 3656

Vitali, G. 1. 237

Vitruvius 1. 352: Vitruvius and Heron L 20,
a1

Viviani, Vincenzo I. 107, 401

Vogt, Heinrich, 1. 360, 364, 411-4

Vooght, C. J. 1. 108

Wachsmuth, C. 1. 32, 033
Walker, John II. 204, 2 259
Wallis, John 1. 103: .:d;ted Cornm on Pto-
lemy’s Harmonica 1. 17 : attempt to prove
Post. 5, 1. 210-11: on angle of comtact
(* degree of curvature ) 11. 42
Weber (H.) and Wellstein (J.) 1. 157
Weierstrass 11, 124
Weissenborn, H. 1.
» 971, 418
iston, W. L 111
Williamson, James L 111, 293
Witt, H. A. 1. 113
Woepcke, F., disco 1 De divisiontbus in
Arabic and pnblushed translation I. 9: on
Pappus’ tary on El s 1. 25,
66, 77: 1. 85 n., 86, 87. 1L §, II. 3, 2535,
256, 258, 250

78 m., 93 1., Q4 M., 95,

Xenocrates 1. 268, 413
Ximenes, Leonardo I, 107
Xylander 1. 107

Yahyd b. Khilid b. Barmak 1.
Yn.l;{i b. Muh. b. 'Abdin b. Abdalwihtd
n al- Lnbucl'l} 1. go

Yrinus=Heron 1. 22
Yihannd b, Viisuf b. al-Harith b. al-Bitriq
al-Qass 1. 76, 87

Zam'berti. Bartolomeo 1. g8-100, 101, 104,

Zeno the Epicurean 1. 34, 196, 197, 199, 242

Zenodorus 1. 26, 27, 188, 333, II. 276

Zenodotus I. 136

Zeuthen, H. G. 1. 15, 113, 139, 141, 146 .,
(51, 355-6, 360, 363, 387, 398, 399, 111 4
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